Exemplo n.º 1
0
def gpmapasrecc(optstate, **para):
    if para["onlyafter"] > len(optstate.y) or not len(optstate.y) % para["everyn"] == 0:
        return [sp.NaN for i in para["lb"]], {"didnotrun": True}
    logger.info("gpmapas reccomender")
    d = len(para["lb"])

    x = sp.hstack([sp.vstack(optstate.x), sp.vstack([e["xa"] for e in optstate.ev])])

    y = sp.vstack(optstate.y)
    s = sp.vstack([e["s"] for e in optstate.ev])
    dx = [e["d"] for e in optstate.ev]
    MAP = GPdc.searchMAPhyp(x, y, s, dx, para["mprior"], para["sprior"], para["kindex"])
    logger.info("MAPHYP {}".format(MAP))
    G = GPdc.GPcore(x, y, s, dx, GPdc.kernel(para["kindex"], d + 1, MAP))

    def directwrap(xq, y):
        xq.resize([1, d])
        xe = sp.hstack([xq, sp.array([[0.0]])])
        # print xe
        a = G.infer_m(xe, [[sp.NaN]])
        return (a[0, 0], 0)

    [xmin, ymin, ierror] = DIRECT.solve(
        directwrap, para["lb"], para["ub"], user_data=[], algmethod=1, volper=para["volper"], logfilename="/dev/null"
    )
    logger.info("reccsearchresult: {}".format([xmin, ymin, ierror]))
    return [i for i in xmin], {"MAPHYP": MAP, "ymin": ymin}
Exemplo n.º 2
0
def ojf(x, s, d, override=False):
    #print "called ojf: "+str(x)
    try:
        x = x.flatten(0)
    except:
        pass

    xlow = [-2., -2.]
    xupp = [2., 2.]

    xthis = [
        xlow[i] + 0.5 * (xin + 1) * (xupp[i] - xlow[i])
        for i, xin in enumerate(x)
    ]
    hyp = [10**i for i in xthis]

    print hyp
    t0 = time.clock()
    llk = sp.clip(
        GPdc.GP_LKonly(X, Y, S, D, GPdc.kernel(GPdc.MAT52, 1,
                                               sp.array(hyp))).plk(pm, ps),
        -1e60, 1e60)

    t1 = time.clock()
    if llk < -1.:
        out = sp.log(-llk) + 1.
    else:
        out = -llk
    print "--->llk: {0} {1}    t: {2}".format(llk, out, t1 - t0)

    return [out, t1 - t0]
Exemplo n.º 3
0
def genbiasedmat52ojf(d, lb, ub, sls):
    # s normalised to 0 exact, 1
    from ESutils import gen_dataset

    nt = 20
    [X, Y, S, D] = gen_dataset(nt, d + 1, [0.0] + lb, [1.0] + ub, GPdc.MAT52, sp.array([1.5] + [0.30] * d + [sls]))

    G = GPdc.GPcore(X, Y, S, D, GPdc.kernel(GPdc.MAT52, d + 1, sp.array([1.5] + [0.30] * d + [sls])))

    def ojf(x, **ev):
        # print "\nojfinput: {} : {}".format(x,ev)
        dx = ev["d"]
        s = ev["s"]
        if ev["s"] > 0:
            noise = sp.random.normal(scale=sp.sqrt(ev["s"]))
        else:
            noise = 0
        xa = ev["xa"]
        x = sp.array(x)
        xfull = sp.hstack([x, xa])
        return G.infer_m(xfull, [dx])[0, 0] + noise, 1.0, dict()

    def dirwrap(x, y):
        z = G.infer_m(sp.hstack(sp.array(x) + [0.0]), [[sp.NaN]])[0, 0]
        return (z, 0)

    [xmin, ymin, ierror] = DIRECT.solve(dirwrap, lb, ub, user_data=[], algmethod=1, maxf=89000, logfilename="/dev/null")
    logger.info("generated function xmin {} ymin {}".format(xmin, ymin))
    return ojf, xmin, ymin
Exemplo n.º 4
0
def genmat52ojf(d, lb, ub):
    from ESutils import gen_dataset

    nt = 14
    [X, Y, S, D] = gen_dataset(nt, d, lb, ub, GPdc.MAT52, sp.array([1.5] + [0.55] * d))
    G = GPdc.GPcore(X, Y, S, D, GPdc.kernel(GPdc.MAT52, d, sp.array([1.5] + [0.55] * d)))

    def ojf(x, **ev):
        dx = ev["d"]
        s = ev["s"]
        if ev["s"] > 0:
            noise = sp.random.normal(scale=sp.sqrt(ev["s"]))
        else:
            noise = 0
        return G.infer_m(sp.array(x), [dx])[0, 0] + noise, 1.0, dict()

    def dirwrap(x, y):
        z = G.infer_m(x, [[sp.NaN]])[0, 0]
        # z = obj(x,0.,[sp.NaN])
        return (z, 0)

    [xmin, ymin, ierror] = DIRECT.solve(dirwrap, lb, ub, user_data=[], algmethod=1, maxf=89000, logfilename="/dev/null")
    logger.info("generated function xmin {} ymin {} {}".format(xmin, ymin, ierror))

    return ojf, xmin, ymin
Exemplo n.º 5
0
def gensquexpdraw(d, lb, ub, ignores=-1):
    nt = 14
    [X, Y, S, D] = ESutils.gen_dataset(nt, d, lb, ub, GPdc.SQUEXP,
                                       sp.array([1.5] + [0.30] * d))
    G = GPdc.GPcore(X, Y, S, D,
                    GPdc.kernel(GPdc.SQUEXP, d, sp.array([1.5] + [0.30] * d)))

    def obj(x, s, d, override=False):
        #print [x,s,d]
        if ignores > 0:
            s = ignores
        if s == 0. or override:
            noise = 0.
        else:
            noise = sp.random.normal(scale=sp.sqrt(s))
        print "EVAL WITH NOISE: " + str(noise) + "FROM S= " + str(s)
        return [G.infer_m(x, [d])[0, 0] + noise, 1.]

    def dirwrap(x, y):
        z = G.infer_m(x, [[sp.NaN]])[0, 0]
        #z = obj(x,0.,[sp.NaN])
        return (z, 0)

    [xmin, ymin, ierror] = DIRECT.solve(dirwrap,
                                        lb,
                                        ub,
                                        user_data=[],
                                        algmethod=1,
                                        maxf=89000,
                                        logfilename='/dev/null')

    return [obj, xmin, ymin]
Exemplo n.º 6
0
def EIMAPaq(optstate,persist,ev=None, ub = None, lb=None, nrandinit=None, mprior=None,sprior=None,kindex = None,directmaxiter=None):
    para = copy.deepcopy(para)
    if persist==None:
        persist = {'n':0,'d':len(ub)}
    n = persist['n']
    d = persist['d']
    if n<nrandinit:
        persist['n']+=1
        return randomaq(optstate,persist,ev=ev,lb=lb,ub=ub)
    logger.info('EIMAPaq')
    #logger.debug(sp.vstack([e[0] for e in optstate.ev]))
    #raise
    x=sp.vstack(optstate.x)
    y=sp.vstack(optstate.y)
    s= sp.vstack([e['s'] for e in optstate.ev])
    dx=[e['d'] for e in optstate.ev]
    MAP = GPdc.searchMAPhyp(x,y,s,dx,mprior,sprior, kindex)
    logger.info('MAPHYP {}'.format(MAP))

    G = GPdc.GPcore(x,y,s,dx,GPdc.kernel(kindex,d,MAP))
    def directwrap(xq,y):
        xq.resize([1,d])
        a = G.infer_lEI(xq,[ev['d']])
        return (-a[0,0],0)
    
