예제 #1
0
def test_jq_603220_kdata():
    df = technical.get_kdata(entity_id='stock_sh_603220', session=day_k_session, level=IntervalLevel.LEVEL_1DAY,
                             provider='joinquant')
    print(df)
    df = technical.get_kdata(entity_id='stock_sh_603220', session=day_1h_session, level=IntervalLevel.LEVEL_1HOUR,
                             provider='joinquant')
    print(df)
예제 #2
0
def draw_order_signals(trader_name, render='html'):
    df_account = get_account(trader_name=trader_name)
    start_timestamp = df_account['timestamp'][0]
    end_timestamp = df_account['timestamp'][-1]

    df_orders = get_orders(trader_name=trader_name)
    grouped = df_orders.groupby('security_id')

    page = Page()

    for security_id, order_df in grouped:
        kdata = get_kdata(security_id=security_id,
                          provider='netease',
                          start_timestamp=start_timestamp,
                          end_timestamp=end_timestamp)
        mark_points = order_df
        kline = draw_kline(df_list=[kdata],
                           markpoints_list=[mark_points],
                           render=None)

        page.add(kline)

    if render == 'html':
        file_name = '{}_signals'.format(trader_name)
        page.render(get_ui_path(file_name))
    elif render == 'notebook':
        page.render_notebook()

    return page
예제 #3
0
    def __init__(self, entity_type='stock', exchanges=['sh', 'sz'], entity_ids=None, codes=None, batch_size=10,
                 force_update=False, sleeping_time=5, default_size=2000, one_shot=False, fix_duplicate_way='add',
                 start_timestamp=None, end_timestamp=None, contain_unfinished_data=False,
                 level=IntervalLevel.LEVEL_1DAY, kdata_use_begin_time=False, close_hour=15, close_minute=0,
                 one_day_trading_minutes=4 * 60) -> None:
        self.data_schema = get_kdata_schema(entity_type=entity_type, level=level)
        self.jq_trading_level = to_jq_trading_level(level)

        super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time,
                         default_size, one_shot, fix_duplicate_way, start_timestamp, end_timestamp,
                         contain_unfinished_data, level, kdata_use_begin_time, close_hour, close_minute,
                         one_day_trading_minutes)

        self.current_factors = {}
        for security_item in self.entities:
            kdata = get_kdata(entity_id=security_item.id, provider=self.provider,
                              level=self.level.value, order=self.data_schema.timestamp.desc(),
                              limit=1,
                              return_type='domain',
                              session=self.session)
            if kdata:
                self.current_factors[security_item.id] = kdata[0].factor
                self.logger.info('{} latest factor:{}'.format(security_item.id, kdata[0].factor))

        auth(JQ_ACCOUNT, JQ_PASSWD)
예제 #4
0
    def on_finish(self, security_item):
        kdatas = get_kdata(security_id=security_item.id,
                           data_schema=ETF1DKdata,
                           level=TradingLevel.LEVEL_1DAY.value,
                           order=ETF1DKdata.timestamp.asc(),
                           return_type='domain',
                           session=self.session,
                           filters=[ETF1DKdata.cumulative_net_value.is_(None)])

        if kdatas and len(kdatas) > 0:
            start = kdatas[0].timestamp
            end = kdatas[-1].timestamp

            # 从东方财富获取基金累计净值
            df = self.fetch_cumulative_net_value(security_item, start, end)

            if df is not None and not df.empty:
                for kdata in kdatas:
                    if kdata.timestamp in df.index:
                        kdata.cumulative_net_value = df.loc[kdata.timestamp,
                                                            'LJJZ']
                        kdata.change_pct = df.loc[kdata.timestamp, 'JZZZL']
                self.session.commit()
                self.logger.info(
                    f'{security_item.code} - {security_item.name}累计净值更新完成...')
예제 #5
0
    def __init__(self) -> None:
        if self.start_timestamp:
            self.start_timestamp = to_pd_timestamp(self.start_timestamp)
            self.start_timestamp = self.trading_level.floor_timestamp(self.start_timestamp)
            self.current_timestamp = self.start_timestamp
        else:
            self.start_timestamp = now_pd_timestamp()

        if self.end_timestamp:
            self.end_timestamp = to_pd_timestamp(self.end_timestamp)

        self.security_type, self.exchange, self.code = decode_security_id(self.security_id)

        self.kdata_schema = get_kdata_schema(self.security_type)

