Exemplo n.º 1
0
 def test_external_file_model_compatibility(self):
     """
     Test StringIO streams for dynamic programming.
     """
     # define the dishonest casino model
     fair_state = HMM.HiddenDieState(1 / 6.0)
     loaded_state = HMM.HiddenDieState(0.5)
     M = np.array([[0.95, 0.05], [0.1, 0.9]])
     T = TransitionMatrix.MatrixTransitionObject(M)
     hidden_states = [fair_state, loaded_state]
     # define a sequence of observations
     observations = [1, 2, 6, 6, 1, 2, 3, 4, 5, 6]
     # define the observation stream
     o_converter = lineario.IntConverter()
     o_stream = lineario.SequentialStringIO(o_converter)
     o_stream.open_write()
     for x in observations:
         o_stream.write(x)
     o_stream.close()
     # create the reference hidden markov model object
     hmm_old = HMM.TrainedModel(M, hidden_states)
     # create the testing hidden markov model object
     names = ('tmp_f.tmp', 'tmp_s.tmp', 'tmp_b.tmp')
     hmm_new = ExternalModel(T, hidden_states, names)
     # get posterior distributions
     distributions_old = hmm_old.scaled_posterior_durbin(observations)
     hmm_new.init_dp(o_stream)
     distributions_new = list(hmm_new.posterior())
     # assert that the distributions are the same
     self.assertTrue(np.allclose(distributions_old, distributions_new))
Exemplo n.º 2
0
 def test_scaled_ntransitions_expected_compatibility(self):
     fair_state = HMM.HiddenDieState(1 / 6.0)
     loaded_state = HMM.HiddenDieState(0.5)
     states = [fair_state, loaded_state]
     prandom = 0.1
     # define the old hmm
     transition_matrix = TransitionMatrix.get_uniform_transition_matrix(
         prandom, len(states))
     old_hmm = HMM.TrainedModel(transition_matrix, states)
     # define the new hmm
     cache_size = 100
     transition_object = TransitionMatrix.UniformTransitionObject(
         prandom, len(states))
     new_hmm = Model(transition_object, [fair_state, loaded_state],
                     cache_size)
     # define a sequence of observations
     observations = [1, 2, 6, 6, 1, 2, 3, 4, 5, 6]
     # define the (degenerate) distances between observations
     distances = [1] * (len(observations) - 1)
     # use the old algorithm to get the expected number of transitions
     e_initial, A = old_hmm.scaled_transition_expectations_durbin(
         observations)
     ntransitions_expected_old = np.sum(A) - np.sum(np.diag(A))
     # use the new algorithm to get the expected number of transitions
     dp_info = new_hmm.get_dp_info(observations, distances)
     ntransitions_expected_new = new_hmm.scaled_ntransitions_expected(
         dp_info)
     # assert that the expected number of transitions are almost the same
     self.assertAlmostEqual(ntransitions_expected_old,
                            ntransitions_expected_new)
Exemplo n.º 3
0
 def test_model_compatibility(self):
     # define the dishonest casino model
     fair_state = HMM.HiddenDieState(1 / 6.0)
     loaded_state = HMM.HiddenDieState(0.5)
     M = np.array([[0.95, 0.05], [0.1, 0.9]])
     T = TransitionMatrix.MatrixTransitionObject(M)
     hidden_states = [fair_state, loaded_state]
     # define a sequence of observations
     observations = [1, 2, 6, 6, 1, 2, 3, 4, 5, 6]
     # create the reference hidden markov model object
     hmm_old = HMM.TrainedModel(M, hidden_states)
     # create the testing hidden markov model object
     hmm_new = InternalModel(T, hidden_states)
     # get posterior distributions
     distributions_old = hmm_old.scaled_posterior_durbin(observations)
     distributions_new = hmm_new.posterior(
         hmm_new.get_dp_info(observations))
     # assert that the distributions are the same
     self.assertTrue(np.allclose(distributions_old, distributions_new))