예제 #1
0
파일: don11.py 프로젝트: WIYN-ODI/donut
    def init(self):
        '''
        ; Pre-compute the parameters and save them in the COMMOM block
        :return:
        '''

        ngrid = self.ngrid
        d = self.d
        eps = self.eps
        alambda = self.alambda
        pixel = self.pixel
        self.sflag = 0 # fast seeing blur, set to 1 for slow calc.


        # Find reasonable limits on the grid parameters
        asperpix =  206265.*(1e-6*alambda)/d # maximum fine-pixel size

        ccdpix = float(pixel)
        k = np.floor(np.log10(ccdpix/asperpix)/np.log10(2.)) +1.
        npixperpix = 2**k
        fovpix = 2*ngrid/npixperpix     # CCD field size
        asperpix = ccdpix/npixperpix
        size = 206266.*(1e-6*alambda)/asperpix
        Rpix = ngrid/size*d

        # log.info('Rebinning factor: %s'% npixperpix)
        # log.info('Grid pixel: %s arcsec'%asperpix)
        # log.info('Grid size: %s m'%size)
        # log.info('CCD pixel:  %s arcsec'%ccdpix)
        # log.info('CCD field:  %s arcsec'%(fovpix*ccdpix))
        # log.info('CCD format: %s'% fovpix)

        r = np.roll(np.roll(ztools.dist(2*ngrid),
                            ngrid,
                            axis=0),
                    ngrid,
                    axis=1) #distance from grid center, pixs
        # # log.debug('INIT: %s %s'%(Rpix,Rpix*eps))
        inside = np.bitwise_and( r <= Rpix ,
                                 r >= Rpix*eps )
        pupil = np.zeros((2*ngrid,2*ngrid))    # zero array
        pupil[inside] = 1
        n = inside.size

        # x = (findgen(2*ngrid) - ngrid) # replicate(1.,2*ngrid)
        x = np.array([(np.arange(2*ngrid) - ngrid)]*2*ngrid) # replicate(1.,2*ngrid)
        theta = np.arctan2(x.T,x)
        # theta[ngrid]=0.
        self.zgrid = np.zeros((2,r[inside].shape[0]))
        # print self.zgrid.shape,r[inside].shape,inside.shape,n
        flat_inside=[i for i in inside.flat]
        # log.debug('flat_inside: %s %s'%(len(flat_inside),self.zgrid.shape))
        self.zgrid[0] = r[inside]/Rpix
        self.zgrid[1] = theta[inside]
        self.inside = inside
        self.fovpix = fovpix
        self.asperpix = asperpix
        self.ccdpix = ccdpix
        self.npixperpix = npixperpix
        self.Rpix = Rpix
예제 #2
0
파일: don11.py 프로젝트: teweitsai/donut
    def init(self):
        '''
        ; Pre-compute the parameters and save them in the COMMOM block
        :return:
        '''

        ngrid = self.ngrid
        d = self.d
        eps = self.eps
        alambda = self.alambda
        pixel = self.pixel
        self.sflag = 0 # fast seeing blur, set to 1 for slow calc.


        # Find reasonable limits on the grid parameters
        asperpix =  206265.*(1e-6*alambda)/d # maximum fine-pixel size

        ccdpix = float(pixel)
        k = np.floor(np.log10(ccdpix/asperpix)/np.log10(2.)) +1.
        npixperpix = 2**k
        fovpix = 2*ngrid/npixperpix     # CCD field size
        asperpix = ccdpix/npixperpix
        size = 206266.*(1e-6*alambda)/asperpix
        Rpix = ngrid/size*d

        # log.info('Rebinning factor: %s'% npixperpix)
        # log.info('Grid pixel: %s arcsec'%asperpix)
        # log.info('Grid size: %s m'%size)
        # log.info('CCD pixel:  %s arcsec'%ccdpix)
        # log.info('CCD field:  %s arcsec'%(fovpix*ccdpix))
        # log.info('CCD format: %s'% fovpix)

        r = np.roll(np.roll(ztools.dist(2*ngrid),
                            ngrid,
                            axis=0),
                    ngrid,
                    axis=1) #distance from grid center, pixs
        # # log.debug('INIT: %s %s'%(Rpix,Rpix*eps))
        inside = np.bitwise_and( r <= Rpix ,
                                 r >= Rpix*eps )
        pupil = np.zeros((2*ngrid,2*ngrid))    # zero array
        pupil[inside] = 1
        n = inside.size

        # x = (findgen(2*ngrid) - ngrid) # replicate(1.,2*ngrid)
        x = np.array([(np.arange(2*ngrid) - ngrid)]*2*ngrid) # replicate(1.,2*ngrid)
        theta = np.arctan2(x.T,x)
        # theta[ngrid]=0.
        self.zgrid = np.zeros((2,r[inside].shape[0]))
        # print self.zgrid.shape,r[inside].shape,inside.shape,n
        flat_inside=[i for i in inside.flat]
        # log.debug('flat_inside: %s %s'%(len(flat_inside),self.zgrid.shape))
        self.zgrid[0] = r[inside]/Rpix
        self.zgrid[1] = theta[inside]
        self.inside = inside
        self.fovpix = fovpix
        self.asperpix = asperpix
        self.ccdpix = ccdpix
        self.npixperpix = npixperpix
        self.Rpix = Rpix
예제 #3
0
파일: don11.py 프로젝트: WIYN-ODI/donut
    def newimage(self, a, jzer):
        '''
        a is the amplitude change of aberration (micron), Jzer is the Zernike number
        (1=seeing, 4=focus etc.)

