Exemplo n.º 1
0
def get_response_content(fs):
    # get the tree
    tree = NewickIO.parse(fs.tree, FelTree.NewickTree)
    ordered_names = list(sorted(node.name for node in tree.gen_tips()))
    n = len(ordered_names)
    if n < 2:
        raise HandlingError('the newick tree should have at least two leaves')
    # get the eigendecomposition
    D = np.array(tree.get_distance_matrix(ordered_names))
    G = (-0.5) * MatrixUtil.double_centered(D)
    eigenvalues, eigenvector_transposes = np.linalg.eigh(G)
    eigenvectors = eigenvector_transposes.T
    sorted_eigensystem = list(reversed(list(sorted((w, v) for w, v in zip(eigenvalues, eigenvectors)))))
    sorted_eigenvalues, sorted_eigenvectors = zip(*sorted_eigensystem)
    M = zip(*sorted_eigenvectors)
    # write the html
    out = StringIO()
    print >> out, '<html>'
    print >> out, '<body>'
    print >> out, HtmlTable.get_labeled_table_string(
            sorted_eigenvalues, ordered_names, M)
    print >> out, '</body>'
    print >> out, '</html>'
    # write the response
    return out.getvalue()
Exemplo n.º 2
0
def get_response_content(fs):
    # get the tree
    tree = NewickIO.parse(fs.tree, FelTree.NewickTree)
    # define the ordering of the nodes
    ordered_names = list(sorted(node.get_name() for node in tree.preorder()))
    name_to_id = dict((node.get_name(), id(node)) for node in tree.preorder())
    ordered_ids = [name_to_id[name] for name in ordered_names]
    # get the affinity matrix
    A = np.array(tree.get_affinity_matrix(ordered_ids))
    # get the normalized laplacian
    for row, name in zip(A, ordered_names):
        assert sum(row), name
    row_sums = [sum(row) for row in A]
    n = len(A)
    L_script = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            if i == j:
                L_script[i][j] = 1
            L_script[i][j] -= A[i][j] / math.sqrt(row_sums[i] * row_sums[j])
    # get the eigendecomposition
    eigenvalues, eigenvector_transposes = np.linalg.eigh(L_script)
    eigenvectors = eigenvector_transposes.T
    eigensystem = [(abs(w), w, v.tolist())
                   for w, v in zip(eigenvalues, eigenvectors)]
    sorted_eigensystem = list(reversed(sorted(eigensystem)))
    sorted_abs_eigenvalues, sorted_eigenvalues, sorted_eigenvectors = zip(
        *sorted_eigensystem)
    M = zip(*sorted_eigenvectors)
    # turn the numbers into strings
    format_string = '%%.%df' % fs.precision
    M_strings = [[format_string % value for value in row] for row in M]
    sorted_eigenvalue_strings = [format_string % w for w in sorted_eigenvalues]
    # write the html
    out = StringIO()
    print >> out, '<html>'
    print >> out, '<body>'
    print >> out, HtmlTable.get_labeled_table_string(sorted_eigenvalue_strings,
                                                     ordered_names, M_strings)
    print >> out, '</body>'
    print >> out, '</html>'
    # write the response
    return out.getvalue()
Exemplo n.º 3
0
def cpuMem(namespace, caption):
    titles = ["POD", "Container", "Resources"]
    formats = ["str", "str", "str"]
    listCpuMem = []
    pods = helper.getPodStatus(namespace)

    for pod in pods:
        if (pod.startswith("NAME READY STATUS RESTARTS AGE")):
            continue
        values = pod.split(" ")
        if (len(values) < 5):
            continue
        podname = values[0]