    [xmin,ymin,ierror] = DIRECT.solve(directwrap,lb,ub,user_data=[], algmethod=0, maxf = directmaxiter, logfilename='/dev/null')
    #logger.debug([xmin,ymin,ierror])
    persist['n']+=1
    return [i for i in xmin],ev,persist,{'MAPHYP':MAP,'logEImin':ymin,'DIRECTmessage':ierror}
Exemplo n.º 7
0
def gensquexpIPdraw(d,lb,ub,sl,su,sfn,sls,cfn):
    #axis = 0 value = sl
    #d dimensional objective +1 for s
    nt=25
    #print sp.hstack([sp.array([[sl]]),lb])
    #print sp.hstack([sp.array([[su]]),ub])
    [X,Y,S,D] = ESutils.gen_dataset(nt,d+1,sp.hstack([sp.array([[sl]]),lb]).flatten(),sp.hstack([sp.array([[su]]),ub]).flatten(),GPdc.SQUEXP,sp.array([1.5]+[sls]+[0.30]*d))
    G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,d+1,sp.array([1.5]+[sls]+[0.30]*d)))
    def obj(x,s,d,override=False):
        x = x.flatten()
        if sfn(x)==0. or override:
            noise = 0.
        else:
            noise = sp.random.normal(scale=sp.sqrt(sfn(x)))
        
        return [G.infer_m(x,[d])[0,0]+noise,cfn(x)]
    def dirwrap(x,y):
        z = obj(sp.array([[sl]+[i for i in x]]),sl,[sp.NaN],override=True)
        return (z,0)
    [xmin0,ymin0,ierror] = DIRECT.solve(dirwrap,lb,ub,user_data=[], algmethod=1, maxf=89000, logfilename='/dev/null')
    lb2 = xmin0-sp.ones(d)*1e-4
    ub2 = xmin0+sp.ones(d)*1e-4
    [xmin,ymin,ierror] = DIRECT.solve(dirwrap,lb2,ub2,user_data=[], algmethod=1, maxf=89000, logfilename='/dev/null')
    #print "RRRRR"+str([xmin0,xmin,ymin0,ymin,xmin0-xmin,ymin0-ymin])
    return [obj,xmin,ymin]
Exemplo n.º 8
0
def bounds(Xs,Ys,ns=100):
    #use a gp to infer mean and bounds on sets of x/y data that have diffent x
    #f,a = plt.subplots(2)
    #for i in xrange(len(Ys)):
    #    a[0].plot(Xs[i],Ys[i])
    
    X = sp.hstack(Xs)
    np = X.size
    Y = sp.hstack(Ys)
    X.resize([np,1])
    Y.resize([np,1])
    #a[1].plot(X,Y,'r.')
    np = X.size
    S = sp.zeros(np)
    D = [[sp.NaN]]*np
    ki = GPdc.MAT52CS
    mprior = sp.array([1.,2.,1.])
    sprior = sp.array([2.,2.,2.])
    #MAPH = GPdc.searchMAPhyp(X,Y,S,D,mprior,sprior, ki,mx=500)
    MAPH = sp.array([0.5,5.,0.3])
    g = GPdc.GPcore(X,Y,S,D,GPdc.kernel(ki,1,MAPH))
    sup = sp.linspace(min(X),max(X),ns)
    [m,V] = g.infer_diag_post(sup,[[sp.NaN]]*ns)
    std = sp.sqrt(V+MAPH[2])
    #plt.fill_between(sup.flatten(),(m-std).flatten(),(m+std).flatten(),facecolor='lightblue',edgecolor='lightblue',alpha=0.5)
    #a[1].plot(sup,m.flatten(),'b')
    return [sup,m,std]
Exemplo n.º 9
0
def gpmapasrecc(optstate, **para):
    if para['onlyafter'] > len(
            optstate.y) or not len(optstate.y) % para['everyn'] == 0:
        return [sp.NaN for i in para['lb']], {'didnotrun': True}
    logger.info('gpmapas reccomender')
    d = len(para['lb'])

    x = sp.hstack(
        [sp.vstack(optstate.x),
         sp.vstack([e['xa'] for e in optstate.ev])])

    y = sp.vstack(optstate.y)
    s = sp.vstack([e['s'] for e in optstate.ev])
    dx = [e['d'] for e in optstate.ev]
    MAP = GPdc.searchMAPhyp(x, y, s, dx, para['mprior'], para['sprior'],
                            para['kindex'])
    logger.info('MAPHYP {}'.format(MAP))
    G = GPdc.GPcore(x, y, s, dx, GPdc.kernel(para['kindex'], d + 1, MAP))

    def directwrap(xq, y):
        xq.resize([1, d])
        xe = sp.hstack([xq, sp.array([[0.]])])
        #print xe
        a = G.infer_m(xe, [[sp.NaN]])
        return (a[0, 0], 0)

    [xmin, ymin, ierror] = DIRECT.solve(directwrap,
                                        para['lb'],
                                        para['ub'],
                                        user_data=[],
                                        algmethod=1,
                                        volper=para['volper'],
                                        logfilename='/dev/null')
    logger.info('reccsearchresult: {}'.format([xmin, ymin, ierror]))
    return [i for i in xmin], {'MAPHYP': MAP, 'ymin': ymin}
Exemplo n.º 10
0
def ojf(x,s,d,override=False):
    #print "called ojf: "+str(x)
    try:
        x=x.flatten(0)
    except:
        pass
    
    xlow = [-2.,-2.]
    xupp = [2.,2.]
    
    xthis = [xlow[i]+0.5*(xin+1)*(xupp[i]-xlow[i]) for i,xin in enumerate(x)]
    hyp = [10**i for i in xthis]
    
    print hyp
    t0=time.clock()
    llk = sp.clip(GPdc.GP_LKonly(X,Y,S,D,GPdc.kernel(GPdc.MAT52,1,sp.array(hyp))).plk(pm,ps),-1e60,1e60)
    
    t1=time.clock()
    if llk<-1.:
        out = sp.log(-llk)+1.
    else:
        out = -llk
    print "--->llk: {0} {1}    t: {2}".format(llk,out,t1-t0)
    
    return [out,t1-t0]
Exemplo n.º 11
0
def bounds(Xs, Ys, ns=100):
    #use a gp to infer mean and bounds on sets of x/y data that have diffent x
    #f,a = plt.subplots(2)
    #for i in xrange(len(Ys)):
    #    a[0].plot(Xs[i],Ys[i])

    X = sp.hstack(Xs)
    np = X.size
    Y = sp.hstack(Ys)
    X.resize([np, 1])
    Y.resize([np, 1])
    #a[1].plot(X,Y,'r.')
    np = X.size
    S = sp.zeros(np)
    D = [[sp.NaN]] * np
    ki = GPdc.MAT52CS
    mprior = sp.array([1., 2., 1.])
    sprior = sp.array([2., 2., 2.])
    #MAPH = GPdc.searchMAPhyp(X,Y,S,D,mprior,sprior, ki,mx=500)
    MAPH = sp.array([0.5, 5., 0.3])
    g = GPdc.GPcore(X, Y, S, D, GPdc.kernel(ki, 1, MAPH))
    sup = sp.linspace(min(X), max(X), ns)
    [m, V] = g.infer_diag_post(sup, [[sp.NaN]] * ns)
    std = sp.sqrt(V + MAPH[2])
    #plt.fill_between(sup.flatten(),(m-std).flatten(),(m+std).flatten(),facecolor='lightblue',edgecolor='lightblue',alpha=0.5)
    #a[1].plot(sup,m.flatten(),'b')
    return [sup, m, std]
Exemplo n.º 12
0
def genmat52ojf(d, lb, ub):
    from ESutils import gen_dataset
    nt = 14
    [X, Y, S, D] = gen_dataset(nt, d, lb, ub, GPdc.MAT52,
                               sp.array([1.5] + [0.55] * d))
    G = GPdc.GPcore(X, Y, S, D,
                    GPdc.kernel(GPdc.MAT52, d, sp.array([1.5] + [0.55] * d)))

    def ojf(x, **ev):
        dx = ev['d']
        s = ev['s']
        if ev['s'] > 0:
            noise = sp.random.normal(scale=sp.sqrt(ev['s']))
        else:
            noise = 0
        return G.infer_m(sp.array(x), [dx])[0, 0] + noise, 1., dict()

    def dirwrap(x, y):
        z = G.infer_m(x, [[sp.NaN]])[0, 0]
        #z = obj(x,0.,[sp.NaN])
        return (z, 0)

    [xmin, ymin, ierror] = DIRECT.solve(dirwrap,
                                        lb,
                                        ub,
                                        user_data=[],
                                        algmethod=1,
                                        maxf=89000,
                                        logfilename='/dev/null')
    logger.info('generated function xmin {} ymin {} {}'.format(
        xmin, ymin, ierror))

    return ojf, xmin, ymin
Exemplo n.º 13
0
    def run_search(self):

        MAP = GPdc.searchMAPhyp(self.X, self.Y, self.S, self.D, self.mprior,
                                self.sprior, self.kindex)
        try:
            del (self.G)
        except:
            pass
        self.G = GPdc.GPcore(self.X, self.Y, self.S, self.D,
                             GPdc.kernel(self.kindex, self.d, MAP))

        def directwrap(x, y):
            x.resize([1, self.d])

            a = self.G.infer_lEI(x, [[sp.NaN]])
            #print [x,a]
            #print G.infer_diag_post(x,[[sp.NaN]])
            return (-a[0, 0], 0)

        [xmin, ymin, ierror] = DIRECT.solve(directwrap,
                                            self.lb,
                                            self.ub,
                                            user_data=[],
                                            algmethod=1,
                                            volper=self.volper,
                                            logfilename='/dev/null')

        return [xmin, self.s, [sp.NaN]]
Exemplo n.º 14
0
def makeG(X,Y,S,D,kindex,mprior,sprior,nh):
    #draw hyps based on plk
    #print "RRRRRRRRRRRRRR"+str([X,Y,S,D,kindex,mprior,sprior,nh])
    H = ESutils.drawhyp_plk(X,Y,S,D,kindex,mprior,sprior,nh)
    