        :param a:
        :param jzer:
        :return:
        '''

        #COMMON imagedata, uampl, filter2, seeing

        newampl = np.array(self.uampl, copy=True)

        if (jzer > 1):  # Change Zernike coefficient
            newphase = 2. * np.pi / self.alambda * a * ztools.zernike_estim(
                jzer, self.zgrid)
            tmp = np.zeros_like(newphase, dtype=np.complex)
            tmp += np.cos(newphase)
            tmp += np.sin(newphase) * np.complex(0., 1.)
            newampl[self.inside] *= tmp
            filter = self.filter2
        else:  # new seeing
            newseeing = self.seeing + a
            if (self.sflag > 0):
                filter = np.exp(
                    -2. * np.pi**2 *
                    (newseeing / 2.35 / self.asperpix / 2 / self.ngrid)**2 *
                    self.r**2)  # unbinned image
            else:
                rr = ztools.shift(ztools.dist(self.fovpix), self.fovpix / 2,
                                  self.fovpix / 2)
                filter = np.exp(
                    -2. * np.pi**2 *
                    (newseeing / 2.35 / self.ccdpix / self.fovpix)**2 *
                    rr**2)  # binned image

        #---------  compute the image ----------------------
        imh = np.abs(
            ztools.shift(
                np.fft.ifft2(ztools.shift(newampl, self.ngrid, self.ngrid)),
                self.ngrid, self.ngrid))**2
        # imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(newampl,self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2)),self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2))**2.
        if (self.sflag > 0):  # exact seing blur
            imh = np.abs(
                np.fft2(
                    ztools.shift(np.fft.fft2(imh), self.ngrid, self.ngrid) *
                    filter))
            impix = ztools.rebin(
                imh, [self.fovpix, self.fovpix])  # rebinning into CCD pixels
        else:
            impix = ztools.rebin(
                imh, [self.fovpix, self.fovpix])  # rebinning into CCD pixels
            impix = np.abs(
                np.fft.fft2(
                    ztools.shift(np.fft.fft2(impix), self.fovpix / 2,
                                 self.fovpix / 2) * filter))  # Seeing blur

        return impix / np.sum(impix)
예제 #4
0
파일: don11.py 프로젝트: WIYN-ODI/donut
    def getimage(self,z):
        '''

        :param z: the Zernike vector in microns, starting from Z=2 (tip)
                    z[0] is seeing in arcseconds
        :return:
        '''
        #COMMON imagedata, uampl, filter2, seeing


        fact = 2.*np.pi/self.alambda

        nzer = len(z)
        phase = np.zeros_like(self.zgrid[0]) # empty array for phase

        for j in range(1, nzer):
            phase += fact*z[j]*ztools.zernike_estim(j+1,self.zgrid)
        # # log.debug('GETIMAGE: %s %s'%(phase[0],phase[-1]))
        # exit(0)
        uampl = np.zeros((self.ngrid*2,self.ngrid*2),dtype=np.complex)
        #uampl = np.complex(tmp, tmp)
        self.uampl = uampl

        uampl[self.inside] += np.cos(phase) #,
        uampl[self.inside] += (np.sin(phase)*np.complex(0,1))

        #uampl[np.bitwise_not(self.inside)] = 0.

        self.seeing = z[0]

        #---------  compute the image ----------------------
        # imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(uampl,self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2)),self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2))**2.
        imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(uampl,self.ngrid,self.ngrid)),self.ngrid,self.ngrid))**2.

        if (self.sflag > 0): # exact seeing blur

            filter2 = np.exp(-2.*np.pi**2*(self.seeing/2.35/self.asperpix/2/self.ngrid)**2*self.r**2) # unbinned image
            imh = np.abs(np.fft2(ztools.shift(np.fft2(imh),self.ngrid,self.ngrid)*filter2))
            impix = ztools.rebin(imh,(self.fovpix,self.fovpix)) # rebinning into CCD pixels

        else:
            rr = ztools.shift(ztools.dist(self.fovpix),self.fovpix/2,self.fovpix/2)
            filter2 = np.exp(-2.*np.pi**2*(self.seeing/2.35/self.ccdpix/self.fovpix)**2*rr**2) # binned image
            impix = ztools.rebin(imh,[self.fovpix,self.fovpix]) # rebinning into CCD pixels
            impix = np.abs(np.fft.fft2(ztools.shift(np.fft.fft2(impix),self.fovpix/2,self.fovpix/2)*filter2)) # Seeing blur


        self.filter2 = filter2
        return impix/np.sum(impix)
예제 #5
0
파일: don11.py 프로젝트: teweitsai/donut
    def getimage(self,z):
        '''

        :param z: the Zernike vector in microns, starting from Z=2 (tip)
                    z[0] is seeing in arcseconds
        :return:
        '''
        #COMMON imagedata, uampl, filter2, seeing


        fact = 2.*np.pi/self.alambda

        nzer = len(z)
        phase = np.zeros_like(self.zgrid[0]) # empty array for phase

        for j in range(1, nzer):
            phase += fact*z[j]*ztools.zernike_estim(j+1,self.zgrid)
        # # log.debug('GETIMAGE: %s %s'%(phase[0],phase[-1]))
        # exit(0)
        uampl = np.zeros((self.ngrid*2,self.ngrid*2),dtype=np.complex)
        #uampl = np.complex(tmp, tmp)
        self.uampl = uampl

        uampl[self.inside] += np.cos(phase) #,
        uampl[self.inside] += (np.sin(phase)*np.complex(0,1))

        #uampl[np.bitwise_not(self.inside)] = 0.

        self.seeing = z[0]

        #---------  compute the image ----------------------
        # imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(uampl,self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2)),self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2))**2.
        imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(uampl,self.ngrid,self.ngrid)),self.ngrid,self.ngrid))**2.

        if (self.sflag > 0): # exact seeing blur

            filter2 = np.exp(-2.*np.pi**2*(self.seeing/2.35/self.asperpix/2/self.ngrid)**2*self.r**2) # unbinned image
            imh = np.abs(np.fft2(ztools.shift(np.fft2(imh),self.ngrid,self.ngrid)*filter2))
            impix = ztools.rebin(imh,(self.fovpix,self.fovpix)) # rebinning into CCD pixels

        else:
            rr = ztools.shift(ztools.dist(self.fovpix),self.fovpix/2,self.fovpix/2)
            filter2 = np.exp(-2.*np.pi**2*(self.seeing/2.35/self.ccdpix/self.fovpix)**2*rr**2) # binned image
            impix = ztools.rebin(imh,[self.fovpix,self.fovpix]) # rebinning into CCD pixels
            impix = np.abs(np.fft.fft2(ztools.shift(np.fft.fft2(impix),self.fovpix/2,self.fovpix/2)*filter2)) # Seeing blur


        self.filter2 = filter2
        return impix/np.sum(impix)
예제 #6
0
파일: don11.py 프로젝트: WIYN-ODI/donut
    def newimage(self, a, jzer):
        '''
        a is the amplitude change of aberration (micron), Jzer is the Zernike number
        (1=seeing, 4=focus etc.)

        :param a:
        :param jzer:
        :return:
        '''

        #COMMON imagedata, uampl, filter2, seeing

        newampl = np.array(self.uampl,copy=True)

        if (jzer > 1): # Change Zernike coefficient
            newphase =  2.*np.pi/self.alambda*a*ztools.zernike_estim(jzer,self.zgrid)
            tmp = np.zeros_like(newphase,dtype=np.complex)
            tmp += np.cos(newphase)
            tmp += np.sin(newphase)*np.complex(0.,1.)
            newampl[self.inside] *= tmp
            filter = self.filter2
        else: # new seeing
            newseeing = self.seeing + a
            if (self.sflag > 0):
                filter = np.exp(-2.*np.pi**2*(newseeing/2.35/self.asperpix/2/self.ngrid)**2*self.r**2) # unbinned image
            else:
                rr = ztools.shift(ztools.dist(self.fovpix),self.fovpix/2,self.fovpix/2)
                filter = np.exp(-2.*np.pi**2*(newseeing/2.35/self.ccdpix/self.fovpix)**2*rr**2) # binned image

        #---------  compute the image ----------------------
        imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(newampl,self.ngrid,self.ngrid)),self.ngrid,self.ngrid))**2
        # imh = np.abs(ztools.shift(np.fft.ifft2(ztools.shift(newampl,self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2)),self.ngrid+self.fovpix/2,self.ngrid+self.fovpix/2))**2.
        if (self.sflag > 0): # exact seing blur
            imh = np.abs(np.fft2(ztools.shift(np.fft.fft2(imh),self.ngrid,self.ngrid)*filter))
            impix = ztools.rebin(imh,[self.fovpix,self.fovpix]) # rebinning into CCD pixels
        else:
            impix = ztools.rebin(imh,[self.fovpix,self.fovpix]) # rebinning into CCD pixels
            impix = np.abs(np.fft.fft2(ztools.shift(np.fft.fft2(impix),self.fovpix/2,self.fovpix/2)*filter)) # Seeing blur

        return impix/np.sum(impix)