Exemplo n.º 1
0
    def fit(self, X, Y):
        n, d = X.shape[0], X.shape[1]
        Y = Y.reshape(-1, 1) 
        L = self.calculateL(self.xi)
        #secOrd = np.linalg.pinv((X.T.dot(X) * L + self.reg * np.eye(d)) / n)
#        I = np.eye(d)
#        I[-1, -1] = 0 #Not regularize the intercept
        try:
            secOrd = np.linalg.pinv(X.T.dot(X) * L / n + self.reg * np.eye(d))
        except Exception as e:
            print(e.message)
        if not self.manualInitial:
            self.initialize(X, Y)
        
        t = 0.
        while t < self.iterations:
            v = X.dot(self._beta)
            GEVFunc.clip(self.xi, v)
            Y_hat = GEVFunc.inverseLink(self.xi, v)
            #firOrd = (X.T.dot(Y_hat - Y) + self.reg * self._beta) / n  
#            tmp = self.reg * self._beta
#            tmp[-1] = 0
            firOrd = X.T.dot(Y_hat - Y) / n + self.reg * self._beta
            deltaBeta = self.step * secOrd.dot(firOrd)
            if t >= 100 and np.abs(deltaBeta).sum() < self.tol:
                self._beta -= deltaBeta
#                print "Converged. t = %d" % (t)
                break            
            self._beta -= deltaBeta
            t += 1
        self._beta = np.array(self._beta).flatten()
Exemplo n.º 2
0
 def fit(self, X, Y):
     self.__initialize(X, Y)
     xi = self.xi
     t = 0
     while t < self.iterations:
         #Caculate weight matrix
         w = self._eta*np.power(-np.log(self._eta), xi+1)
         W = np.diag(w)
         #Z is used for updating beta
         tmp = GEVFunc.derivLink(xi, self._eta)
         Z = self._v + self._gamma \
                     *tmp \
                     *(Y - self._eta)
         #Update beta
         mat = np.matrix(X.T.dot(W).dot(X)) \
                 + np.eye(X.shape[1])*self.regular
         #self._beta = mat.I.dot(X.T).dot(W).dot(Z).getA1()
         self._beta = np.linalg.pinv(mat).dot(X.T).dot(W).dot(Z).getA1()
         #Calculate v
         self._v = X.dot(self._beta)
         GEVFunc.clip(xi, self._v)
         #Judge if eta is convergent
         newEta = GEVFunc.inverseLink2(xi, self._v)
         if np.abs(newEta - self._eta).sum() < self.tol:
             self._eta = newEta
             break
         self._eta = newEta
         t += 1
Exemplo n.º 3
0
 def betaDeriva(self, X, Y, beta, xi):
     v = X.dot(beta).reshape(-1, 1)
     y = Y.reshape(-1, 1)
     GEVFunc.clip(xi, v)
     gev = GEVFunc.GEV(xi, v)
     loggev = GEVFunc.logGEV(xi, v)
     res = - np.sum(X * (loggev * (y - gev) / ((1 - gev) * (1 + xi*v))), axis=0) - beta
     return res
Exemplo n.º 4
0
 def xiDeriva(self, X, Y, beta, xi):
     v = X.dot(beta).reshape(-1, 1)
     y = Y.reshape(-1, 1)
     GEVFunc.clip(xi, v)
     gev = GEVFunc.GEV(xi, v)
     loggev = GEVFunc.logGEV(xi, v)
     res = np.sum((np.log(1 + xi*v) / xi**2 - v / xi / (1 + xi*v)) 
            * loggev * (y - gev) / (1 - gev)) - xi
     return res
Exemplo n.º 5
0
 def oneStep3(self, X, Y):
     n, d = X.shape[0], X.shape[1]
     Y = Y.reshape(-1, 1) 
     v = X.dot(self._beta)
     GEVFunc.clip(self.xi, v)
     W = np.diag(GEVFunc.derivInverseLink(self.xi, v).flatten())
     secOrd = np.linalg.pinv(X.T.dot(W).dot(X) / n + self.reg * np.eye(d))
     Y_hat = GEVFunc.inverseLink(self.xi, v)
     firOrd = X.T.dot(Y_hat - Y) / n + self.reg * self._beta
     self._beta -= self.step * secOrd.dot(firOrd)    
Exemplo n.º 6
0
 def betaSecDeriva(self, X, Y, beta, xi):
     pos, neg = X[Y == 1], X[Y == 0]
     v = pos.dot(beta).reshape(-1, 1)
     GEVFunc.clip(xi, v)
     w = (-1-xi) * np.power(1 + xi * v, -1./xi-2)
     comp1 = pos.T.dot(np.diag(w.flatten())).dot(pos)
     v = neg.dot(beta).reshape(-1, 1)
     GEVFunc.clip(xi, v)
     gev = GEVFunc.GEV(xi, v)
     a = 1 + xi * v
     w = np.power(a, -1./xi-2)*gev/(1-gev)*(1+xi - np.power(a, -1./xi)/(1-gev))
     comp2 = neg.T.dot(np.diag(w.flatten())).dot(neg)
     return comp1 + comp2 - np.eye(beta.size)
Exemplo n.º 7
0
 def oneStep(self, X, Y):
     n, d = X.shape[0], X.shape[1]
     Y = Y.reshape(-1, 1) 
     L = self.calculateL(self.xi)
     try:
         secOrd = np.linalg.pinv(X.T.dot(X) * L / n + self.reg * np.eye(d))
     except Exception as e:
         print(e.message)
     v = X.dot(self._beta)
     GEVFunc.clip(self.xi, v)
     Y_hat = GEVFunc.inverseLink(self.xi, v)
     firOrd = X.T.dot(Y_hat - Y) / n + self.reg * self._beta
     self._beta -= self.step * secOrd.dot(firOrd)
def generateData(D=3, N=50, sigmaBeta=1, sigmaXi=1, miuXi=0.5):
    flag = True
    while flag:
        X = np.random.randn(N, D)
        beta = np.random.randn(D) * sigmaBeta
#        xi = np.random.randn() * sigmaXi + miuXi
        xi = miuXi
        v = X.dot(beta)
        GEVFunc.clip(xi, v)
        y = GEVFunc.GEV(xi, v)
        y[y < 0.5] = 0
        y[y >= 0.5] = 1
        if 0.3 < (y == 1).sum()/float(N) < 0.7:
            flag = False
    return X, y, xi, beta
Exemplo n.º 9
0
 def xiSecDeriva(self, X, Y, beta, xi):
     v = X.dot(beta).reshape(-1, 1)
     GEVFunc.clip(xi, v)
     y = Y.reshape(-1, 1)
     a = 1 + xi*v
     gev = GEVFunc.GEV(xi, v)
     loggev = GEVFunc.logGEV(xi, v)
     y_gev = y - gev
     one_gev = 1 - gev
     y_gev_1_gev = y_gev/one_gev
     xia = xi * a
     xiv = xi * v
     lna = np.log(a)
     comp1 = (xiv * (3*a-1) - 2*lna*(a**2)) / (xi * xia**2) * y_gev_1_gev * loggev
     comp2 = (1/xi**2 * lna - v/xia) * ((y-1)*loggev*gev/one_gev**2 + y_gev_1_gev) * (v/xia-lna/xi**2)/np.power(a, 1./xi)
     return np.sum(comp1 + comp2) - 1
Exemplo n.º 10
0
    def fit3(self, X, Y):
        n, d = X.shape[0], X.shape[1]
        Y = Y.reshape(-1, 1) 
        if not self.manualInitial:
            self.initialize(X, Y)
        t = 0.
        while t < self.iterations:
            v = X.dot(self._beta)
            GEVFunc.clip(self.xi, v)
            W = np.diag(GEVFunc.derivInverseLink(self.xi, v).flatten())
#            secOrd = np.linalg.pinv(X.T.dot(W).dot(X) / n + self.reg * np.eye(d))
            A = X.T.dot(W).dot(X) / n + self.reg * np.eye(d)
            Y_hat = GEVFunc.inverseLink(self.xi, v)
            b = X.T.dot(Y_hat - Y) / n + self.reg * self._beta
            self._beta += np.linalg.lstsq(A, -b)[0]
#            self._beta -= self.step * secOrd.dot(firOrd)    
            t += 1
        self._beta = np.array(self._beta).flatten()
Exemplo n.º 11
0
 def predict(self, X):
     v = X.dot(self.beta)
     GEVFunc.clip(self.xi, v)
     return GEVFunc.inverseLink(self.xi, v).flatten()
Exemplo n.º 12
0
 def firstDeriva(self, X, Y, beta):
     v = X.dot(beta)
     GEVFunc.clip(self.xi, v)
     Y_hat = GEVFunc.inverseLink(self.xi, v)
     return X.T.dot(Y_hat - Y) / X.shape[0] + self.reg * beta
Exemplo n.º 13
0
 def predict(self, X):
     self._v = X.dot(self._beta)
     GEVFunc.clip(self.xi, self._v)
     return GEVFunc.inverseLink2(self.xi, self._v)
Exemplo n.º 14
0
 def loglikelihood(self, beta, xi):
     v = self.X.dot(beta.reshape(-1, 1))
     GEVFunc.clip(xi, v)
     res = GEVFunc.inverseLink(xi, v)
     res[self.targets == 0] = 1 - res[self.targets == 0]
     return sum([np.log(x + 1e-8) for x in res])