        # init history data
        for model in self.models:
            datas = \
                get_kdata(self.security_id, level=model.trading_level,
                          end_timestamp=self.start_timestamp, order=self.kdata_schema.timestamp.desc(),
                          limit=model.history_size)
            if datas:
                model.init_history_data(datas)

            if not datas:
                self.logger.warning(
                    "to {}, {} no history data ".format(self.start_timestamp, self.security_id))
            elif len(datas) < self.history_data_size:
                self.logger.warning(
                    "to {}, {} history data size:{}".format(self.start_timestamp, self.security_id, len(datas)))
예제 #6
0
    def __init__(self,
                 security_type=SecurityType.stock,
                 exchanges=['sh', 'sz'],
                 codes=None,
                 batch_size=10,
                 force_update=False,
                 sleeping_time=5,
                 fetching_style=TimeSeriesFetchingStyle.end_size,
                 default_size=2000,
                 contain_unfinished_data=False,
                 level=TradingLevel.LEVEL_1DAY,
                 one_shot=True) -> None:
        super().__init__(security_type, exchanges, codes, batch_size,
                         force_update, sleeping_time, fetching_style,
                         default_size, contain_unfinished_data, level,
                         one_shot)

        self.current_factors = {}
        self.latest_factors = {}
        for security_item in self.securities:
            kdata = get_kdata(security_id=security_item.id,
                              provider=self.provider,
                              level=self.level.value,
                              order=StockDayKdata.timestamp.desc(),
                              return_type='domain',
                              session=self.session)
            if kdata:
                self.current_factors[security_item.id] = kdata[0].factor
예제 #7
0
 def __init__(self,
              entity_type='stock',
              exchanges=['sh', 'sz'],
              entity_ids=None,
              codes=None,
              batch_size=10,
              force_update=False,
              sleeping_time=10,
              default_size=2000,
              one_shot=True,
              fix_duplicate_way='add',
              start_timestamp=None,
              end_timestamp=None,
              contain_unfinished_data=False,
              level=IntervalLevel.LEVEL_1DAY,
              kdata_use_begin_time=False,
              close_hour=0,
              close_minute=0,
              one_day_trading_minutes=24 * 60) -> None:
     super().__init__(entity_type, exchanges, entity_ids, codes, batch_size,
                      force_update, sleeping_time, default_size, one_shot,
                      fix_duplicate_way, start_timestamp, end_timestamp,
                      contain_unfinished_data, level, kdata_use_begin_time,
                      close_hour, close_minute, one_day_trading_minutes)
     self.current_factors = {}
     self.latest_factors = {}
     for security_item in self.entities:
         kdata = get_kdata(entity_id=security_item.id,
                           provider=self.provider,
                           level=self.level.value,
                           order=Stock1dKdata.timestamp.desc(),
                           return_type='domain',
                           session=self.session)
         if kdata:
             self.current_factors[security_item.id] = kdata[0].factor
예제 #8
0
    def on_trading_close(self, timestamp):
        self.logger.info('on_trading_close:{}'.format(timestamp))

        self.latest_account['value'] = 0
        self.latest_account['all_value'] = 0
        for position in self.latest_account['positions']:
            # use qfq for stock
            entity_type, _, _ = decode_entity_id(position['entity_id'])
            data_schema = get_kdata_schema(entity_type, level=self.level)

            kdata = get_kdata(provider=self.provider,
                              level=self.level,
                              entity_id=position['entity_id'],
                              order=data_schema.timestamp.desc(),
                              end_timestamp=timestamp,
                              limit=1)