    G = GPdc.GPcore(X,Y,S,D,[GPdc.kernel(kindex,X.shape[1],i) for i in H])
    
    return G
Exemplo n.º 15
0
def gen_dataset(nt, d, lb, ub, kindex, hyp, s=1e-9):
    X = draw_support(d, lb, ub, nt, SUPPORT_UNIFORM)
    D = [[sp.NaN]] * (nt)
    kf = GPdc.kernel(kindex, d, hyp)
    Kxx = GPdc.buildKsym_d(kf, X, D)
    Y = spl.cholesky(Kxx, lower=True) * sp.matrix(sps.norm.rvs(
        0, 1., nt)).T + sp.matrix(sps.norm.rvs(0, sp.sqrt(s), nt)).T
    S = sp.matrix([s] * nt).T
    return [X, Y, S, D]
Exemplo n.º 16
0
def gen_dataset(nt, d, lb, ub, kindex, hyp, s=1e-9):
    X = draw_support(d, lb, ub, nt, SUPPORT_UNIFORM)
    D = [[sp.NaN]] * (nt)
    kf = GPdc.kernel(kindex, d, hyp)
    Kxx = GPdc.buildKsym_d(kf, X, D)
    Y = (
        spl.cholesky(Kxx, lower=True) * sp.matrix(sps.norm.rvs(0, 1.0, nt)).T
        + sp.matrix(sps.norm.rvs(0, sp.sqrt(s), nt)).T
    )
    S = sp.matrix([s] * nt).T
    return [X, Y, S, D]
Exemplo n.º 17
0
 def train_costest(self):
     print self.X[:,0]
     X = self.X[:,0].copy().reshape([len(self.C),1])
     C = sp.array(self.C)
     D = [[sp.NaN]]*len(self.C)
     S = sp.zeros([len(self.C),1])
     lbc = sp.array([-3.,-2.,-6.])
     ubc = sp.array([3.,2.,1.])
     MLEC =  GPdc.searchMLEhyp(X,sp.log(C),S,D,lbc,ubc,GPdc.SQUEXPCS,mx=10000)
     print "MLEC "+str(MLEC)
     self.ce = GPdc.GPcore(X.copy(),sp.log(C),S,D,GPdc.kernel(GPdc.SQUEXPCS,1,sp.array(MLEC)))
     #self.ce = GPdc.GPcore(X,C,S,D,GPdc.kernel(GPdc.SQUEXPCS,1,sp.array([1.,0.3,1e-3])))
     #self.ce.printc()
     return
Exemplo n.º 18
0
def EIMAPaq(optstate,
            persist,
            ev=None,
            ub=None,
            lb=None,
            nrandinit=None,
            mprior=None,
            sprior=None,
            kindex=None,
            directmaxiter=None):
    para = copy.deepcopy(para)
    if persist == None:
        persist = {'n': 0, 'd': len(ub)}
    n = persist['n']
    d = persist['d']
    if n < nrandinit:
        persist['n'] += 1
        return randomaq(optstate, persist, ev=ev, lb=lb, ub=ub)
    logger.info('EIMAPaq')
    #logger.debug(sp.vstack([e[0] for e in optstate.ev]))
    #raise
    x = sp.vstack(optstate.x)
    y = sp.vstack(optstate.y)
    s = sp.vstack([e['s'] for e in optstate.ev])
    dx = [e['d'] for e in optstate.ev]
    MAP = GPdc.searchMAPhyp(x, y, s, dx, mprior, sprior, kindex)
    logger.info('MAPHYP {}'.format(MAP))

    G = GPdc.GPcore(x, y, s, dx, GPdc.kernel(kindex, d, MAP))

    def directwrap(xq, y):
        xq.resize([1, d])
        a = G.infer_lEI(xq, [ev['d']])
        return (-a[0, 0], 0)

    [xmin, ymin, ierror] = DIRECT.solve(directwrap,
                                        lb,
                                        ub,
                                        user_data=[],
                                        algmethod=0,
                                        maxf=directmaxiter,
                                        logfilename='/dev/null')
    #logger.debug([xmin,ymin,ierror])
    persist['n'] += 1
    return [i for i in xmin], ev, persist, {
        'MAPHYP': MAP,
        'logEImin': ymin,
        'DIRECTmessage': ierror
    }
Exemplo n.º 19
0
 def run_search(self):
     
     MAP = GPdc.searchMAPhyp(self.X,self.Y,self.S,self.D,self.mprior,self.sprior, self.kindex)
     try:
         del(self.G)
     except:
         pass
     self.G = GPdc.GPcore(self.X,self.Y,self.S,self.D,GPdc.kernel(self.kindex,self.d,MAP))
     def directwrap(x,y):
         x.resize([1,self.d])
         
         a = self.G.infer_LCB(x,[[sp.NaN]],1.)[0,0]
         return (a,0)
     [xmin,ymin,ierror] = DIRECT.solve(directwrap,self.lb,self.ub,user_data=[], algmethod=1, volper=self.volper, logfilename='/dev/null')
     return [xmin,self.s,[sp.NaN]]
Exemplo n.º 20
0
 def llks(self,hy,sub):
     t0 = time.clock()
     Xs = sp.empty([sub,self.d])
     Ys = sp.empty([sub,1])
     Ss = sp.zeros([sub,1])
     Ds = []
     ix = npr.choice(range(self.n),size=sub, replace=False)
     for i,x in enumerate(ix):
         Xs[i,:] = self.X[x,:]
         Ys[i,:] = self.Y[x,:]
         Ds.append(self.D[x])
     t1 = time.clock()
     r = GPdc.GP_LKonly(Xs,Ys,Ss,Ds,GPdc.kernel(self.ki,self.d,hy)).llk()
     t2=time.clock()
     #print [t1-t0,t2-t1]
     return [r,t2-t0]
Exemplo n.º 21
0
def gensquexpIPdraw(d, lb, ub, sl, su, sfn, sls, cfn):
    #axis = 0 value = sl
    #d dimensional objective +1 for s
    nt = 25
    #print sp.hstack([sp.array([[sl]]),lb])
    #print sp.hstack([sp.array([[su]]),ub])
    [X, Y,
     S, D] = ESutils.gen_dataset(nt, d + 1,
                                 sp.hstack([sp.array([[sl]]), lb]).flatten(),
                                 sp.hstack([sp.array([[su]]), ub]).flatten(),
                                 GPdc.SQUEXP,
                                 sp.array([1.5] + [sls] + [0.30] * d))
    G = GPdc.GPcore(
        X, Y, S, D,
        GPdc.kernel(GPdc.SQUEXP, d + 1, sp.array([1.5] + [sls] + [0.30] * d)))

    def obj(x, s, d, override=False):
        x = x.flatten()
        if sfn(x) == 0. or override:
            noise = 0.
        else:
            noise = sp.random.normal(scale=sp.sqrt(sfn(x)))

        return [G.infer_m(x, [d])[0, 0] + noise, cfn(x)]

    def dirwrap(x, y):
        z = obj(sp.array([[sl] + [i for i in x]]), sl, [sp.NaN], override=True)
        return (z, 0)

    [xmin0, ymin0, ierror] = DIRECT.solve(dirwrap,
                                          lb,
                                          ub,
                                          user_data=[],
                                          algmethod=1,
                                          maxf=89000,
                                          logfilename='/dev/null')
    lb2 = xmin0 - sp.ones(d) * 1e-4
    ub2 = xmin0 + sp.ones(d) * 1e-4
    [xmin, ymin, ierror] = DIRECT.solve(dirwrap,
                                        lb2,
                                        ub2,
                                        user_data=[],
                                        algmethod=1,
                                        maxf=89000,
                                        logfilename='/dev/null')
    #print "RRRRR"+str([xmin0,xmin,ymin0,ymin,xmin0-xmin,ymin0-ymin])
    return [obj, xmin, ymin]
Exemplo n.º 22
0
 def llks(self, hy, sub):
     t0 = time.clock()
     Xs = sp.empty([sub, self.d])
     Ys = sp.empty([sub, 1])
     Ss = sp.zeros([sub, 1])
     Ds = []
     ix = npr.choice(range(self.n), size=sub, replace=False)
     for i, x in enumerate(ix):
         Xs[i, :] = self.X[x, :]
         Ys[i, :] = self.Y[x, :]
         Ds.append(self.D[x])
     t1 = time.clock()
     r = GPdc.GP_LKonly(Xs, Ys, Ss, Ds, GPdc.kernel(self.ki, self.d,
                                                    hy)).llk()
     t2 = time.clock()
     #print [t1-t0,t2-t1]
     return [r, t2 - t0]
Exemplo n.º 23
0
    def f(loghyp):
        ub = hm + 1.8 * hs
        lb = hm - 1.8 * hs
        if all(loghyp < ub) and all(loghyp > lb):
            r = GPdc.GP_LKonly(X, Y, S, D, GPdc.kernel(ki, X.shape[1], [10 ** i for i in loghyp])).plk(hm, hs)
            if sp.isnan(r):

