Exemplo n.º 1
0
def runScript(bestRankersFile, frK, tK):  #"bestRanker.p"  sys.argv[1]
    fromK = int(frK)
    toK = int(tK) + 1
    global bestKClusterGroup, queryRankerList, queryRankerDict
    #commented out part is for test purposes
    #data = np.vstack((rand(150,2) + np.array([.5,.5]),rand(150,2), rand(150,2) + np.array([2.5,2.5]), rand(150,2) + np.array([10.5,10.5])))
    bestKClusterGroup1 = get_best_clusters(
        getData(bestRankersFile), fromK,
        toK)  #list > list(cluster#) > np.array,np.array etc...
    bestKClusterGroup2 = []

    #converting list > list(cluster#) > np.array (ranker),np.array etc... to list > list(cluster#-->index of list) > normal list(ranker),list etc...
    for i in range(len(bestKClusterGroup1)):
        bestKClusterGroup2.append([])
        for j in range(len(bestKClusterGroup1[i])):
            bestKClusterGroup2[i].append(bestKClusterGroup1[i][j].tolist())

    clusterDataObject = clusterData()

    for i in range(len(bestKClusterGroup2)):
        #make object ---> dict[clusterNumber:int] = list of all rankers (where rankers are also lists)
        clusterDataObject.clusterToRanker[i] = bestKClusterGroup2[i]
        print type(clusterDataObject.clusterToRanker[i]), len(
            clusterDataObject.clusterToRanker[i])

    #make object ---> dict[queryID:string] = list of cluster numbers as ints
    for i in clusterDataObject.clusterToRanker:
        for j in clusterDataObject.clusterToRanker[i]:
            for k in queryRankerDict:
                if type(queryRankerDict[k]) == list:
                    for l in queryRankerDict[k]:
                        if l.tolist() == j:
                            if k in clusterDataObject.queryToCluster.keys():
                                clusterDataObject.queryToCluster[k].append(i)
                            else:
                                clusterDataObject.queryToCluster[k] = [i]
                elif queryRankerDict[k].tolist() == j:
                    clusterDataObject.queryToCluster[k] = i
    '''for i in clusterDataObject.queryToCluster:
        print i, clusterDataObject.queryToCluster[i]
        
    for i in clusterDataObject.clusterToRanker:
        print i, clusterDataObject.clusterToRanker[i]'''

    if not os.path.exists("ClusterData"):
        os.makedirs("ClusterData")

    paths = bestRankersFile.split('/')
    name = paths[len(paths) - 1]
    parts = name.split('.')
    name = parts[0]
    pickle.dump(clusterDataObject, open("ClusterData/" + name + ".data", "wb"))
    '''print '-----------------Print output of one of the object files-----------------------'
    loadedFile = pickle.load( open( "../../../ClusterData/clusterToRankerDict.data", "rb" ) )
    for i in loadedFile:
        print i
        #sys.exit()
        for j in loadedFile[i]:
            print j'''
    return clusterDataObject.queryToCluster, clusterDataObject.clusterToRanker
Exemplo n.º 2
0
    def runScript(self):#"bestRanker.p"  sys.argv[1]
        #commented out part is for test purposes
        #data = np.vstack((random(150,2) + np.array([.5,.5]),random(150,2), random(150,2) + np.array([2.5,2.5]), rand(150,2) + np.array([10.5,10.5])))
        data = self.getData()
        self.bestKClusterGroup1 = self.get_best_clusters(data) #list > list(cluster#) > np.array,np.array etc...
        self.bestKClusterGroup2 = []

        #converting list > list(cluster#) > np.array (ranker),np.array etc... to list > list(cluster#-->index of list) > normal list(ranker),list etc...
        for i in range(len(self.bestKClusterGroup1)):
            self.bestKClusterGroup2.append([])
            for j in range(len(self.bestKClusterGroup1[i])):
                self.bestKClusterGroup2[i].append(self.bestKClusterGroup1[i][j].tolist())

        clusterDataObject = clusterData()

        for i in range(len(self.bestKClusterGroup2)):
            #make object ---> dict[clusterNumber:int] = list of all rankers (where rankers are also lists)
            clusterDataObject.clusterToRanker[i] = self.bestKClusterGroup2[i]
            print type(clusterDataObject.clusterToRanker[i]), len(clusterDataObject.clusterToRanker[i])