            # use qfq for stock
            if entity_type == 'stock':
                closing_price = kdata['qfq_close'][0]
            else:
                closing_price = kdata['close'][0]

            position['available_long'] = position['long_amount']
            position['available_short'] = position['short_amount']

            if closing_price:
                if (position['long_amount']
                        is not None) and position['long_amount'] > 0:
                    position['value'] = position['long_amount'] * closing_price
                    self.latest_account['value'] += position['value']
                elif (position['short_amount']
                      is not None) and position['short_amount'] > 0:
                    position['value'] = 2 * (position['short_amount'] *
                                             position['average_short_price'])
                    position[
                        'value'] -= position['short_amount'] * closing_price
                    self.latest_account['value'] += position['value']
            else:
                self.logger.warning(
                    'could not refresh close value for position:{},timestamp:{}'
                    .format(position['entity_id'], timestamp))

        # remove the empty position
        self.latest_account['positions'] = [
            position for position in self.latest_account['positions']
            if position['long_amount'] > 0 or position['short_amount'] > 0
        ]

        self.latest_account['all_value'] = self.latest_account[
            'value'] + self.latest_account['cash']
        self.latest_account['closing'] = True
        self.latest_account['timestamp'] = to_pd_timestamp(timestamp)

        self.logger.info('on_trading_close:{},latest_account:{}'.format(
            timestamp, self.latest_account))
        self.persist_account(timestamp)
예제 #9
0
    def on_finish(self, security_item):
        kdatas = get_kdata(
            provider=self.provider,
            security_id=security_item.id,
            level=self.level.value,
            order=self.data_schema.timestamp.asc(),
            return_type='domain',
            session=self.session,
            filters=[
                self.data_schema.hfq_close.is_(None),
                self.data_schema.timestamp >= to_pd_timestamp('2005-01-01')
            ])
        if kdatas:
            start = kdatas[0].timestamp
            end = kdatas[-1].timestamp

            # get hfq from joinquant
            df = get_price(to_jq_security_id(security_item),
                           start_date=to_time_str(start),
                           end_date=now_time_str(),
                           frequency='daily',
                           fields=['factor', 'open', 'close', 'low', 'high'],
                           skip_paused=True,
                           fq='post')
            if df is not None and not df.empty:
                # fill hfq data
                for kdata in kdatas:
                    time_str = to_time_str(kdata.timestamp)
                    if time_str in df.index:
                        kdata.hfq_open = df.loc[time_str, 'open']
                        kdata.hfq_close = df.loc[time_str, 'close']
                        kdata.hfq_high = df.loc[time_str, 'high']
                        kdata.hfq_low = df.loc[time_str, 'low']
                        kdata.factor = df.loc[time_str, 'factor']
                self.session.commit()

                latest_factor = df.factor[-1]
                # factor not change yet, no need to reset the qfq past
                if latest_factor == self.current_factors.get(security_item.id):
                    sql = 'UPDATE {} SET qfq_close=hfq_close/{},qfq_high=hfq_high/{}, qfq_open= hfq_open/{}, qfq_low= hfq_low/{} where ' \
                          'security_id=\'{}\' and level=\'{}\' and (qfq_close isnull or qfq_high isnull or qfq_low isnull or qfq_open isnull)'.format(
                        self.data_schema.__table__, latest_factor, latest_factor, latest_factor, latest_factor,
                        security_item.id, self.level.value)
                else:
                    sql = 'UPDATE {} SET qfq_close=hfq_close/{},qfq_high=hfq_high/{}, qfq_open= hfq_open/{}, qfq_low= hfq_low/{} where ' \
                          'security_id=\'{}\' and level=\'{}\''.format(self.data_schema.__table__, latest_factor,
                                                                       latest_factor, latest_factor, latest_factor,
                                                                       security_item.id,
                                                                       self.level.value)
                self.logger.info(sql)
                self.session.execute(sql)
                self.session.commit()

        # TODO:use netease provider to get turnover_rate
        self.logger.info('use netease provider to get turnover_rate')
예제 #10
0
    def on_finish_entity(self, entity):
        kdatas = get_kdata(
            entity_id=entity.id,
            level=self.level.value,
            order=Stock1dKdata.timestamp.asc(),
            return_type='domain',
            session=self.session,
            filters=[
                Stock1dKdata.factor.is_(None),
                Stock1dKdata.timestamp >= to_pd_timestamp('2005-01-01')
            ])
        if kdatas:
            start = kdatas[0].timestamp
            end = kdatas[-1].timestamp