        #for prefix in config.grafana_pods:
        #    if(podname.startswith(prefix)):
        cpuMemInfo = cpumem.containerCpuMem(namespace, podname)
        listCpuMem += cpuMemInfo
    result = htmlTable.table(titles, formats, listCpuMem, caption)
    return result, pods
Exemplo n.º 4
0
def get_response_content(fs):
    # get the tree
    tree = NewickIO.parse(fs.tree, FelTree.NewickTree)
    # define the ordering of the nodes
    ordered_names = list(sorted(node.get_name() for node in tree.preorder()))
    name_to_id = dict((node.get_name(), id(node)) for node in tree.preorder())
    ordered_ids = [name_to_id[name] for name in ordered_names]
    # get the affinity matrix
    A = np.array(tree.get_affinity_matrix(ordered_ids))
    # get the normalized laplacian
    for row, name in zip(A, ordered_names):
        assert sum(row), name
    row_sums = [sum(row) for row in A]
    n = len(A)
    L_script = np.zeros((n,n))
    for i in range(n):
        for j in range(n):
            if i == j:
                L_script[i][j] = 1
            L_script[i][j] -= A[i][j] / math.sqrt(row_sums[i]*row_sums[j])
    # get the eigendecomposition
    eigenvalues, eigenvector_transposes = np.linalg.eigh(L_script)
    eigenvectors = eigenvector_transposes.T
    eigensystem = [(abs(w), w, v.tolist()) for w, v in zip(eigenvalues, eigenvectors)]
    sorted_eigensystem = list(reversed(sorted(eigensystem)))
    sorted_abs_eigenvalues, sorted_eigenvalues, sorted_eigenvectors = zip(*sorted_eigensystem)
    M = zip(*sorted_eigenvectors)
    # turn the numbers into strings
    format_string = '%%.%df' % fs.precision
    M_strings = [[format_string % value for value in row] for row in M]
    sorted_eigenvalue_strings = [format_string % w for w in sorted_eigenvalues]
    # write the html
    out = StringIO()
    print >> out, '<html>'
    print >> out, '<body>'
    print >> out, HtmlTable.get_labeled_table_string(
            sorted_eigenvalue_strings, ordered_names, M_strings)
    print >> out, '</body>'
    print >> out, '</html>'
    # write the response
    return out.getvalue()
Exemplo n.º 5
0
def get_response_content(fs):
    # get the tree
    tree = NewickIO.parse(fs.tree, FelTree.NewickTree)
    ordered_names = list(sorted(node.name for node in tree.gen_tips()))
    n = len(ordered_names)
    if n < 2:
        raise HandlingError("the newick tree should have at least two leaves")
    # get the eigendecomposition
    D = np.array(tree.get_distance_matrix(ordered_names))
    G = (-0.5) * MatrixUtil.double_centered(D)
    eigenvalues, eigenvector_transposes = np.linalg.eigh(G)
    eigenvectors = eigenvector_transposes.T
    sorted_eigensystem = list(reversed(list(sorted((w, v) for w, v in zip(eigenvalues, eigenvectors)))))
    sorted_eigenvalues, sorted_eigenvectors = zip(*sorted_eigensystem)
    M = zip(*sorted_eigenvectors)
    # write the html
    out = StringIO()
    print >> out, "<html>"
    print >> out, "<body>"
    print >> out, HtmlTable.get_labeled_table_string(sorted_eigenvalues, ordered_names, M)
    print >> out, "</body>"
    print >> out, "</html>"
    # write the response
    return out.getvalue()
Exemplo n.º 6
0
def do_command_line_analysis(options):
    """
    Print some stuff to stdout, and show a progress bar on stderr.
    @param options: an object from optparse
    """
    # load the tree, using the default tree if no filename was provided
    tree, tree_remark = get_tree_and_remark(options)
    # initialize the simulation objects
    sims = [
        Simulation(Clustering.NeighborJoiningDMS(), 'nj', 'neighbor joining'),
        Simulation(Clustering.StoneSpectralSignDMS(), 'nj',
                   'spectral sign cut with neighbor joining fallback'),
        Simulation(Clustering.RandomDMS(), 'nj', 'random partitioning')
    ]
    # possibly add the slow simulation
    if options.use_exact:
        sims.append(
            Simulation(Clustering.StoneExactDMS(), 'nj',
                       'exact criterion with neighbor joining fallback'))
    # define the simulation parameters
    reconstruction_count = options.nsamples
    sequence_length_string = options.sequence_length
    if sequence_length_string == 'inf':
        sequence_length = float('inf')
    else:
        sequence_length = int(sequence_length_string)
    inf_replacement = 20.0
    if options.reject_inf:
        inf_replacement = None
    elif options.replace_inf:
        try:
            inf_replacement = float(options.replace_inf)
        except ValueError:
            msg = 'invalid replace_inf value: '
            raise OptionError(msg + str(options.replace_inf))
    zero_replacement = 0
    if options.reject_zero:
        zero_replacement = None
    elif options.replace_zero:
        try:
            zero_replacement = float(options.replace_zero)
        except ValueError:
            msg = 'invalid replace_zero value: '
            raise OptionError(msg + str(options.replace_zero))
    # start the html file
    print '<html><body>'
    # show the simulation parameters
    print 'original tree source:', tree_remark, '<br/>'
    print 'reconstruction count:', reconstruction_count, '<br/>'
    print 'sequence length:', sequence_length, '<br/>'
    # set the simulation parameters for each simulation
    for sim in sims:
        sim.set_original_tree(tree)
        # If there is only one reconstruction per method
        # then show the progress of the tree builder.
        if reconstruction_count == 1:
            sim.set_verbose()
    # define an arbitrary but consistent ordering of the taxa
    ordered_names = [node.name for node in tree.gen_tips()]
    try:
        # attempt to simulate a bunch of distance matrices
        if options.verbose:
            print 'sampling', reconstruction_count, 'distance matrices...'
        # initialize the distance matrix sampler
        sampler = DMSampler.DMSampler(tree, ordered_names, sequence_length)
        sampler.set_inf_replacement(inf_replacement)