        #make object ---> dict[queryID:string] = list of cluster numbers as ints
        for i in clusterDataObject.clusterToRanker:
            for j in clusterDataObject.clusterToRanker[i]:
                for k in self.queryRankerDict:
                    if type(self.queryRankerDict[k]) == list:
                        for l in self.queryRankerDict[k]:
                            if l.tolist() == j:
                                if k in clusterDataObject.queryToCluster.keys():
                                    clusterDataObject.queryToCluster[k].append(i)
                                else:
                                    clusterDataObject.queryToCluster[k] = [i]
                    elif self.queryRankerDict[k].tolist() == j:
                        clusterDataObject.queryToCluster[k] = i  

        '''for i in clusterDataObject.queryToCluster:
            print i, clusterDataObject.queryToCluster[i]
            
        for i in clusterDataObject.clusterToRanker:
            print i, clusterDataObject.clusterToRanker[i]'''

        if not os.path.exists("ClusterData"):
            os.makedirs("ClusterData")
        pickle.dump(clusterDataObject, open("ClusterData/"+self.dataset+str(self.iterations)+'.data', "wb"))
        #pickle.dump(clusterDataObject, open("ClusterData/"+self.dataset+" k"+self.bestK+".data", "wb"))
        #pickle.dump(clusterDataObject.queryToCluster, open( "ClusterData/queryToClusterDict.data", "wb" ) )
        #pickle.dump(clusterDataObject.clusterToRanker, open( "ClusterData/clusterToRankerDict.data", "wb" ) )
        
        
        '''print '-----------------Print output of one of the object files-----------------------'
        loadedFile = pickle.load( open( "ClusterData/clusterToRankerDict.data", "rb" ) )
        for i in loadedFile:
            print i
            #sys.exit()
            for j in loadedFile[i]:
                print j'''
        return clusterDataObject.queryToCluster, clusterDataObject.clusterToRanker
Exemplo n.º 3
0
    def runScript(self):  #"bestRanker.p"  sys.argv[1]
        #commented out part is for test purposes
        #data = np.vstack((random(150,2) + np.array([.5,.5]),random(150,2), random(150,2) + np.array([2.5,2.5]), rand(150,2) + np.array([10.5,10.5])))
        data = self.getData()
        dataToClusters = self.getClusters(
            data)  #list > list(cluster#) > np.array,np.array etc...
        dataToClusters = list(dataToClusters)

        clusterDataObject = clusterData()
        data = list(data)
        #make object ---> dict[clusterNumber:int] = list of all rankers (where rankers are also lists)
        for i in range(len(dataToClusters)):
            if not dataToClusters[i] in clusterDataObject.clusterToRanker.keys(
            ):
                clusterDataObject.clusterToRanker[dataToClusters[i]] = [
                    list(data[i])
                ]
            else:
                clusterDataObject.clusterToRanker[dataToClusters[i]].append(
                    list(data[i]))

        #make object ---> dict[queryID:string] = list of cluster numbers as ints
        for i in clusterDataObject.clusterToRanker:  #for each cluster
            for j in clusterDataObject.clusterToRanker[
                    i]:  #for each ranker in cluster
                for q in self.queryRankerDict:  #for each query
                    for r in self.queryRankerDict[
                            q]:  #for each ranker in query
                        if list(
                                r
                        ) == j:  #if ranker in query is equal to j (current ranker in cluster)
                            if q in clusterDataObject.queryToCluster:  #if query key exists in dictionary
                                clusterDataObject.queryToCluster[q].append(i)
                            else:
                                clusterDataObject.queryToCluster[q] = [i]

        for i in clusterDataObject.queryToCluster:
            print i, len(clusterDataObject.queryToCluster[i]
                         ), clusterDataObject.queryToCluster[i]

        for i in clusterDataObject.clusterToRanker:
            print i, len(clusterDataObject.clusterToRanker[i]
                         )  #, clusterDataObject.clusterToRanker[i]

        if not os.path.exists("ClusterData"):
            os.makedirs("ClusterData")

        pickle.dump(clusterDataObject,
                    open("ClusterData/" + self.dataset + ".data", "wb"))