            # get hfq from joinquant
            df = get_price(to_jq_entity_id(entity),
                           start_date=to_time_str(start),
                           end_date=now_time_str(),
                           frequency='daily',
                           fields=['factor', 'open', 'close', 'low', 'high'],
                           skip_paused=True,
                           fq='post')
            if df is not None and not df.empty:
                # fill hfq data
                for kdata in kdatas:
                    if kdata.timestamp in df.index:
                        kdata.hfq_open = df.loc[kdata.timestamp, 'open']
                        kdata.hfq_close = df.loc[kdata.timestamp, 'close']
                        kdata.hfq_high = df.loc[kdata.timestamp, 'high']
                        kdata.hfq_low = df.loc[kdata.timestamp, 'low']
                        kdata.factor = df.loc[kdata.timestamp, 'factor']
                self.session.commit()

                latest_factor = df.factor[-1]
                # factor not change yet, no need to reset the qfq past
                if latest_factor == self.current_factors.get(entity.id):
                    sql = 'UPDATE stock_1d_kdata SET qfq_close=hfq_close/{},qfq_high=hfq_high/{}, qfq_open= hfq_open/{}, qfq_low= hfq_low/{} where ' \
                          'entity_id=\'{}\' and level=\'{}\' and (qfq_close isnull or qfq_high isnull or qfq_low isnull or qfq_open isnull)'.format(
                        latest_factor, latest_factor, latest_factor, latest_factor, entity.id, self.level.value)
                else:
                    sql = 'UPDATE stock_1d_kdata SET qfq_close=hfq_close/{},qfq_high=hfq_high/{}, qfq_open= hfq_open/{}, qfq_low= hfq_low/{} where ' \
                          'entity_id=\'{}\' and level=\'{}\''.format(latest_factor,
                                                                     latest_factor,
                                                                     latest_factor,
                                                                     latest_factor,
                                                                     entity.id,
                                                                     self.level.value)
                self.logger.info(sql)
                self.session.execute(sql)
                self.session.commit()
예제 #11
0
    def on_trading_signal(self, trading_signal: TradingSignal):
        self.logger.info('trader:{} received trading signal:{}'.format(
            self.trader_name, trading_signal))
        security_id = trading_signal.security_id
        current_timestamp = trading_signal.the_timestamp
        order_type = AccountService.trading_signal_to_order_type(
            trading_signal.trading_signal_type)
        trading_level = trading_signal.trading_level.value
        if order_type:
            try:
                kdata = get_kdata(provider=self.provider,
                                  security_id=security_id,
                                  level=trading_level,
                                  start_timestamp=current_timestamp,
                                  end_timestamp=current_timestamp,
                                  limit=1)
                if kdata is not None and not kdata.empty:
                    # use qfq for stock
                    security_type, _, _ = decode_security_id(
                        kdata['security_id'][0])

                    if security_type == SecurityType.stock:
                        the_price = kdata['qfq_close'][0]
                    else:
                        the_price = kdata['close'][0]

                    if the_price:
                        self.order(security_id=security_id,
                                   current_price=the_price,
                                   current_timestamp=current_timestamp,
                                   order_pct=trading_signal.position_pct,
                                   order_money=trading_signal.order_money,
                                   order_type=order_type)
                    else:
                        self.logger.warning(
                            'ignore trading signal,wrong kdata,security_id:{},timestamp:{},kdata:{}'
                            .format(security_id, current_timestamp,
                                    kdata.to_dict(orient='records')))

                else:
                    self.logger.warning(
                        'ignore trading signal,could not get kdata,security_id:{},timestamp:{}'
                        .format(security_id, current_timestamp))
            except Exception as e:
                self.logger.exception(e)
예제 #12
0
파일: computing.py 프로젝트: rlcjj/zvt
def ma(security_id,
       start_timestamp,
       end_timestamp,
       level=TradingLevel.LEVEL_1DAY,
       provider=Provider.EASTMONEY,
       window=5):
    df = technical.get_kdata(security_id,
                             start_timestamp=start_timestamp,
                             end_timestamp=end_timestamp,
                             provider=provider,
                             level=level,
                             columns=get_close_column(security_id))

