Exemplo n.º 1
0
    def jacobian(self, theta):
        [x_1, x_2, x_3, x_4] = self.dh2dq(theta)

        q = np.zeros(8)

        q[0] = -(1 / 2) * np.sin(theta[0] / 2) * np.cos(pi / 4)
        q[1] = -(1 / 2) * np.sin(theta[0] / 2) * np.sin(pi / 4)
        q[2] = (1 / 2) * np.cos(theta[0] / 2) * np.sin(pi / 4)
        q[3] = (1 / 2) * np.cos(theta[0] / 2) * np.cos(pi / 4)

        dx_1_dtheta_1 = DQ(q)

        q = np.zeros(8)

        q[0] = -(1 / 2) * np.sin((theta[1] + pi / 2) / 2)
        q[3] = (1 / 2) * np.cos((theta[1] + pi / 2) / 2)
        q[5] = (self.L_1 / 2) * q[0]
        q[6] = (self.L_2 / 2) * q[3]

        dx_2_dtheta_2 = DQ(q)

        q = np.zeros(8)

        q[0] = (1 / 2) * np.sin((theta[2] - theta[1] - pi / 2) / 2)
        q[3] = -(1 / 2) * np.cos((theta[2] - theta[1] + pi / 2) / 2)
        q[5] = (self.L_1 / 2) * q[0]
        q[6] = (self.L_2 / 2) * q[3]

        dx_3_dtheta_2 = DQ(q)

        q = np.zeros(8)

        q[0] = -(1 / 2) * np.sin((theta[2] - theta[1] - pi / 2) / 2)
        q[3] = (1 / 2) * np.cos((theta[2] - theta[1] + pi / 2) / 2)
        q[5] = (self.L_1 / 2) * q[0]
        q[6] = (self.L_2 / 2) * q[3]

        dx_3_dtheta_3 = DQ(q)

        q = np.zeros(8)

        q[0] = -(1 / 2) * np.sin(theta[2] / 2) * np.cos(pi / 4)
        q[1] = (1 / 2) * np.sin(theta[2] / 2) * np.sin(pi / 4)
        q[2] = (1 / 2) * np.cos(theta[2] / 2) * np.sin(pi / 4)
        q[3] = -(1 / 2) * np.cos(theta[2] / 2) * np.cos(pi / 4)

        dx_4_dtheta_3 = DQ(q)


        J = np.array([vec8(dx_1_dtheta_1*x_2*x_3*x_4), \
                vec8(x_1*dx_2_dtheta_2*x_3*x_4 + x_1*x_2*dx_3_dtheta_2*x_4), \
                vec8(x_1*x_2*dx_3_dtheta_3*x_4 + x_1*x_2*x_3*dx_4_dtheta_3)])

        J = np.transpose(J)

        return J
Exemplo n.º 2
0
def jacobp(analytical_jacobian, x):
    dq_x = DQ(x)
    dq_x_conj_P = dq_x.P()
    dq_x_conj_P = dq_x_conj_P.conj()
    (rows, cols) = analytical_jacobian.shape
    aux_J1 = np.zeros((4, cols))
    aux_J2 = np.zeros((4, cols))
    for i in range(0, 4):
        for j in range(0, cols):
            aux_J1[i, j] = analytical_jacobian[i, j]
            aux_J2[i, j] = analytical_jacobian[(i + 4), j]

    aux = np.dot(hamiplus4(dq_x.D()), DQ_kinematics.C4)
    Jp = 2 * (np.dot(haminus4(dq_x_conj_P), aux_J2)) + 2 * (np.dot(
        aux, aux_J1))
    return Jp
Exemplo n.º 3
0
    def __init__(self, dh_matrix, convention):

        if str(convention) != "standard" and str(convention) != "modified":
            raise RuntimeError(
                "Bad DQ_kinematics(dh_matrix, convention) call: convention must be 'standard' or 'modified' "
            )

        (rows, cols) = dh_matrix.shape
        if rows != 4 and rows != 5:
            raise RuntimeError(
                "Bad DQ_kinematics(dh_matrix, convention) call: dh_matrix should be 5xn or 4xn"
            )

        self.dh_matrix = dh_matrix
        self.curr_base = DQ(1)
        self.curr_effector = DQ(1)
        self.dh_matrix_convention = convention
Exemplo n.º 4
0
    def jacobian(self, theta):

        q_effector = self.raw_fkm(theta)

        z = DQ(0)
        q = DQ(1)

        J = np.zeros((8, (self.links() - self.n_dummy())))

        ith = -1
        for i in range(0, self.links()):
            # Use the standard DH convention
            if self.convention() == "standard":
                z = self.get_z(q.q)
            # Use the modified DH convention
            else:
                alpha = (self.alpha())[i]
                a = (self.a())[i]
                dummy = (self.dummy())[i]
                w = DQ([
                    0, 0, -sin(alpha),
                    cos(alpha), 0, 0, -a * cos(alpha), -a * sin(alpha)
                ])
                z = 0.5 * q * w * q.conj()

                if dummy == 0:
                    q = q * self.dh2dq(theta[ith + 1], i + 1)
                    aux_j = z * q_effector
                    for k in range(0, 8):
                        J[k, ith + 1] = aux_j.q[k]
                    ith = ith + 1
                else:
                    #Dummy joints don't contribute to the Jacobian
                    q = q * self.dh2dq(0.0, (i + 1))
        # Takes the base's displacement into account
        aux_J = haminus8(self.curr_effector)
        aux_J = np.dot(hamiplus8(self.curr_base), aux_J)
        J = np.dot(aux_J, J)

        return J
Exemplo n.º 5
0
    def dh2dq(self, theta):
        q = np.zeros(8)