                class MJMError(Exception):
                    pass

                print "nan from GPLKonly with input"
                print [X, Y, S, D, ki, hm, hs, n, burn, subsam]
                raise MJMError("nan from GPLKonly with input")
        else:
            r = -1e99
        # print [loghyp, r]
        return r
Exemplo n.º 24
0
    def f(loghyp):
        ub = hm + 1.8 * hs
        lb = hm - 1.8 * hs
        if all(loghyp < ub) and all(loghyp > lb):
            r = GPdc.GP_LKonly(
                X, Y, S, D, GPdc.kernel(ki, X.shape[1],
                                        [10**i for i in loghyp])).plk(hm, hs)
            if sp.isnan(r):

                class MJMError(Exception):
                    pass

                print 'nan from GPLKonly with input'
                print[X, Y, S, D, ki, hm, hs, n, burn, subsam]
                raise MJMError('nan from GPLKonly with input')
        else:
            r = -1e99
        #print [loghyp, r]
        return r
Exemplo n.º 25
0
def ojfa(x, s, d, override=False):
    #print "called ojf: "+str(x)

    try:
        x = x.flatten(0)
    except:
        pass

    xlow = [-2., -2.]
    xupp = [2., 2.]

    xthis = [
        xlow[i] + 0.5 * (xin + 1) * (xupp[i] - xlow[i])
        for i, xin in enumerate(x[1:])
    ]
    hyp = [10**i for i in xthis]
    #hyp = [10**i for i in x.flatten()[1:]]

    print hyp
    t0 = time.clock()
    sub = x.flatten()[0]
    npts = int((1. - 0.9 * sub) * n)
    if override:
        npts = n
    print "subsampling {0} of {1} at x[0]={2}".format(npts, n, x.flatten()[0])
    ps = npr.choice(range(n), size=npts, replace=False)
    Xd = sp.vstack([X[i] for i in ps])
    Yd = sp.vstack([Y[i] for i in ps])
    Sd = sp.vstack([S[i] for i in ps])
    Dd = [[sp.NaN]] * npts

    llk = GPdc.GP_LKonly(Xd, Yd, Sd, Dd,
                         GPdc.kernel(GPdc.MAT52, 1,
                                     sp.array(hyp))).plk(pm, ps)
    t1 = time.clock()
    if llk < -1.:
        out = sp.log(-llk) + 1.
    else:
        out = -llk
    print "--->llk: {0} {1}    t: {2}".format(llk, out, t1 - t0)

    return [out, t1 - t0]
Exemplo n.º 26
0
def gensquexpdraw(d,lb,ub,ignores=-1):
    nt=14
    [X,Y,S,D] = ESutils.gen_dataset(nt,d,lb,ub,GPdc.SQUEXP,sp.array([1.5]+[0.30]*d))
    G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,d,sp.array([1.5]+[0.30]*d)))
    def obj(x,s,d,override=False):
        #print [x,s,d]
        if ignores>0:
            s=ignores
        if s==0. or override:
            noise = 0.
        else:
            noise = sp.random.normal(scale=sp.sqrt(s))
        print "EVAL WITH NOISE: "+str(noise) + "FROM S= "+str(s)
        return [G.infer_m(x,[d])[0,0]+noise,1.]
    def dirwrap(x,y):
        z = G.infer_m(x,[[sp.NaN]])[0,0]
        #z = obj(x,0.,[sp.NaN])
        return (z,0)
    [xmin,ymin,ierror] = DIRECT.solve(dirwrap,lb,ub,user_data=[], algmethod=1, maxf=89000, logfilename='/dev/null')
    
    return [obj,xmin,ymin]
Exemplo n.º 27
0
 def train_costest(self):
     print self.X[:, 0]
     X = self.X[:, 0].copy().reshape([len(self.C), 1])
     C = sp.array(self.C)
     D = [[sp.NaN]] * len(self.C)
     S = sp.zeros([len(self.C), 1])
     lbc = sp.array([-3., -2., -6.])
     ubc = sp.array([3., 2., 1.])
     MLEC = GPdc.searchMLEhyp(X,
                              sp.log(C),
                              S,
                              D,
                              lbc,
                              ubc,
                              GPdc.SQUEXPCS,
                              mx=10000)
     print "MLEC " + str(MLEC)
     self.ce = GPdc.GPcore(X.copy(), sp.log(C), S, D,
                           GPdc.kernel(GPdc.SQUEXPCS, 1, sp.array(MLEC)))
     #self.ce = GPdc.GPcore(X,C,S,D,GPdc.kernel(GPdc.SQUEXPCS,1,sp.array([1.,0.3,1e-3])))
     #self.ce.printc()
     return
Exemplo n.º 28
0
def ojfa(x,s,d,override=False):
    #print "called ojf: "+str(x)
    
    try:
        x=x.flatten(0)
    except:
        pass
    
    xlow = [-2.,-2.]
    xupp = [2.,2.]
    
    xthis = [xlow[i]+0.5*(xin+1)*(xupp[i]-xlow[i]) for i,xin in enumerate(x[1:])]
    hyp = [10**i for i in xthis]
    #hyp = [10**i for i in x.flatten()[1:]]
    
    
    print hyp
    t0=time.clock()
    sub = x.flatten()[0]
    npts = int((1.-0.9*sub)*n)
    if override:
        npts=n
    print "subsampling {0} of {1} at x[0]={2}".format(npts,n,x.flatten()[0])
    ps = npr.choice(range(n),size=npts, replace=False)
    Xd = sp.vstack([X[i] for i in ps])
    Yd = sp.vstack([Y[i] for i in ps])
    Sd = sp.vstack([S[i] for i in ps])
    Dd = [[sp.NaN]]*npts
    
    llk = GPdc.GP_LKonly(Xd,Yd,Sd,Dd,GPdc.kernel(GPdc.MAT52,1,sp.array(hyp))).plk(pm,ps)
    t1=time.clock()
    if llk<-1.:
        out = sp.log(-llk)+1.
    else:
        out = -llk
    print "--->llk: {0} {1}    t: {2}".format(llk,out,t1-t0)
    
    return [out,t1-t0]
Exemplo n.º 29
0
def genbiasedmat52ojf(d, lb, ub, sls):
    #s normalised to 0 exact, 1
    from ESutils import gen_dataset
    nt = 20
    [X, Y, S, D] = gen_dataset(nt, d + 1, [0.] + lb, [1.] + ub, GPdc.MAT52,
                               sp.array([1.5] + [0.30] * d + [sls]))

    G = GPdc.GPcore(
        X, Y, S, D,
        GPdc.kernel(GPdc.MAT52, d + 1, sp.array([1.5] + [0.30] * d + [sls])))

    def ojf(x, **ev):
        #print "\nojfinput: {} : {}".format(x,ev)
        dx = ev['d']
        s = ev['s']
        if ev['s'] > 0:
            noise = sp.random.normal(scale=sp.sqrt(ev['s']))
        else:
            noise = 0
        xa = ev['xa']
        x = sp.array(x)
        xfull = sp.hstack([x, xa])
        return G.infer_m(xfull, [dx])[0, 0] + noise, 1., dict()

    def dirwrap(x, y):
        z = G.infer_m(sp.hstack(sp.array(x) + [0.]), [[sp.NaN]])[0, 0]
        return (z, 0)

    [xmin, ymin, ierror] = DIRECT.solve(dirwrap,
                                        lb,
                                        ub,
                                        user_data=[],
                                        algmethod=1,
                                        maxf=89000,
                                        logfilename='/dev/null')
    logger.info('generated function xmin {} ymin {}'.format(xmin, ymin))
    return ojf, xmin, ymin
Exemplo n.º 30
0
from scipy import stats as sps
from matplotlib import pyplot as plt

import GPdc
#test on a single point
nt=3
X = ESutils.draw_support(1, sp.array([-1.]),sp.array([1.]),nt,ESutils.SUPPORT_UNIFORM)
D = [[sp.NaN]]*(nt)
hyp = sp.array([1.5,0.15])
kf = GPdc.gen_sqexp_k_d(hyp)
Kxx = GPdc.buildKsym_d(kf,X,D)
Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,nt)).T+sp.matrix(sps.norm.rvs(0,1e-3,nt)).T
S = sp.matrix([1e-6]*nt).T