    df = df.rename(columns={'qfq_close': 'close'})

    df['ma_{}'.format(window)] = df['close'].rolling(
        window=window, min_periods=window).mean()
    return df
예제 #13
0
 def on_next_period(self):
     for model in self.models:
         start_timestamp, end_timestamp = model.evaluate_fetch_interval(self.current_timestamp)
         if start_timestamp and end_timestamp:
             retry_times = 10
             while retry_times > 0:
                 datas = get_kdata(self.security_id, level=model.trading_level.value,
                                   start_timestamp=start_timestamp, end_timestamp=end_timestamp)
                 if not datas:
                     self.logger.warning(
                         "no kdata for security:{},trading_level:{},start_timestamp:{} end_timestamp:{} ".format(
                             self.security_id, model.trading_level, start_timestamp, end_timestamp))
                     retry_times = retry_times - 1
                     continue
                 for data in datas:
                     series_data = pd.Series(data)
                     series_data.name = to_pd_timestamp(data['timestamp'])
                     model.append_data(series_data)
                 break
    def on_finish_entity(self, entity):
        kdatas = get_kdata(entity_id=entity.id, level=IntervalLevel.LEVEL_1DAY.value,
                           order=Index1dKdata.timestamp.asc(),
                           return_type='domain', session=self.session,
                           filters=[Index1dKdata.cumulative_net_value.is_(None)])

        if kdatas and len(kdatas) > 0:
            start = kdatas[0].timestamp
            end = kdatas[-1].timestamp

            # 从东方财富获取基金累计净值
            df = self.fetch_cumulative_net_value(entity, start, end)

            if df is not None and not df.empty:
                for kdata in kdatas:
                    if kdata.timestamp in df.index:
                        kdata.cumulative_net_value = df.loc[kdata.timestamp, 'LJJZ']
                        kdata.change_pct = df.loc[kdata.timestamp, 'JZZZL']
                self.session.commit()
                self.logger.info(f'{entity.code} - {entity.name}累计净值更新完成...')
예제 #15
0
파일: account.py 프로젝트: pikachule/zvt
 def on_trading_signal(self, trading_signal: TradingSignal):
     security_id = trading_signal.security_id
     current_timestamp = trading_signal.the_timestamp
     order_type = AccountService.trading_signal_to_order_type(trading_signal.trading_signal_type)
     trading_level = trading_signal.trading_level
     if order_type:
         try:
             kdata = get_kdata(provider=self.provider, security_id=security_id, level=trading_level,
                               start_timestamp=current_timestamp,
                               limit=1)
             if not kdata.empty and kdata['close'][0]:
                 self.order(security_id=security_id, current_price=kdata['close'][0],
                            current_timestamp=current_timestamp,
                            order_type=order_type,
                            order_pct=trading_signal.position_pct)
             else:
                 self.logger.warning(
                     'could not get kdata,security_id:{},timestamp:{}'.format(security_id, current_timestamp))
         except Exception as e:
             self.logger.exception(e)
예제 #16
0
    def __init__(self,
                 security_type=SecurityType.stock,
                 exchanges=['sh', 'sz'],
                 codes=None,
                 batch_size=10,
                 force_update=False,
                 sleeping_time=5,
                 fetching_style=TimeSeriesFetchingStyle.end_size,
                 default_size=2000,
                 contain_unfinished_data=False,
                 level=TradingLevel.LEVEL_1DAY,
                 one_shot=True,
                 start_timestamp=None) -> None:

        self.data_schema = get_kdata_schema(security_type=security_type,
                                            level=level)
        self.jq_trading_level = to_jq_trading_level(level)
        self.start_timestamp = to_pd_timestamp(start_timestamp)

        super().__init__(security_type, exchanges, codes, batch_size,
                         force_update, sleeping_time, fetching_style,
                         default_size, contain_unfinished_data, level,
                         one_shot)