        sampler.set_zero_replacement(zero_replacement)
        # start the progress bar
        pbar = Progress.Bar(1.0)
        # sample some distance matrices
        distance_matrices = []
        for result in sampler.gen_samples_or_none():
            # if we got a result then update the distance matrix list
            if result:
                sequence_list, D = result
                distance_matrices.append(D)
            # Update the progressbar regardless of whether or not
            # the proposal was accepted.
            remaining_acceptances = reconstruction_count - len(
                distance_matrices)
            numerator = sampler.get_completed_proposals()
            denominator = numerator + sampler.get_remaining_proposals(
                remaining_acceptances)
            dms_fraction = float(numerator) / float(denominator)
            dms_total = 1.0 / (1 + len(sims))
            pbar.update(dms_fraction * dms_total)
            # if we have enough samples then break the loop
            if not remaining_acceptances:
                break
        # reconstruct trees using various methods
        for i, sim in enumerate(sims):
            if options.verbose:
                print 'running "%s"...' % sim.description
            sim.run(distance_matrices, ordered_names)
            pbar.update(float(i + 2) / float(1 + len(sims)))
        # stop the progress bar
        pbar.finish()
        # get the simulation data
        table = [('method', 'seconds', 'uniform loss', 'weighted loss')]
        for sim in sims:
            table.append((sim.description, sim.get_running_time(),
                          sim.get_uniform_loss(), sim.get_deep_loss()))
        # convert the row major matrix into an html table
        print HtmlTable.get_table_string(table)
        # end the html file
        print '</html></body>'
    except KeyboardInterrupt:
        print 'interrupted stage', pbar.progress, 'of', pbar.high
Exemplo n.º 7
0
def get_response_content(fs):
    # start writing the html response
    out = StringIO()
    print >> out, '<html>'
    print >> out, '<body>'
    # get the tree and the column sent by the user
    pruned_tree, taxon_to_aa_letter = get_tree_and_column(fs)
    # get the weights of the taxa
    taxon_weight_pairs = LeafWeights.get_stone_weights(pruned_tree)
    # show the raw physicochemical property table
    if fs.show_raw_pc_table:
        print >> out, 'raw physicochemical property table:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = Codon.g_aa_letters
        table = MAPP.g_property_array
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the standardized physicochemical property table
    standardized_property_array = MAPP.get_standardized_property_array(
            MAPP.g_property_array)
    # show the standardized physicochemical property table
    if fs.show_standardized_pc_table:
        print >> out, 'standardized physicochemical property table:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = Codon.g_aa_letters
        table = standardized_property_array
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the physicochemical property correlation matrix
    correlation_matrix = MAPP.get_property_correlation_matrix(
            standardized_property_array)
    # show the physicochemical property correlation matrix
    if fs.show_pc_correlation_matrix:
        print >> out, 'physicochemical property correlation matrix:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = MAPP.g_property_names
        table = correlation_matrix
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # show the pruned tree
    if fs.show_tree:
        tree_string = NewickIO.get_narrow_newick_string(pruned_tree, 80)
        lines = StringIO(tree_string).readlines()
        lines = [line.rstrip() for line in lines]
        print >> out, 'pruned phylogenetic tree in newick format:'
        print >> out, '<pre>'
        for line in lines:
            print >> out, cgi.escape(line)
        print >> out, '</pre>'
        print >> out, '<br/>'
    # show the weights
    if fs.show_weights:
        taxa, weights = zip(*taxon_weight_pairs)
        table = [weights]
        row_labels = ['weight']
        col_labels = taxa
        print >> out, 'taxon weights:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # estimate the amino acid distribution for the column,
    # taking into account the tree and a uniform prior.
    weights = []
    aa_indices = []
    for taxon, weight in taxon_weight_pairs:
        weights.append(weight)
        aa_indices.append(aa_letter_to_aa_index(taxon_to_aa_letter[taxon]))
    aa_distribution = MAPP.estimate_aa_distribution(weights, aa_indices)
    # show the estimated amino acid distribution
    if fs.show_aa_distribution:
        table = [aa_distribution]
        row_labels = ['weight']
        col_labels = Codon.g_aa_letters
        print >> out, 'estimated amino acid distribution:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # estimate the mean and variance of each physicochemical property
    est_pc_means = MAPP.estimate_property_means(
            standardized_property_array, aa_distribution)
    est_pc_variances = MAPP.estimate_property_variances(
            standardized_property_array, aa_distribution)
    # show the estimated mean and variance of each physicochemical property
    if fs.show_pc_distribution:
        table = [est_pc_means, est_pc_variances]
        row_labels = ['mean', 'variance']
        col_labels = MAPP.g_property_names
        print >> out, 'estimated physicochemical property moments:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the deviation from each property mean
    # for each possible amino acid
    deviations = MAPP.get_deviations(
            est_pc_means, est_pc_variances, standardized_property_array)
    # show the deviation from each property mean for each possible amino acid
    if fs.show_deviations:
        print >> out, 'deviations of amino acids from the normal distribution'
        print >> out, 'estimated for each property:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = Codon.g_aa_letters
        table = deviations
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the impact scores
    impact_scores = MAPP.get_impact_scores(correlation_matrix, deviations)
    # show the impact scores
    if fs.show_impact_scores:
        table = [impact_scores]
        row_labels = ['impact']
        col_labels = Codon.g_aa_letters
        print >> out, 'impact scores:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the p-values
    p_values = []
    for score in impact_scores:
        ntaxa = len(taxon_weight_pairs)
        p_values.append(MAPP.get_p_value(score, ntaxa))
    # show the p-values
    if fs.show_p_values:
        table = [p_values]
        row_labels = ['p-value']
        col_labels = Codon.g_aa_letters
        print >> out, 'p-values:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
                col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # write the html footer
    print >> out, '</body>'
    print >> out, '</html>'
    # return the response
    return out.getvalue()
Exemplo n.º 8
0
def do_command_line_analysis(options):
    """
    Print some stuff to stdout, and show a progress bar on stderr.
    @param options: an object from optparse
    """
    # load the tree, using the default tree if no filename was provided
    tree, tree_remark = get_tree_and_remark(options)
    # initialize the simulation objects
    sims = [
        Simulation(Clustering.NeighborJoiningDMS(), "nj", "neighbor joining"),
        Simulation(Clustering.StoneSpectralSignDMS(), "nj", "spectral sign cut with neighbor joining fallback"),
        Simulation(Clustering.RandomDMS(), "nj", "random partitioning"),
    ]
    # possibly add the slow simulation
    if options.use_exact:
        sims.append(Simulation(Clustering.StoneExactDMS(), "nj", "exact criterion with neighbor joining fallback"))
    # define the simulation parameters
    reconstruction_count = options.nsamples
    sequence_length_string = options.sequence_length
    if sequence_length_string == "inf":
        sequence_length = float("inf")
    else:
        sequence_length = int(sequence_length_string)
    inf_replacement = 20.0
    if options.reject_inf:
        inf_replacement = None
    elif options.replace_inf:
        try:
            inf_replacement = float(options.replace_inf)
        except ValueError:
            msg = "invalid replace_inf value: "
            raise OptionError(msg + str(options.replace_inf))
    zero_replacement = 0
    if options.reject_zero:
        zero_replacement = None
    elif options.replace_zero:
        try:
            zero_replacement = float(options.replace_zero)
        except ValueError:
            msg = "invalid replace_zero value: "
            raise OptionError(msg + str(options.replace_zero))
    # start the html file
    print "<html><body>"
    # show the simulation parameters
    print "original tree source:", tree_remark, "<br/>"
    print "reconstruction count:", reconstruction_count, "<br/>"
    print "sequence length:", sequence_length, "<br/>"
    # set the simulation parameters for each simulation
    for sim in sims:
        sim.set_original_tree(tree)
        # If there is only one reconstruction per method
        # then show the progress of the tree builder.
        if reconstruction_count == 1:
            sim.set_verbose()
    # define an arbitrary but consistent ordering of the taxa
    ordered_names = [node.name for node in tree.gen_tips()]
    try:
        # attempt to simulate a bunch of distance matrices
        if options.verbose:
            print "sampling", reconstruction_count, "distance matrices..."
        # initialize the distance matrix sampler
        sampler = DMSampler.DMSampler(tree, ordered_names, sequence_length)
        sampler.set_inf_replacement(inf_replacement)
        sampler.set_zero_replacement(zero_replacement)
        # start the progress bar
        pbar = Progress.Bar(1.0)
        # sample some distance matrices
        distance_matrices = []
        for result in sampler.gen_samples_or_none():
            # if we got a result then update the distance matrix list
            if result:
                sequence_list, D = result
                distance_matrices.append(D)
            # Update the progressbar regardless of whether or not
            # the proposal was accepted.
            remaining_acceptances = reconstruction_count - len(distance_matrices)
            numerator = sampler.get_completed_proposals()
            denominator = numerator + sampler.get_remaining_proposals(remaining_acceptances)
            dms_fraction = float(numerator) / float(denominator)
            dms_total = 1.0 / (1 + len(sims))
            pbar.update(dms_fraction * dms_total)
            # if we have enough samples then break the loop
            if not remaining_acceptances:
                break
        # reconstruct trees using various methods
        for i, sim in enumerate(sims):
            if options.verbose:
                print 'running "%s"...' % sim.description
            sim.run(distance_matrices, ordered_names)
            pbar.update(float(i + 2) / float(1 + len(sims)))
        # stop the progress bar
        pbar.finish()
        # get the simulation data
        table = [("method", "seconds", "uniform loss", "weighted loss")]
        for sim in sims:
            table.append((sim.description, sim.get_running_time(), sim.get_uniform_loss(), sim.get_deep_loss()))
        # convert the row major matrix into an html table
        print HtmlTable.get_table_string(table)
        # end the html file
        print "</html></body>"
    except KeyboardInterrupt:
        print "interrupted stage", pbar.progress, "of", pbar.high
Exemplo n.º 9
0
def get_response_content(fs):