G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,2,hyp))

ng = 40
A = sp.empty([ng,ng])
print 'startimage1'
sup = sp.logspace(-3,2,ng)
for i,hi in enumerate(sup):
    for j,hj in enumerate(sup):
        A[i,j] = GPdc.GP_LKonly(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,2,sp.array([hi,hj]))).plk(sp.array([0.,-1.]),sp.array([1.,1.]))
A = -sp.log10(-A+sp.amax(A)+1.)
plt.figure()
plt.contour(sp.log10(sup),sp.log10(sup),A,30)
print 'draw hyps 1'
X = ESutils.drawhyp_plk(X,Y,S,D,GPdc.SQUEXP,sp.array([0.,-1.]),sp.array([1.,1.]),200)
plt.plot(sp.log10(X[:,1]),sp.log10(X[:,0]),'b.')
Exemplo n.º 31
0
#lb = sp.array([0.,0.,-4.,-0.5*float(nf),float(nf)])
#ub = sp.array([4.,3.,3.,0.,1.5*float(nf)])
#MLEH =  GPdc.searchMLEhyp(X,H,sp.zeros([np,1]),[[sp.NaN]]*(np),lb,ub,GPdc.SQUEXPPS,mx=10000)
#G = GPdc.GPcore(X.copy(),H,sp.zeros([np,1]),[[sp.NaN]]*(np),GPdc.kernel(GPdc.SQUEXPPS,1,sp.array(MLEH)))
lb = sp.array([0., 0., -4., -1., -3.])
ub = sp.array([4., 3., 3., 0.5, 3.])
MLEH = GPdc.searchMLEhyp(1. / float(nf) * X,
                         H,
                         sp.zeros([np, 1]), [[sp.NaN]] * (np),
                         lb,
                         ub,
                         GPdc.SQUEXPBS,
                         mx=10000)
G = GPdc.GPcore(1. / float(nf) * X.copy(), H, sp.zeros([np,
                                                        1]), [[sp.NaN]] * (np),
                GPdc.kernel(GPdc.SQUEXPBS, 1, sp.array(MLEH)))

[m, v] = G.infer_diag(1. / float(nf) * X, [[sp.NaN]] * (np))

S = sp.empty([np, 1])
for i in xrange(np):
    S[i, 0] = MLEH[2] * ((1. / float(nf) * X[i, 0])**(MLEH[3] * MLEH[4])) * (
        (1. - 1. / float(nf) * X[i, 0])**(MLEH[3] * (1. - MLEH[4])))

lbc = sp.array([-4., 0., -6.])
ubc = sp.array([2., 3., 0.])
MLEC = GPdc.searchMLEhyp(X,
                         sp.log(T),
                         sp.zeros([np, 1]), [[sp.NaN]] * (np),
                         lbc,
                         ubc,
Exemplo n.º 32
0
ns = 200
sup = sp.linspace(-1, 1, 200)

#points are a high noise obs, a low noise obs, a derivative obs and a second derivative obs
X = sp.array([[-0.8], [-0.25], [0.25], [0.8]])
Y = sp.array([[0.3], [-0.2], [2.5], [50.]])
S = sp.array([[1e-1], [1e-6], [1e-6], [1e-6]])
D = [[sp.NaN], [sp.NaN], [0], [0, 0]]

a[0].plot([-0.8, -0.8], [0.3 - sp.sqrt(1e-1), 0.3 + sp.sqrt(1e-1)], 'r')
a[0].plot([-0.8], [0.3], 'ro')
a[0].plot([-0.25], [-0.2], 'ro')
a[1].plot([0.25], [2.5], 'ro')
a[2].plot([0.8], [50], 'ro')

k = GPdc.kernel(GPdc.SQUEXP, 1, sp.array([0.5, 0.2]))
K = sp.empty([4, 4])
for i in xrange(4):
    for j in xrange(i, 4):
        K[i, j] = K[j, i] = k(X[i, :], X[j, :], D[i], D[j])
    K[i, i] += 1e-6

g = GPdc.GPcore(X, Y, S, D, GPdc.kernel(GPdc.SQUEXP, 1, sp.array([0.5, 0.2])))
#g.printc()
C = g.get_cho()
print C

print spl.cho_solve((C, True), sp.eye(4)).dot(K)
for i, d in enumerate([[sp.NaN], [0], [0, 0]]):
    m, v = g.infer_diag(sup, [d] * ns)
    vl = (m - sp.sqrt(v)).flatten()
Exemplo n.º 33
0

import ctypes as ct
import scipy as sp
from scipy import stats as sps
from scipy import linalg as spl
from matplotlib import pyplot as plt
import os
libGP = ct.cdll.LoadLibrary(os.path.join(os.path.dirname(os.path.realpath(__file__)),'../../../dist/Release/GNU-Linux/libGPshared.so'))

ctpd = ct.POINTER(ct.c_double)

import GPdc

ni = 50
kf = GPdc.kernel(GPdc.SQUEXP,1,sp.array([1.3,0.3]))
X = sp.matrix(sp.linspace(-1,1,ni)).T
D = [[sp.NaN]]*ni
Kxx = GPdc.buildKsym_d(kf,X,D)

tmp = spl.cholesky(Kxx,lower=True)
Ch = sp.vstack([tmp[i,:] for i in xrange(ni)]) #hack/force row major storage


z = 5

b = sp.empty([ni,z])


libGP.drawcov(Ch.ctypes.data_as(ctpd),ct.c_int(ni),b.ctypes.data_as(ctpd),ct.c_int(z))
Exemplo n.º 34
0
# To change this license header, choose License Headers in Project Properties.
# To change this template file, choose Tools | Templates
# and open the template in the editor.

from scipy import stats as sps
from scipy import linalg as spl
import scipy as sp
from matplotlib import pyplot as plt

import GPdc

ni = 100
kf = GPdc.kernel(GPdc.SQUEXP,2,sp.array([1.3,0.3,0.2]))
X = sp.random.uniform(-1,1,size=[ni,2])
D = [[sp.NaN]]*ni
Kxx = GPdc.buildKsym_d(kf,X,D)
s = 1e-2
Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,ni)).T+sp.matrix(sps.norm.rvs(0,s,ni)).T
S = sp.ones(ni)*s
print Y
MLEHYP = GPdc.searchMLEhyp(X,Y,S,D,sp.array([2.,2.,2.]),sp.array([-2.,-2.,-2.]), GPdc.SQUEXP)
print MLEHYP

MAPHYP = GPdc.searchMAPhyp(X,Y,S,D,sp.array([0.,0.,0.]),sp.array([1.,1.,1.]), GPdc.SQUEXP)
print MAPHYP
Exemplo n.º 35
0
#X = sp.matrix([[0.,-9.],[0.2,5.],[0.4,12.],[0.6,3.],[0.8,9.]])

#Y = sp.matrix([0.2,0.1,0.,-0.15,-0.3]).T

D = [[sp.NaN]] * (X.shape[0])
S = sp.matrix([0.005**2] * X.shape[0]).T
f0 = plt.figure()
a0 = plt.subplot(111)
a0.plot(sp.array(X[:, 0]).flatten(), Y, 'g.')

lb = sp.array([-2., -1., -2.])
ub = sp.array([2., 1., 2.])
MLEH = GPdc.searchMLEhyp(X, Y, S, D, lb, ub, GPdc.LIN1, mx=10000)

print MLEH
G = GPdc.GPcore(X, Y, S, D, GPdc.kernel(GPdc.LIN1, 2, MLEH))
print G.llk()

np = 180
sup = sp.linspace(-1, 1, np)
Dp = [[sp.NaN]] * np
Xp = sp.vstack([sp.array([i, 1.]) for i in sup])

[m, v] = G.infer_diag(Xp, Dp)
a0.plot(sup, m.flatten())
sq = sp.sqrt(v)

a0.fill_between(sup,
                sp.array(m - 1. * sq).flatten(),
                sp.array(m + 1. * sq).flatten(),
                facecolor='lightblue',
Exemplo n.º 36
0
#Y = sp.matrix([0.2,0.1,0.,-0.15,-0.3]).T

D = [[sp.NaN]]*(X.shape[0])
S = sp.matrix([0.005**2]*X.shape[0]).T
f0 = plt.figure()
a0 = plt.subplot(111)
a0.plot(sp.array(X[:,0]).flatten(),Y,'g.')


lb = sp.array([-2.,-1.,-2.])
ub = sp.array([2.,1.,2.])
MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.LIN1,mx=10000)

print MLEH
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.LIN1,2,MLEH))
print G.llk()


np=180
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i,1.]) for i in sup])