        self.current_factors = {}
        for security_item in self.securities:
            kdata = get_kdata(security_id=security_item.id,
                              provider=self.provider,
                              level=self.level.value,
                              order=self.data_schema.timestamp.desc(),
                              limit=1,
                              return_type='domain',
                              session=self.session)
            if kdata:
                self.current_factors[security_item.id] = kdata[0].factor
                self.logger.info('{} latest factor:{}'.format(
                    security_item.id, kdata[0].factor))

        auth(JQ_ACCOUNT, JQ_PASSWD)
예제 #17
0
파일: account.py 프로젝트: pikachule/zvt
    def save_closing_account(self, the_date):
        self.latest_account.value = 0
        self.latest_account.all_value = 0
        for position in self.latest_account.positions:
            kdata = get_kdata(provider=self.provider, security_id=position.security_id, end_timestamp=the_date, limit=1)
            closing_price = kdata['close']
            position.available_long = position.long_amount
            position.available_short = position.short_amount

            if position.long_amount > 0:
                position.value = position.long_amount * closing_price
                self.latest_account.value += position.value
            elif position.short_amount > 0:
                position.value = 2 * (position.short_amount * position.average_short_price)
                position.value -= position.short_amount * closing_price
                self.latest_account.value += position.value

        self.latest_account.all_value = self.latest_account.value + self.latest_account.cash
        self.latest_account.closing = True
        self.latest_account.timestamp = to_pd_timestamp(the_date)

        self.save_account(self.latest_account)
예제 #18
0
    def calculate_closing_account(self, the_date):
        self.account.value = 0
        self.account.all_value = 0
        for position in self.account.positions:
            kdata = get_kdata(security_item=position['securityId'],
                              the_date=the_date)
            closing_price = kdata['close']
            position.availableLong = position.longAmount
            position.availableShort = position.shortAmount

            if position.longAmount > 0:
                position.value = position.longAmount * closing_price
                self.account.value += position.value
            elif position.shortAmount > 0:
                position.value = 2 * (position.shortAmount *
                                      position.averageShortPrice)
                position.value -= position.shortAmount * closing_price
                self.account.value += position.value

        self.account.all_value = self.account.value + self.account.cash
        self.account.closing = True
        self.account.timestamp = the_date

        self.account_to_queue()
예제 #19
0
    def on_finish_entity(self, entity):
        kdatas = get_kdata(provider=self.provider, entity_id=entity.id, level=self.level.value,
                           order=self.data_schema.timestamp.asc(),
                           return_type='domain',
                           session=self.session,
                           filters=[self.data_schema.hfq_close.is_(None),
                                    self.data_schema.timestamp >= to_pd_timestamp('2005-01-01')])
        if kdatas:
            start = kdatas[0].timestamp
            end = kdatas[-1].timestamp

            # get hfq from joinquant
            df = get_price(to_jq_entity_id(entity), start_date=to_time_str(start), end_date=now_time_str(),
                           frequency='daily',
                           fields=['factor', 'open', 'close', 'low', 'high'],
                           skip_paused=True, fq='post')
            if df is not None and not df.empty:
                # fill hfq data
                for kdata in kdatas:
                    time_str = to_time_str(kdata.timestamp)
                    if time_str in df.index:
                        kdata.hfq_open = df.loc[time_str, 'open']
                        kdata.hfq_close = df.loc[time_str, 'close']
                        kdata.hfq_high = df.loc[time_str, 'high']
                        kdata.hfq_low = df.loc[time_str, 'low']
                        kdata.factor = df.loc[time_str, 'factor']
                self.session.commit()

                latest_factor = df.factor[-1]
                # factor not change yet, no need to reset the qfq past
                if latest_factor == self.current_factors.get(entity.id):
                    sql = 'UPDATE {} SET qfq_close=hfq_close/{},qfq_high=hfq_high/{}, qfq_open= hfq_open/{}, qfq_low= hfq_low/{} where ' \
                          'entity_id=\'{}\' and level=\'{}\' and (qfq_close isnull or qfq_high isnull or qfq_low isnull or qfq_open isnull)'.format(
                        self.data_schema.__table__, latest_factor, latest_factor, latest_factor, latest_factor,
                        entity.id, self.level.value)
                else:
                    sql = 'UPDATE {} SET qfq_close=hfq_close/{},qfq_high=hfq_high/{}, qfq_open= hfq_open/{}, qfq_low= hfq_low/{} where ' \
                          'entity_id=\'{}\' and level=\'{}\''.format(self.data_schema.__table__, latest_factor,
                                                                     latest_factor, latest_factor, latest_factor,
                                                                     entity.id,
                                                                     self.level.value)
                self.logger.info(sql)
                self.session.execute(sql)
                self.session.commit()