    # start writing the html response
    out = StringIO()
    print >> out, '<html>'
    print >> out, '<body>'
    # get the tree and the column sent by the user
    pruned_tree, taxon_to_aa_letter = get_tree_and_column(fs)
    # get the weights of the taxa
    taxon_weight_pairs = LeafWeights.get_stone_weights(pruned_tree)
    # show the raw physicochemical property table
    if fs.show_raw_pc_table:
        print >> out, 'raw physicochemical property table:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = Codon.g_aa_letters
        table = MAPP.g_property_array
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the standardized physicochemical property table
    standardized_property_array = MAPP.get_standardized_property_array(
        MAPP.g_property_array)
    # show the standardized physicochemical property table
    if fs.show_standardized_pc_table:
        print >> out, 'standardized physicochemical property table:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = Codon.g_aa_letters
        table = standardized_property_array
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the physicochemical property correlation matrix
    correlation_matrix = MAPP.get_property_correlation_matrix(
        standardized_property_array)
    # show the physicochemical property correlation matrix
    if fs.show_pc_correlation_matrix:
        print >> out, 'physicochemical property correlation matrix:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = MAPP.g_property_names
        table = correlation_matrix
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # show the pruned tree
    if fs.show_tree:
        tree_string = NewickIO.get_narrow_newick_string(pruned_tree, 80)
        lines = StringIO(tree_string).readlines()
        lines = [line.rstrip() for line in lines]
        print >> out, 'pruned phylogenetic tree in newick format:'
        print >> out, '<pre>'
        for line in lines:
            print >> out, cgi.escape(line)
        print >> out, '</pre>'
        print >> out, '<br/>'
    # show the weights
    if fs.show_weights:
        taxa, weights = zip(*taxon_weight_pairs)
        table = [weights]
        row_labels = ['weight']
        col_labels = taxa
        print >> out, 'taxon weights:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # estimate the amino acid distribution for the column,
    # taking into account the tree and a uniform prior.
    weights = []
    aa_indices = []
    for taxon, weight in taxon_weight_pairs:
        weights.append(weight)
        aa_indices.append(aa_letter_to_aa_index(taxon_to_aa_letter[taxon]))
    aa_distribution = MAPP.estimate_aa_distribution(weights, aa_indices)
    # show the estimated amino acid distribution
    if fs.show_aa_distribution:
        table = [aa_distribution]
        row_labels = ['weight']
        col_labels = Codon.g_aa_letters
        print >> out, 'estimated amino acid distribution:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # estimate the mean and variance of each physicochemical property
    est_pc_means = MAPP.estimate_property_means(standardized_property_array,
                                                aa_distribution)
    est_pc_variances = MAPP.estimate_property_variances(
        standardized_property_array, aa_distribution)
    # show the estimated mean and variance of each physicochemical property
    if fs.show_pc_distribution:
        table = [est_pc_means, est_pc_variances]
        row_labels = ['mean', 'variance']
        col_labels = MAPP.g_property_names
        print >> out, 'estimated physicochemical property moments:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the deviation from each property mean
    # for each possible amino acid
    deviations = MAPP.get_deviations(est_pc_means, est_pc_variances,
                                     standardized_property_array)
    # show the deviation from each property mean for each possible amino acid
    if fs.show_deviations:
        print >> out, 'deviations of amino acids from the normal distribution'
        print >> out, 'estimated for each property:'
        print >> out, '<br/>'
        col_labels = MAPP.g_property_names
        row_labels = Codon.g_aa_letters
        table = deviations
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the impact scores
    impact_scores = MAPP.get_impact_scores(correlation_matrix, deviations)
    # show the impact scores
    if fs.show_impact_scores:
        table = [impact_scores]
        row_labels = ['impact']
        col_labels = Codon.g_aa_letters
        print >> out, 'impact scores:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # calculate the p-values
    p_values = []
    for score in impact_scores:
        ntaxa = len(taxon_weight_pairs)
        p_values.append(MAPP.get_p_value(score, ntaxa))
    # show the p-values
    if fs.show_p_values:
        table = [p_values]
        row_labels = ['p-value']
        col_labels = Codon.g_aa_letters
        print >> out, 'p-values:'
        print >> out, '<br/>'
        print >> out, HtmlTable.get_labeled_table_string(
            col_labels, row_labels, table)
        print >> out, '<br/><br/>'
    # write the html footer
    print >> out, '</body>'
    print >> out, '</html>'
    # return the response
    return out.getvalue()
Exemplo n.º 10
0
def sendReport(resultList, allGood, testtype):
    if allGood:
        title = "ALL PASSED:"
    else:
        title = "SOMETHING WRONG:"
    if (testtype == "day"):
        title += "Everyday smoke test of CID for namespace: "
        title += config.cid_namespaces_asr[0] + "," + config.cid_namespaces_asr[
            1] + "," + config.cid_namespaces_tps[
                0] + " and " + config.cid_namespaces_tps[1]
    else:
        title += "Everyhour smoke test of CID for namespace: "
        title += config.cid_namespaces_asr[1] + "," + config.cid_namespaces_tps[
            0] + " and " + config.cid_namespaces_tps[1]