[m,v] = G.infer_diag(Xp,Dp)
a0.plot(sup,m.flatten())
sq = sp.sqrt(v)

a0.fill_between(sup, sp.array(m-1.*sq).flatten(), sp.array(m+1.*sq).flatten(), facecolor='lightblue',edgecolor='lightblue')
plt.show()
Exemplo n.º 37
0
from matplotlib import pyplot as plt

import GPdc
#test on a single point
nt = 3
X = ESutils.draw_support(1, sp.array([-1.]), sp.array([1.]), nt,
                         ESutils.SUPPORT_UNIFORM)
D = [[sp.NaN]] * (nt)
hyp = sp.array([1.5, 0.15])
kf = GPdc.gen_sqexp_k_d(hyp)
Kxx = GPdc.buildKsym_d(kf, X, D)
Y = spl.cholesky(Kxx, lower=True) * sp.matrix(sps.norm.rvs(
    0, 1., nt)).T + sp.matrix(sps.norm.rvs(0, 1e-3, nt)).T
S = sp.matrix([1e-6] * nt).T

G = GPdc.GPcore(X, Y, S, D, GPdc.kernel(GPdc.SQUEXP, 2, hyp))

ng = 40
A = sp.empty([ng, ng])
print 'startimage1'
sup = sp.logspace(-3, 2, ng)
for i, hi in enumerate(sup):
    for j, hj in enumerate(sup):
        A[i,
          j] = GPdc.GP_LKonly(X, Y, S, D,
                              GPdc.kernel(GPdc.SQUEXP, 2,
                                          sp.array([hi, hj]))).plk(
                                              sp.array([0., -1.]),
                                              sp.array([1., 1.]))
A = -sp.log10(-A + sp.amax(A) + 1.)
plt.figure()
Exemplo n.º 38
0
from scipy import stats as sps
from scipy import linalg as spl
import scipy as sp
from matplotlib import pyplot as plt
import ESutils
import GPdc

nt = 82
X = sp.matrix(sp.linspace(-1, 1, nt)).T
D = [[sp.NaN]] * (nt)

hyp0 = sp.array([1.5, 0.15])
hyp1 = sp.array([1.5, 0.05])
hyp2 = sp.array([1.5, 0.20])
kf = GPdc.kernel(GPdc.SQUEXP, 1, hyp0)

Kxx = GPdc.buildKsym_d(kf, X, D)

Y = spl.cholesky(Kxx, lower=True) * sp.matrix(sps.norm.rvs(
    0, 1., nt)).T + sp.matrix(sps.norm.rvs(0, 1e-3, nt)).T
S = sp.matrix([1e-6] * nt).T

G = GPdc.GPcore(X, Y, S, D, [
    GPdc.kernel(GPdc.SQUEXP, 1, hyp0),
    GPdc.kernel(GPdc.SQUEXP, 1, hyp1),
    GPdc.kernel(GPdc.SQUEXP, 1, hyp2),
    GPdc.kernel(GPdc.SQUEXP, 1, hyp0)
])
#G.printc()
Exemplo n.º 39
0
S*=0.
f0 = plt.figure()
a0 = plt.subplot(111)
a0.plot(sp.array(X[:,0]).flatten(),Y,'g.')

lb = sp.array([-2.,-2.,-9])
ub = sp.array([2.,2.,-1])
MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.SQUEXPCS,mx=10000)

mprior = sp.array([0.,-1.,-5.])
sprior = sp.array([1.,1.,3.])

MAPH = GPdc.searchMAPhyp(X,Y,S,D,mprior,sprior,GPdc.SQUEXPCS,mx=10000)
print "MLEH: "+str(MLEH)
print "MAPH: "+str(MAPH)
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXPCS,1,sp.array(MLEH)))


print G.llk()

np=180
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i]) for i in sup])

[m,v] = G.infer_diag(Xp,Dp)
a0.plot(sup,m.flatten())
sq = sp.sqrt(v)

a0.fill_between(sup, sp.array(m-1.*sq).flatten(), sp.array(m+1.*sq).flatten(), facecolor='lightblue',edgecolor='lightblue')
Exemplo n.º 40
0
from scipy import stats as sps
from scipy import linalg as spl
import scipy as sp
from matplotlib import pyplot as plt
import ESutils
import GPdc

nt=82
X = sp.matrix(sp.linspace(-1,1,nt)).T
D = [[sp.NaN]]*(nt)

hyp0 = sp.array([1.5,0.15])
hyp1 = sp.array([1.5,0.05])
hyp2 = sp.array([1.5,0.20])
kf = GPdc.kernel(GPdc.SQUEXP,1,hyp0)

Kxx = GPdc.buildKsym_d(kf,X,D)

Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,nt)).T+sp.matrix(sps.norm.rvs(0,1e-3,nt)).T
S = sp.matrix([1e-6]*nt).T

G = GPdc.GPcore(X,Y,S,D,[GPdc.kernel(GPdc.SQUEXP,1,hyp0),GPdc.kernel(GPdc.SQUEXP,1,hyp1),GPdc.kernel(GPdc.SQUEXP,1,hyp2),GPdc.kernel(GPdc.SQUEXP,1,hyp0)])
#G.printc()

np=100
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i]) for i in sup])

m = G.infer_m(Xp,Dp)
Exemplo n.º 41
0
X = sp.array([sp.linspace(0,nf,np)]).T

H = sp.empty([np,1])
T = sp.empty([np,1])
for i in xrange(np):
    [H[i,0],T[i,0]] = L.llks(sp.array([1.3,0.13,0.2,1e-2]),int(X[i,0]))


#lb = sp.array([0.,0.,-4.,-0.5*float(nf),float(nf)])
#ub = sp.array([4.,3.,3.,0.,1.5*float(nf)])
#MLEH =  GPdc.searchMLEhyp(X,H,sp.zeros([np,1]),[[sp.NaN]]*(np),lb,ub,GPdc.SQUEXPPS,mx=10000)
#G = GPdc.GPcore(X.copy(),H,sp.zeros([np,1]),[[sp.NaN]]*(np),GPdc.kernel(GPdc.SQUEXPPS,1,sp.array(MLEH)))
lb = sp.array([0.,0.,-4.,-1.,-3.])
ub = sp.array([4.,3.,3.,0.5,3.])
MLEH =  GPdc.searchMLEhyp(1./float(nf)*X,H,sp.zeros([np,1]),[[sp.NaN]]*(np),lb,ub,GPdc.SQUEXPBS,mx=10000)
G = GPdc.GPcore(1./float(nf)*X.copy(),H,sp.zeros([np,1]),[[sp.NaN]]*(np),GPdc.kernel(GPdc.SQUEXPBS,1,sp.array(MLEH)))

[m,v] = G.infer_diag(1./float(nf)*X,[[sp.NaN]]*(np))

S = sp.empty([np,1])
for i in xrange(np):
    S[i,0] = MLEH[2]*((1./float(nf)*X[i,0])**(MLEH[3]*MLEH[4]))* ((1.-1./float(nf)*X[i,0])**(MLEH[3]*(1.-MLEH[4])))

lbc = sp.array([-4.,0.,-6.])
ubc = sp.array([2.,3.,0.])
MLEC =  GPdc.searchMLEhyp(X,sp.log(T),sp.zeros([np,1]),[[sp.NaN]]*(np),lbc,ubc,GPdc.SQUEXPCS,mx=10000)
C = GPdc.GPcore(X.copy(),sp.log(T),sp.zeros([np,1]),[[sp.NaN]]*(np),GPdc.kernel(GPdc.SQUEXPCS,1,sp.array(MLEC)))

f,a = plt.subplots(2)
a[0].plot(X.flatten(),H.flatten(),'g.')
s = sp.sqrt(v).flatten()
Exemplo n.º 42
0
Kxx = GPdc.buildKsym_d(kf,X,D)

Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,nt)).T+sp.matrix(sps.norm.rvs(0,1e-3,nt)).T
S = sp.matrix([1e-6]*nt).T
f0 = plt.figure()
a0 = plt.subplot(111)
a1=a0.twinx()
a0.plot(sp.array(X[:,0]).flatten(),Y,'g.')


lb = sp.array([-2.,-2.])
ub = sp.array([2.,2.])
MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.SQUEXP,mx=10000)

print MLEH
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,1,MLEH))
print G.llk()

np=180
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i]) for i in sup])

[m,v] = G.infer_diag(Xp,Dp)
a0.plot(sup,m.flatten())
sq = sp.sqrt(v)

a0.fill_between(sup, sp.array(m-2.*sq).flatten(), sp.array(m+2.*sq).flatten(), facecolor='lightblue',edgecolor='lightblue')

lcb = G.infer_LCB(Xp,Dp,2.)
a0.plot(sup,sp.array(lcb).flatten(),'g')
Exemplo n.º 43
0
from scipy import linalg as spl
from matplotlib import pyplot as plt
import GPdc
import OPTutils
import ESutils
import DIRECT

#base dimension
d = 2
kindex = GPdc.MAT52
nt = 34
lb = sp.array([0.] + [-1.] * d)
ub = sp.array([5.] + [1.] * d)
Htrue = sp.array([1.4, 4.] + [0.25] * d)
[X, Y, S, D] = ESutils.gen_dataset(nt, d + 1, lb, ub, kindex, Htrue, s=1e-8)
G = GPdc.GPcore(X, Y, S, D, GPdc.kernel(kindex, d + 1, Htrue))


def ojfaugnn(x):
    return G.infer_m(x, [[sp.NaN]])[0, 0]


def opt_ip(s):
    def dwrap(x, y):
        X = sp.hstack([[s], x])
        return (ojfaugnn(X), 0)

    [xm, ym, ierror] = DIRECT.solve(dwrap,
                                    lb[1:],
                                    ub[1:],
                                    user_data=[],
Exemplo n.º 44
0


nt=34
X = ESutils.draw_support(2, sp.array([-1.,-1.]),sp.array([1.,1.]),nt,ESutils.SUPPORT_UNIFORM)
D = [[sp.NaN]]*(nt)
hyp = sp.array([1.5,0.25,0.25])
kf = GPdc.gen_sqexp_k_d(hyp)
Kxx = GPdc.buildKsym_d(kf,X,D)
Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,nt)).T+sp.matrix(sps.norm.rvs(0,1e-3,nt)).T
S = sp.matrix([1e-6]*nt).T

lb = sp.array([-2.,-2.,-2.])
ub = sp.array([2.,2.,2.])
#MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.SQUEXP,mx=10000)
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,2,sp.array([1.5,0.15,0.15])))
#np=180
#sup = sp.linspace(-1,1,np)
#Dp = [[sp.NaN]]*np
#Xp = sp.vstack([sp.array([i]) for i in sup])
#[m,v] = G.infer_diag(Xp,Dp)
#a0.plot(sup,m)
#sq = sp.sqrt(v)
#a0.fill_between(sup, sp.array(m-2.*sq).flatten(), sp.array(m+2.*sq).flatten(), facecolor='lightblue',edgecolor='lightblue')

Z = ESutils.draw_support(G, sp.array([-1.,-1.]),sp.array([1.,1.]),500,ESutils.SUPPORT_SLICEEI)
np=30
R = ESutils.draw_min(G,Z,500)
Z2 = ESutils.draw_support(G, sp.array([-1.,-1.]),sp.array([1.,1.]),500,ESutils.SUPPORT_LAPAPR,para=np)
R2 = ESutils.draw_min(G,Z2,500)
Exemplo n.º 45
0
ns = 200
sup = sp.linspace(-1,1,200)

#points are a high noise obs, a low noise obs, a derivative obs and a second derivative obs
X = sp.array([[-0.8],[-0.25],[0.25],[0.8]])
Y = sp.array([[0.3],[-0.2],[2.5],[50.]])
S = sp.array([[1e-1],[1e-6],[1e-6],[1e-6]])
D = [[sp.NaN],[sp.NaN],[0],[0,0]]

a[0].plot([-0.8,-0.8],[0.3-sp.sqrt(1e-1),0.3+sp.sqrt(1e-1)],'r')
a[0].plot([-0.8],[0.3],'ro')
a[0].plot([-0.25],[-0.2],'ro')
a[1].plot([0.25],[2.5],'ro')
a[2].plot([0.8],[50],'ro')

k= GPdc.kernel(GPdc.SQUEXP,1,sp.array([0.5,0.2]))
K = sp.empty([4,4])
for i in xrange(4):
    for j in xrange(i,4):
        K[i,j] =K[j,i] = k(X[i,:],X[j,:],D[i],D[j])
    K[i,i]+=1e-6

    
g = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,1,sp.array([0.5,0.2])))
#g.printc()
C= g.get_cho()
print C

print spl.cho_solve((C,True),sp.eye(4)).dot(K)
for i,d in enumerate([[sp.NaN],[0],[0,0]]):
    m,v = g.infer_diag(sup,[d]*ns)
Exemplo n.º 46
0
import ctypes as ct
import scipy as sp
from scipy import stats as sps
from scipy import linalg as spl
from matplotlib import pyplot as plt
import os
libGP = ct.cdll.LoadLibrary(
    os.path.join(os.path.dirname(os.path.realpath(__file__)),
                 '../../../dist/Release/GNU-Linux/libGPshared.so'))

ctpd = ct.POINTER(ct.c_double)

import GPdc

ni = 50
kf = GPdc.kernel(GPdc.SQUEXP, 1, sp.array([1.3, 0.3]))
X = sp.matrix(sp.linspace(-1, 1, ni)).T
D = [[sp.NaN]] * ni
Kxx = GPdc.buildKsym_d(kf, X, D)

tmp = spl.cholesky(Kxx, lower=True)
Ch = sp.vstack([tmp[i, :] for i in xrange(ni)])  #hack/force row major storage

z = 5

b = sp.empty([ni, z])

libGP.drawcov(Ch.ctypes.data_as(ctpd), ct.c_int(ni), b.ctypes.data_as(ctpd),
              ct.c_int(z))

#print b
Exemplo n.º 47
0
print "X"
Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,nt)).T+sp.matrix(sps.norm.rvs(0,1e-3,nt)).T
S = sp.matrix([1e-6]*nt).T
f0,a0 = plt.subplots(1)
a0.plot(sp.array(X[:,0]).flatten(),Y,'g.')


lb = sp.array([-2.,-2.])
ub = sp.array([2.,2.])
MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.SQUEXP,mx=10000)
print "X"
print MLEH
mp = sp.array([0.,-1.])
sb = sp.array([1.,1.])
#MAPH =  GPdc.searchMAPhyp(X,Y,S,D,mp,sb,GPdc.SQUEXP,mx=10000)
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXP,1,MLEH))
print "X"
print Y.shape
G.printc()
print G.llk()

np=180
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i]) for i in sup])

[m,v] = G.infer_diag(Xp,Dp)
a0.plot(sup,m.flatten())
sq = sp.sqrt(v)

a0.fill_between(sup, sp.array(m-1.*sq).flatten(), sp.array(m+1.*sq).flatten(), facecolor='lightblue',edgecolor='lightblue')
Exemplo n.º 48
0
#!/usr/bin/env python2
#encoding: UTF-8

#test the 1d periodic matern5/2 kernel
import sys
sys.path.append("./..")
import scipy as sp
from matplotlib import pyplot as plt
import seaborn as sns

import GPdc

kp = GPdc.kernel(GPdc.MAT52, 1, sp.array([0.75, 0.1]))
kq = GPdc.kernel(GPdc.MAT52PER, 1, sp.array([0.75, 0.1, 4.5]))
kr = GPdc.kernel(GPdc.MAT52PPT, 1, sp.array([0.75, 0.1, 4.5, 15.]))
ks = GPdc.kernel(GPdc.DEV, 1, sp.array([0.75, 0.1, 4.5, 0.5, 0.4, 10.]))
#support
ns = 1201
xax = sp.array([sp.linspace(-15, 15, ns)]).T
d0 = [[sp.NaN]]
x0 = sp.array([[0.]])

p = sp.empty(ns)
q = sp.empty(ns)
r = sp.empty(ns)
s = sp.empty(ns)
for i in xrange(ns):
    p[i] = kp(x0, xax[i, :], d0, d0)
    q[i] = kq(x0, xax[i, :], d0, d0) + 1
    r[i] = kr(x0, xax[i, :], d0, d0) + 2
    s[i] = ks(x0, xax[i, :], d0, d0) + 3
Exemplo n.º 49
0
#!/usr/bin/env python2
# encoding: UTF-8

# test the 1d periodic matern5/2 kernel
import sys

sys.path.append("./..")
import scipy as sp
from matplotlib import pyplot as plt
import seaborn as sns

import GPdc


kp = GPdc.kernel(GPdc.MAT52, 1, sp.array([0.75, 0.1]))
kq = GPdc.kernel(GPdc.MAT52PER, 1, sp.array([0.75, 0.1, 4.5]))
kr = GPdc.kernel(GPdc.MAT52PPT, 1, sp.array([0.75, 0.1, 4.5, 15.0]))
ks = GPdc.kernel(GPdc.DEV, 1, sp.array([0.75, 0.1, 4.5, 0.5, 0.4, 10.0]))
# support
ns = 1201
xax = sp.array([sp.linspace(-15, 15, ns)]).T
d0 = [[sp.NaN]]
x0 = sp.array([[0.0]])

p = sp.empty(ns)
q = sp.empty(ns)
r = sp.empty(ns)
s = sp.empty(ns)
for i in xrange(ns):
    p[i] = kp(x0, xax[i, :], d0, d0)
    q[i] = kq(x0, xax[i, :], d0, d0) + 1
Exemplo n.º 50
0
from scipy import linalg as spl
from matplotlib import pyplot as plt
import GPdc
import OPTutils
import ESutils
import DIRECT

