Exemplo n.º 1
0
def test_ModelFitandFreez1():
    typs = ["SL", "SL2"]
    for typ in typs:
        NNx = NN.clsNN(1,1,2, Type=typs[0], FreezeModel=[1])
        NN.ModelFit(NNx.model[0],x1,f20(x1), Epochs=10, ReTry=100, StopAt=[1.0e-2])
        oldw = list(NNx.model[0].layers[1].get_weights()[0][0])
        NN.ModelFit(NNx.model[1],x1,f21(x1), Epochs=10, ReTry=100, StopAt=[1.0e-2])
        assert list(NNx.model[0].layers[1].get_weights()[0][0]) == \
                list(NNx.model[1].layers[1].get_weights()[0][0]), "shared layer weights not identical"
        assert not list(NNx.model[0].layers[2].get_weights()[0][0]) == \
                list(NNx.model[1].layers[2].get_weights()[0][0]), "last /parallel layer weights identical"
        assert oldw == list(NNx.model[0].layers[1].get_weights()[0][0]), "frozen weights changed"
Exemplo n.º 2
0
def review_ModelFitMultiOut():
    typ = "STD"
    NNx = NN.clsNN(1,1,2,Type=typ)
    Y = np.swapaxes([f20(x1), f21(x1)],0,1)
    NN.ModelFit(NNx.model[0],x1,Y, Epochs=10, StopAt=[1.0e-2])
    Ynn = np.swapaxes(NN.ModelPredict(NNx.model[0],x1),0,1)
    plot(x1,f20(x1),Ynn[0])
    plot(x1,f21(x1),Ynn[1])

    typs = ["SI", "SL", "SL2"]
    for typ in typs:
        NNx = NN.clsNN(1,1,2,Type=typ)
        NN.ModelFit(NNx.model[0],x1,f20(x1), Epochs=10, StopAt=[1.0e-2])
        NN.ModelFit(NNx.model[1],x1,f21(x1), Epochs=10, StopAt=[1.0e-2])
        Ynn = [NN.ModelPredict(NNx.model[0],x1), NN.ModelPredict(NNx.model[1],x1)]
        plot(x1,f20(x1),Ynn[0])
        plot(x1,f21(x1),Ynn[1])
Exemplo n.º 3
0
 def xTrainQToReward(self, FromSequence, StopAt=[1.0e-03, 0]):
     SequenceSample = FromSequence.ReturnSample(self.batch)
     Xs, _, As, Rs, _ = SequenceSample.AsList()
     X_01 = self._RetXActAs01(Xs, As)
     R = Rs
     if FromSequence.Nterminal > 0:
         SequenceTerminal = FromSequence.ReturnSample(
             idxs=FromSequence.ReturnIdx(1))
         _, Xt, _, _, Rt = SequenceTerminal.AsList(multi=4)
         At = [
             j for _ in range(SequenceTerminal.len)
             for j in range(len(self.actions))
         ]
         X_01 = self._RetXActAs01(Xs + Xt, As + At)
         R = Rs + Rt
     # Fit
     NN.ModelFit(self.QModel[0],
                 np.array(X_01),
                 np.array(R),
                 Epochs=100,
                 StopAt=StopAt)
Exemplo n.º 4
0
    def xTrain(self, FromSequence, BellmanIterations, StopAt=[1.0e-03, 0]):
        # Terminal States
        if FromSequence.Nterminal > 0:
            SequenceTerminal = FromSequence.ReturnSample(
                idxs=FromSequence.ReturnIdx(1))
            _, Xt, _, _, Rt = SequenceTerminal.AsList(multi=4)
            At = [
                j for _ in range(SequenceTerminal.len)
                for j in range(len(self.actions))
            ]

        for k in range(BellmanIterations):
            # