def opt(self): """ Sequential random embedding optimization. :return: the best solution of the optimization """ dim = self.__objective.get_dim() res = [] iteration = self.__parameter.get_num_sre() new_obj = copy.deepcopy(self.__objective) new_par = copy.deepcopy(self.__parameter) new_par.set_budget(math.floor(self.__parameter.get_budget()/iteration)) new_obj.set_last_x(Solution(x=[0])) for i in range(iteration): ToolFunction.log('sequential random embedding %d' % i) new_obj.set_A(np.sqrt(self.__parameter.get_variance_A()) * np.random.randn(dim.get_size(), self.__parameter.get_low_dimension().get_size())) new_dim = Dimension.merge_dim(self.__parameter.get_withdraw_alpha(), self.__parameter.get_low_dimension()) new_obj.set_dim(new_dim) result = self.__optimizer.opt(new_obj, new_par) x = result.get_x() x_origin = x[0] * np.array(new_obj.get_last_x().get_x()) + np.dot(new_obj.get_A(), np.array(x[1:])) sol = Solution(x=x_origin, value=result.get_value()) new_obj.set_last_x(sol) res.append(sol) best_sol = res[0] for i in range(len(res)): if res[i].get_value() < best_sol.get_value(): best_sol = res[i] self.__objective.get_history().extend(new_obj.get_history()) return best_sol
def start_server(self, func=None): # define objective function calculate = func s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # s.bind((self.__server_ip, self.__server_port)) s.listen(5) all_connect = 0 print 'this is server !' print 'waiting for connector...' while True: # get x from client cs, address = s.accept() # print all_connect + 1, ' get connected...' all_connect += 1 print 'connect num:', all_connect, ' address:', address data_str = cs.recv(self.__data_length) print(data_str) x = [] data_str = data_str.split(' ') print(data_str) for i in range(len(data_str)): x.append(float(data_str[i])) fx = calculate(Solution(x=x)) fx_x = str(fx) cs.send(fx_x) print 'send result finished...' cs.close() print 'server close!' s.close()
def strategy_wr(self, iset, x, iset_type): if iset_type == 'pos': index = self.binary_search(iset, x, 0, len(iset) - 1) iset.insert(index, x) worst_ele = iset.pop() else: worst_ele, worst_index = Solution.find_maximum(iset) if worst_ele.get_value() > x.get_value(): iset[worst_index] = x else: worst_ele = x return worst_ele
def construct_solution(self, x, parent=None): new_solution = Solution() new_solution.set_x(x) new_solution.set_attach(self.__inherit(parent)) # new_solution.set_value(self.__func(new_solution)) # evaluation should # be invoked explicitly return new_solution
def construct_solution(self, x, parent=None): """ Construct a solution from x :param x: a list :param parent: the attached structure :return: solution """ new_solution = Solution() new_solution.set_x(x) new_solution.set_attach(self.__inherit(parent)) return new_solution
def strategy_wr(self, iset, x, iset_type): """ Replace the worst solution in iset. :param iset: a solution set :param x: a Solution object :param iset_type: 'pos' or 'neg' :return: the worst solution """ if iset_type == 'pos': index = self.binary_search(iset, x, 0, len(iset) - 1) iset.insert(index, x) worst_ele = iset.pop() else: worst_ele, worst_index = Solution.find_maximum(iset) if worst_ele.get_value() > x.get_value(): iset[worst_index] = x else: worst_ele = x return worst_ele
def eval(self, solution): """ Use the objective function to evaluate a solution. :param solution: :return: value of fx(evaluation result) will be returned """ res = [] for i in range(self.__resample_times): if self.__reducedim is False: val = self.__func(solution) else: x = solution.get_x() x_origin = x[0] * np.array(self.__last_x.get_x()) + np.dot( self.__A, np.array(x[1:])) val = self.__func(Solution(x=x_origin)) res.append(val) self.__history.append(val) value = sum(res) / float(len(res)) solution.set_value(value) solution.set_post_attach(self.__post_inherit()) return value