#base dimension
d = 2
kindex = GPdc.MAT52
nt = 34
lb = sp.array([0.]+[-1.]*d)
ub = sp.array([5.]+[1.]*d)
Htrue = sp.array([1.4,4.]+[0.25]*d)
[X,Y,S,D] = ESutils.gen_dataset(nt,d+1,lb,ub,kindex,Htrue, s=1e-8)
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(kindex,d+1,Htrue))

def ojfaugnn(x):
    return G.infer_m(x,[[sp.NaN]])[0,0]

def opt_ip(s):
    def dwrap(x,y):
        X = sp.hstack([[s],x])
        return (ojfaugnn(X),0)
    [xm,ym,ierror] = DIRECT.solve(dwrap,lb[1:],ub[1:], user_data=[], algmethod=1, maxf=12000, logfilename='/dev/null')
    print "DIRECT found: " +str([xm,ym,ierror])
    return xm

mintrue = opt_ip(0.)
minaug = sp.hstack([[0.],mintrue])
Exemplo n.º 51
0
f,ax = plt.subplots(n,sharex=True)
ns=200
sup = sp.linspace(-6,6,ns)
for i in xrange(n):
    ax[i].plot(sup,sps.norm.pdf(sup,loc=m[i],scale=sp.sqrt(v[i,i])),'b')
    ax[i].plot(sup,sps.norm.pdf(sup,loc=mu[i],scale=sp.sqrt(vu[i,i])),'r')
    ax[i].twinx().plot(sup,sps.norm.cdf(Z[i]*(sup-Y[i])/max(F[i],1e-20))*sps.norm.pdf(sup,loc=m[i],scale=sp.sqrt(v[i,i])),'g')
#est on a gp

import ESutils
import GPdc
nt=5
X = sp.matrix(sp.linspace(-1,1,nt)).T
D = [[sp.NaN]]*(nt)
hyp = sp.array([1.5,0.15])
kf = GPdc.kernel(GPdc.SQUEXP,1,hyp)
Kxx = GPdc.buildKsym_d(kf,X,D)
Y = spl.cholesky(Kxx,lower=True)*sp.matrix(sps.norm.rvs(0,1.,nt)).T+sp.matrix(sps.norm.rvs(0,1e-3,nt)).T
S = sp.matrix([1e-2]*nt).T
g = GPdc.GPcore(X,Y,S,D,kf)
f,a = plt.subplots(2)

Xe = sp.array([-0.25,0.25])
De = [[sp.NaN]]*2
[m0,V0] = g.infer_full(Xe,De)
Ye = sp.array([2.,-2.])
Ze = sp.array([1.,-1.])
Fe = sp.array([(1e-6)**2,(1e-6)**2])

mt,vt = eprop.expectation_prop(m0,V0,Ye,Ze,Fe,20)
print D+De
Exemplo n.º 52
0
    ax[i].plot(sup, sps.norm.pdf(sup, loc=mu[i], scale=sp.sqrt(vu[i, i])), "r")
    ax[i].twinx().plot(
        sup,
        sps.norm.cdf(Z[i] * (sup - Y[i]) / max(F[i], 1e-20)) * sps.norm.pdf(sup, loc=m[i], scale=sp.sqrt(v[i, i])),
        "g",
    )
# est on a gp

import ESutils
import GPdc

nt = 5
X = sp.matrix(sp.linspace(-1, 1, nt)).T
D = [[sp.NaN]] * (nt)
hyp = sp.array([1.5, 0.15])
kf = GPdc.kernel(GPdc.SQUEXP, 1, hyp)
Kxx = GPdc.buildKsym_d(kf, X, D)
Y = spl.cholesky(Kxx, lower=True) * sp.matrix(sps.norm.rvs(0, 1.0, nt)).T + sp.matrix(sps.norm.rvs(0, 1e-3, nt)).T
S = sp.matrix([1e-2] * nt).T
g = GPdc.GPcore(X, Y, S, D, kf)
f, a = plt.subplots(2)

Xe = sp.array([-0.25, 0.25])
De = [[sp.NaN]] * 2
[m0, V0] = g.infer_full(Xe, De)
Ye = sp.array([2.0, -2.0])
Ze = sp.array([1.0, -1.0])
Fe = sp.array([(1e-6) ** 2, (1e-6) ** 2])

mt, vt = eprop.expectation_prop(m0, V0, Ye, Ze, Fe, 20)
print D + De
Exemplo n.º 53
0
S *= 0.
f0 = plt.figure()
a0 = plt.subplot(111)
a0.plot(sp.array(X[:, 0]).flatten(), Y, 'g.')

lb = sp.array([-2., -2., -9])
ub = sp.array([2., 2., -1])
MLEH = GPdc.searchMLEhyp(X, Y, S, D, lb, ub, GPdc.SQUEXPCS, mx=10000)

mprior = sp.array([0., -1., -5.])
sprior = sp.array([1., 1., 3.])

MAPH = GPdc.searchMAPhyp(X, Y, S, D, mprior, sprior, GPdc.SQUEXPCS, mx=10000)
print "MLEH: " + str(MLEH)
print "MAPH: " + str(MAPH)
G = GPdc.GPcore(X, Y, S, D, GPdc.kernel(GPdc.SQUEXPCS, 1, sp.array(MLEH)))

print G.llk()

np = 180
sup = sp.linspace(-1, 1, np)
Dp = [[sp.NaN]] * np
Xp = sp.vstack([sp.array([i]) for i in sup])

[m, v] = G.infer_diag(Xp, Dp)
a0.plot(sup, m.flatten())
sq = sp.sqrt(v)

a0.fill_between(sup,
                sp.array(m - 1. * sq).flatten(),
                sp.array(m + 1. * sq).flatten(),
Exemplo n.º 54
0
f0 = plt.figure()
a0 = plt.subplot(111)
a0.plot(sp.array(X[:,0]).flatten(),Y,'g.')

lb = sp.array([-2.,-2.,-9,-2.,-2.])
ub = sp.array([2.,2.,-1,2.,2.])
MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.SQUEXPPS,mx=20000)

mprior = sp.array([0.,-1.,-5.,-0.5,0.5])
sprior = sp.array([1.,1.,3.,1.,1.])

MAPH = GPdc.searchMAPhyp(X,Y,S,D,mprior,sprior,GPdc.SQUEXPPS,mx=20000)
print "MLEH: "+str(MLEH)
print "MAPH: "+str(MAPH)
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.SQUEXPPS,1,sp.array(MAPH)))



print G.llk()

np=180
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i]) for i in sup])

[m,v] = G.infer_diag(Xp,Dp)
sq = sp.sqrt(v)
S = sp.empty([np,1])
for i in xrange(np):
    S[i,0] = -MAPH[2]*(Xp[i,0]-MAPH[3])*(Xp[i,0]-MAPH[4])
Exemplo n.º 55
0
#X = sp.matrix([[0.,-9.],[0.2,5.],[0.4,12.],[0.6,3.],[0.8,9.]])

#Y = sp.matrix([0.2,0.1,0.,-0.15,-0.3]).T

D = [[sp.NaN]]*X.shape[0]
S = sp.matrix([0.005**2]*X.shape[0]).T
f0 = plt.figure()
a0 = plt.subplot(111)
a0.plot(sp.array(X[:,0]).flatten(),Y,'g.')


lb = sp.array([-2.,-1.,-2.,-2.,-2.,-2.,-2.])
ub = sp.array([2.,1.,2.,2.,2.,2.,2.])
MLEH =  GPdc.searchMLEhyp(X,Y,S,D,lb,ub,GPdc.LINSQUEXPXSQUEXP,mx=10000)
print "xxx"
GPdc.kernel(GPdc.LINSQUEXPXSQUEXP,2,MLEH)
print "yyyy"
print MLEH
G = GPdc.GPcore(X,Y,S,D,GPdc.kernel(GPdc.LINSQUEXPXSQUEXP,2,MLEH))
print G.llk()

print "zzz"
np=180
sup = sp.linspace(-1,1,np)
Dp = [[sp.NaN]]*np
Xp = sp.vstack([sp.array([i,0.2]) for i in sup])

[m,v] = G.infer_diag(Xp,Dp)
print "wwww"
a0.plot(sup,m)
sq = sp.sqrt(v)
Exemplo n.º 56
0
def traincfn(x, c):
    n = x.size
    g = GPdc.GPcore(x, c, sp.array([1e-1] * n), [[sp.NaN]] * n,
                    GPdc.kernel(GPdc.MAT52, 1, [1., 0.2]))

    return cfnobj(g)