        q[0] = np.cos(theta[0] / 2) * np.cos(pi / 4)
        q[1] = np.cos(theta[0] / 2) * np.sin(pi / 4)
        q[2] = np.sin(theta[0] / 2) * np.sin(pi / 4)
        q[3] = np.sin(theta[0] / 2) * np.cos(pi / 4)

        x_1 = DQ(q)

        q = np.zeros(8)

        q[0] = np.cos((theta[1] + pi / 2) / 2)
        q[3] = np.sin((theta[1] + pi / 2) / 2)
        q[5] = (self.L_1 / 2) * q[0]
        q[6] = (self.L_2 / 2) * q[3]

        x_2 = DQ(q)

        q = np.zeros(8)

        q[0] = np.cos((theta[2] - theta[1] - pi / 2) / 2)
        q[3] = np.sin((theta[2] - theta[1] - pi / 2) / 2)
        q[5] = (self.L_1 / 2) * q[0]
        q[6] = (self.L_2 / 2) * q[3]

        x_3 = DQ(q)

        q = np.zeros(8)

        q[0] = np.cos(theta[2] / 2) * np.cos(pi / 4)
        q[1] = -np.cos(theta[2] / 2) * np.sin(pi / 4)
        q[2] = np.sin(theta[2] / 2) * np.sin(pi / 4)
        q[3] = -np.sin(theta[2] / 2) * np.cos(pi / 4)

        x_4 = DQ(q)

        return [x_1, x_2, x_3, x_4]
Exemplo n.º 6
0
def callback(msg):
    posx = msg.x
    posy = msg.y
    posz = msg.z
    position = np.array(posx, posy, posz)

    kinematics = MeArmKinematics()
    #mearm = MeArm(baseServoPin = 4, rightServoPin = 17, leftServoPin = 27, handServoPin = 22)

    theta = np.array([0, 0, 0])

    theta1 = np.arctan2(position[1], position[0])

    r = DQ([np.cos(theta1 / 2), 0, 0, np.sin(theta1 / 2), 0, 0, 0, 0])
    p = DQ([0, position[0], position[1], position[2], 0, 0, 0, 0])

    xd = r + (1 / 2) * DQ.E_ * p * r

    error = 1
    epsilon = 0.1
    dt = 0.1

    while np.linalg.norm(error) > epsilon:
        x = kinematics.fkm(theta)
        J = kinematics.jacobian(theta)
        error = vec8(xd - x)
        theta = theta + np.linalg.pinv(J) @ error * dt

        #mearm.setTheta(theta * 180/np.pi)

        time.sleep(0.0001)
        print(theta * 180 / np.pi)

    mearm.setHand(95)
    input()
    mearm.closeConn()
Exemplo n.º 7
0
    def raw_fkm(self, theta):
        (size, ) = theta.shape
        if size != (self.links() - self.n_dummy()):
            raise RuntimeError(
                "Bad raw_fkm(theta_vec) call: Incorrect number of joint variables"
            )

        q = DQ(1)
        j = 0
        dummy = self.dummy()

        for i in range(0, self.links()):
            if dummy[i] == 1:
                q = q * self.dh2dq(0.0, i + 1)
                j = j + 1
            else:
                q = q * self.dh2dq(theta[i - j], i + 1)

        return q
Exemplo n.º 8
0
 def effector(self):
     return DQ(self.effector)
Exemplo n.º 9
0
 def base(self):
     return DQ(self.curr_base)
Exemplo n.º 10
0
 def set_effector(self, effector):
     self.curr_effector = effector
     return DQ(self.curr_effector)
Exemplo n.º 11
0
 def set_base(self, base):
     self.curr_base = base
     return DQ(self.curr_base)
Exemplo n.º 12
0
                              inferSchema="true",
                              header="true")
    df_file = main_functions.name_convert(df_file, data_dict)
    try:
        df_out = main_functions.customUnion(df_file, df_out)
    except:
        df_out = df_file

# This step is used when merging data to existing data in the system
#df_out = main_dunctions.customUnion(new_merge, merge_all)

# Only keep consenting participants. Think about how to do this when not dealing with participant info
#df_out = df_out.filter(func.col('21') == 'Consenting')

# Update gender terms
df_out = DQ.fix_gender(data_dict, df_out)

# Collect Ids of each type
type_dict = {}
for d_type in data_dict['Type'].unique().tolist():
    list_ = data_dict.loc[data_dict['Type'] == d_type]['FieldID'].astype(
        str).tolist()
    type_dict[d_type] = list_

# Collect Ids for each value type
value_type_dict = {}
for v_type in data_dict['ValueType'].unique().tolist():
    list_ = data_dict.loc[data_dict['ValueType'] == v_type]['FieldID'].astype(
        str).tolist()
    value_type_dict[v_type] = list_
    print("Input the desired coordinates")
    quit()
else:
    position = np.array(
        [float(sys.argv[1]),
         float(sys.argv[2]),
         float(sys.argv[3])])

kinematics = MeArmKinematics()
#mearm = MeArm(baseServoPin = 4, rightServoPin = 17, leftServoPin = 27, handServoPin = 22)

theta = np.array([0, 0, 0])

theta1 = np.arctan2(position[1], position[0])

r = DQ([np.cos(theta1 / 2), 0, 0, np.sin(theta1 / 2), 0, 0, 0, 0])
p = DQ([0, position[0], position[1], position[2], 0, 0, 0, 0])

xd = r + (1 / 2) * DQ.E_ * p * r

error = 1
epsilon = 0.1
dt = 0.1

while np.linalg.norm(error) > epsilon:
    x = kinematics.fkm(theta)
    J = kinematics.jacobian(theta)
    error = vec8(xd - x)

    theta = theta + np.dot(np.linalg.pinv(J), error) * dt