        return clusterDataObject.queryToCluster, clusterDataObject.clusterToRanker
Exemplo n.º 4
0
    def runScript(self):#"bestRanker.p"  sys.argv[1]
        #commented out part is for test purposes
        #data = np.vstack((random(150,2) + np.array([.5,.5]),random(150,2), random(150,2) + np.array([2.5,2.5]), rand(150,2) + np.array([10.5,10.5])))
        data = self.getData()
        dataToClusters = self.getClusters(data) #list > list(cluster#) > np.array,np.array etc...
        dataToClusters = list(dataToClusters)
        
        clusterDataObject = clusterData()
        data = list(data)
        #make object ---> dict[clusterNumber:int] = list of all rankers (where rankers are also lists)
        for i in range(len(dataToClusters)):
            if not dataToClusters[i] in clusterDataObject.clusterToRanker.keys():
                clusterDataObject.clusterToRanker[dataToClusters[i]] = [list(data[i])]
            else:
                clusterDataObject.clusterToRanker[dataToClusters[i]].append(list(data[i]))
                
        #make object ---> dict[queryID:string] = list of cluster numbers as ints
        for i in clusterDataObject.clusterToRanker:#for each cluster
            for j in clusterDataObject.clusterToRanker[i]:#for each ranker in cluster
                for q in self.queryRankerDict:#for each query
                    for r in self.queryRankerDict[q]:#for each ranker in query
                        if list(r) == j:#if ranker in query is equal to j (current ranker in cluster)
                            if q in clusterDataObject.queryToCluster:#if query key exists in dictionary
                                clusterDataObject.queryToCluster[q].append(i)
                            else:
                                clusterDataObject.queryToCluster[q] = [i]
                        
        
        for i in clusterDataObject.queryToCluster:
            print i, len(clusterDataObject.queryToCluster[i]), clusterDataObject.queryToCluster[i]
            
        for i in clusterDataObject.clusterToRanker:
            print i, len(clusterDataObject.clusterToRanker[i])#, clusterDataObject.clusterToRanker[i]  
     
        if not os.path.exists("ClusterData"):
            os.makedirs("ClusterData")

        pickle.dump(clusterDataObject, open("ClusterData/"+self.dataset+".data", "wb"))

        return clusterDataObject.queryToCluster, clusterDataObject.clusterToRanker
Exemplo n.º 5
0
def runScript(bestRankersFile, frK, tK):#"bestRanker.p"  sys.argv[1]
    fromK = int(frK)
    toK = int(tK)+1
    global bestKClusterGroup, queryRankerList, queryRankerDict
    #commented out part is for test purposes
    #data = np.vstack((rand(150,2) + np.array([.5,.5]),rand(150,2), rand(150,2) + np.array([2.5,2.5]), rand(150,2) + np.array([10.5,10.5])))
    bestKClusterGroup1 = get_best_clusters(getData(bestRankersFile),fromK,toK) #list > list(cluster#) > np.array,np.array etc...
    bestKClusterGroup2 = []

    #converting list > list(cluster#) > np.array (ranker),np.array etc... to list > list(cluster#-->index of list) > normal list(ranker),list etc...
    for i in range(len(bestKClusterGroup1)):
        bestKClusterGroup2.append([])
        for j in range(len(bestKClusterGroup1[i])):
            bestKClusterGroup2[i].append(bestKClusterGroup1[i][j].tolist())

    clusterDataObject = clusterData()

    for i in range(len(bestKClusterGroup2)):
        #make object ---> dict[clusterNumber:int] = list of all rankers (where rankers are also lists)
        clusterDataObject.clusterToRanker[i] = bestKClusterGroup2[i]
        print type(clusterDataObject.clusterToRanker[i]), len(clusterDataObject.clusterToRanker[i])


    #make object ---> dict[queryID:string] = list of cluster numbers as ints
    for i in clusterDataObject.clusterToRanker:
        for j in clusterDataObject.clusterToRanker[i]:
            for k in queryRankerDict:
                if type(queryRankerDict[k]) == list:
                    for l in queryRankerDict[k]:
                        if l.tolist() == j:
                            if k in clusterDataObject.queryToCluster.keys():
                                clusterDataObject.queryToCluster[k].append(i)
                            else:
                                clusterDataObject.queryToCluster[k] = [i]
                elif queryRankerDict[k].tolist() == j:
                    clusterDataObject.queryToCluster[k] = i  