            # use netease provider to get turnover_rate
            query_url = 'http://quotes.money.163.com/service/chddata.html?code={}{}&start={}&end={}&fields=PCHG;TURNOVER'

            if entity.exchange == 'sh':
                exchange_flag = 0
            else:
                exchange_flag = 1

            url = query_url.format(exchange_flag, entity.code, to_time_str(start), to_time_str(end))
            response = requests.get(url=url)

            df = read_csv(io.BytesIO(response.content), encoding='GB2312', na_values='None')
            df['日期'] = pd.to_datetime(df['日期'])
            df.set_index('日期', drop=True, inplace=True)

            if df is not None and not df.empty:
                # fill turnover_rate, pct_change
                for kdata in kdatas:
                    if kdata.timestamp in df.index:
                        kdata.turnover_rate = df.loc[kdata.timestamp, '换手率']
                        kdata.change_pct = df.loc[kdata.timestamp, '涨跌幅']
                self.session.commit()
예제 #20
0
    :return:
    :rtype:
    """
    return s.rolling(window=window, min_periods=window).mean()


def ema(s, window=12):
    return s.ewm(span=window, adjust=False, min_periods=window).mean()


def macd(s, slow=26, fast=12, n=9):
    ema_fast = ema(s, window=fast)

    ema_slow = ema(s, window=slow)

    diff = ema_fast - ema_slow
    dea = diff.ewm(span=n, adjust=False).mean()
    m = (diff - dea) * 2

    return diff, dea, m


if __name__ == '__main__':
    kdata = get_kdata(entity_id='stock_sz_000338',
                      start_timestamp='2019-01-01',
                      end_timestamp='2019-05-25',
                      provider='netease')
    kdata['diff'], kdata['dea'], kdata['m'] = macd(kdata['qfq_close'])

    print(kdata)
예제 #21
0
파일: __init__.py 프로젝트: Scorpi000/zvt
                    color="#ec0000",
                    color0="#00da3c",
                    border_color="#8A0000",
                    border_color0="#008F28",
                ),
            )
                .set_global_opts(
                xaxis_opts=opts.AxisOpts(is_scale=True),
                yaxis_opts=opts.AxisOpts(
                    is_scale=True,
                    splitarea_opts=opts.SplitAreaOpts(
                        is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                    ),
                ),
                datazoom_opts=[opts.DataZoomOpts()],
                title_opts=opts.TitleOpts(title="Kline-ItemStyle"),
            )
        )

        if not kline:
            kline = current_kline
        else:
            kline.overlap(current_kline)

    return kline


if __name__ == '__main__':
    kdata = get_kdata(security_id='stock_sz_300027', provider='netease')
    draw_kline([kdata])
예제 #22
0
                                markpoint_opts=markpoint_opts,
                                itemstyle_opts=opts.ItemStyleOpts(
                                    color="#ec0000",
                                    color0="#00da3c",
                                    border_color="#8A0000",
                                    border_color0="#008F28"))

        if not kline:
            kline = current_kline
        else:
            kline.overlap(current_kline)

    if render == 'html':
        kline.render(get_ui_path(file_name))
    elif render == 'notebook':
        kline.render_notebook()

    return kline


if __name__ == '__main__':
    kdata1 = get_kdata(security_id='stock_sz_000338', provider='netease')
    kdata2 = get_kdata(security_id='stock_sz_000778', provider='netease')

    df_list = fill_with_same_index([kdata1, kdata2])
    assert len(df_list[0]) == len(df_list[1])
    print(df_list[0])
    print(df_list[1])

    draw_kline(df_list, file_name='test_kline.html')