def stack_decoder_layers(init): model = Sequential(init_method=init) model.add(Dense(256, activation='relu', input_shape=(latent_dim, ))) model.add(BatchNormalization()) model.add(Dense(512, activation='relu')) model.add(BatchNormalization()) model.add(Dense(img_dim, activation='sigmoid')) return model
def stack_generator_layers(init): model = Sequential(init_method=init) model.add(Dense(128, input_shape=(latent_dim, ))) model.add(Activation('leaky_relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(256)) model.add(Activation('leaky_relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(Activation('leaky_relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(img_dim, activation='tanh')) return model
def stack_generator_layers(init): model = Sequential(init_method=init) model.add(Dense(128 * 7 * 7, input_shape=(latent_dim, ))) model.add(Activation('leaky_relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Reshape((128, 7, 7))) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=(5, 5), padding='same')) model.add(BatchNormalization(momentum=0.8)) model.add(Activation('leaky_relu')) model.add(UpSampling2D()) model.add(Conv2D(img_channels, kernel_size=(5, 5), padding='same')) model.add(Activation('tanh')) return model
plot_digits_img_samples(data) train_data, test_data, train_label, test_label = train_test_split( data.data, data.target, test_size=0.33, random_seed=5) opt = register_opt(optimizer_name='adam', momentum=0.01, learning_rate=0.001) model = Sequential(init_method='he_uniform') model.add( Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(1, 8, 8), padding='same')) model.add(Dropout(0.25)) model.add(BatchNormalization()) model.add( Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(10, activation='softmax')) # 10 digits classes model.compile(loss='categorical_crossentropy', optimizer=opt) model_epochs = 12 fit_stats = model.fit(train_data.reshape(-1, 1, 8, 8), one_hot(train_label),