    '''for i in clusterDataObject.queryToCluster:
        print i, clusterDataObject.queryToCluster[i]
        
    for i in clusterDataObject.clusterToRanker:
        print i, clusterDataObject.clusterToRanker[i]'''

    if not os.path.exists("ClusterData"):
        os.makedirs("ClusterData")

    paths=bestRankersFile.split('/')
    name=paths[len(paths)-1]
    parts=name.split('.')
    name=parts[0]
    pickle.dump(clusterDataObject, open( "ClusterData/"+name+".data", "wb" ) )

    
    
    '''print '-----------------Print output of one of the object files-----------------------'
    loadedFile = pickle.load( open( "../../../ClusterData/clusterToRankerDict.data", "rb" ) )
    for i in loadedFile:
        print i
        #sys.exit()
        for j in loadedFile[i]:
            print j'''
    return clusterDataObject.queryToCluster, clusterDataObject.clusterToRanker
Exemplo n.º 6
0
    def runScript(self):  #"bestRanker.p"  sys.argv[1]
        #commented out part is for test purposes
        #data = np.vstack((random(150,2) + np.array([.5,.5]),random(150,2), random(150,2) + np.array([2.5,2.5]), rand(150,2) + np.array([10.5,10.5])))
        data = self.getData()
        self.bestKClusterGroup1 = self.get_best_clusters(
            data)  #list > list(cluster#) > np.array,np.array etc...
        self.bestKClusterGroup2 = []

        #converting list > list(cluster#) > np.array (ranker),np.array etc... to list > list(cluster#-->index of list) > normal list(ranker),list etc...
        for i in range(len(self.bestKClusterGroup1)):
            self.bestKClusterGroup2.append([])
            for j in range(len(self.bestKClusterGroup1[i])):
                self.bestKClusterGroup2[i].append(
                    self.bestKClusterGroup1[i][j].tolist())

        clusterDataObject = clusterData()

        for i in range(len(self.bestKClusterGroup2)):
            #make object ---> dict[clusterNumber:int] = list of all rankers (where rankers are also lists)
            clusterDataObject.clusterToRanker[i] = self.bestKClusterGroup2[i]
            print type(clusterDataObject.clusterToRanker[i]), len(
                clusterDataObject.clusterToRanker[i])

        #make object ---> dict[queryID:string] = list of cluster numbers as ints
        for i in clusterDataObject.clusterToRanker:
            for j in clusterDataObject.clusterToRanker[i]:
                for k in self.queryRankerDict:
                    if type(self.queryRankerDict[k]) == list:
                        for l in self.queryRankerDict[k]:
                            if l.tolist() == j:
                                if k in clusterDataObject.queryToCluster.keys(
                                ):
                                    clusterDataObject.queryToCluster[k].append(
                                        i)
                                else:
                                    clusterDataObject.queryToCluster[k] = [i]
                    elif self.queryRankerDict[k].tolist() == j:
                        clusterDataObject.queryToCluster[k] = i
        '''for i in clusterDataObject.queryToCluster:
            print i, clusterDataObject.queryToCluster[i]
            
        for i in clusterDataObject.clusterToRanker:
            print i, clusterDataObject.clusterToRanker[i]'''

        if not os.path.exists("ClusterData"):
            os.makedirs("ClusterData")
        pickle.dump(
            clusterDataObject,
            open(
                "ClusterData/" + self.dataset + str(self.iterations) + '.data',
                "wb"))
        #pickle.dump(clusterDataObject, open("ClusterData/"+self.dataset+" k"+self.bestK+".data", "wb"))
        #pickle.dump(clusterDataObject.queryToCluster, open( "ClusterData/queryToClusterDict.data", "wb" ) )
        #pickle.dump(clusterDataObject.clusterToRanker, open( "ClusterData/clusterToRankerDict.data", "wb" ) )
        '''print '-----------------Print output of one of the object files-----------------------'
        loadedFile = pickle.load( open( "ClusterData/clusterToRankerDict.data", "rb" ) )
        for i in loadedFile:
            print i
            #sys.exit()
            for j in loadedFile[i]:
                print j'''
        return clusterDataObject.queryToCluster, clusterDataObject.clusterToRanker