    #title += config.cid_namespaces_asr[0]+","+config.cid_namespaces_asr[1]+","+config.cid_namespaces_tps[0]+" and "+config.cid_namespaces_tps[1]
    #title += config.cid_namespaces_asr[1]+","+config.cid_namespaces_tps[0]+" and "+config.cid_namespaces_tps[1]
    dateTimeObj = datetime.now()
    timestampStr = dateTimeObj.strftime("%Y-%m-%d %H:%M:%S")
    html = report.formatTextH3("timestamp: " +
                               helper.getLocalTime(timestampStr) +
                               "&nbsp;&nbsp;&nbsp;" + "context:" +
                               config.context)

    titleList, formats = titlesResults()
    html2 = htmlTable.table(titleList, formats, resultList,
                            "cid smoke test results")
    html += "<br/><br/>"
    html += html2
    html += "<br/><br/>"
    #html+= PodStatus(config.cid_namespaces_asr[0],config.cid_namespaces_asr[1])
    if (testtype == "day"):
        html += PodStatus(config.cid_namespaces_asr[0],
                          config.cid_namespaces_asr[1])
    else:
        html += PodStatus(config.cid_namespaces_asr[1], None)

    html += "<br/><br/>"
    if (testtype == "day"):
        caption = "CPU Memory of namespace: " + config.cid_namespaces_asr[0]
        html1, pods_asr1 = cpuMem(config.cid_namespaces_asr[0], caption)
        html += html1

    caption = "CPU Memory of namespace: " + config.cid_namespaces_asr[1]
    html1, pods_asr1 = cpuMem(config.cid_namespaces_asr[1], caption)
    html += html1

    html += "<br/>"

    html += "<br/><br/>"
    if (testtype == "day"):
        html += PodStatus(config.cid_namespaces_tps[0],
                          config.cid_namespaces_tps[1])
    else:
        html += PodStatus(config.cid_namespaces_tps[1], None)

    html += "<br/>"
    if (testtype == "day"):
        caption = "CPU Memory of namespace: " + config.cid_namespaces_tps[0]
        html1, pods_tps1 = cpuMem(config.cid_namespaces_tps[0], caption)
        html += html1

    html += "<br/>"
    caption = "CPU Memory of namespace: " + config.cid_namespaces_tps[1]
    html2, pods_tps2 = cpuMem(config.cid_namespaces_tps[1], caption)
    html += html2

    attached_files = []

    if checkContainerStatus(html):
        allGood = False
        title = "pod status is wrong;" + title
        html = replacePodStatus(html)

    if (testtype == "day"):
        '''indexImg=0
        run_id='0000'
        podFilenames = granfanaImages(run_id, config.cid_namespaces_asr[1], pods_asr1)
        html3, indexImg, attached_files = tableGranfana(run_id, podFilenames, indexImg, attached_files)
        if(len(attached_files)>1):
            html+="<br/><br/>"
            html+=report.formatTextH3("Grafana images of namespace: "+config.cid_namespaces_asr[1]);
            
            html+=html3
            
            #podFilenames = granfanaImages(run_id,config.cid_namespaces_asr[1],pods_asr2)
            #html4, indexImg, attached_files = tableGranfana(run_id, podFilenames, indexImg, attached_files)
            #html+="<br/>"
            #html+=report.formatTextH3("Grafana images of namespace: "+config.cid_namespaces_asr[1]);
            #html+=html4
        '''
        receivers = config.cid_email_receivers
        print(html)
        email.sendHtmlEmailReceivers(title, html, attached_files, receivers)
    else:
        if (allGood):
            receivers = config.cid_email_receivers_passed
        else:
            receivers = config.cid_email_receivers
        email.sendHtmlEmailReceivers(title, html, attached_files, receivers)

    for filename in attached_files:
        os.remove(filename)

    print(html)
    return html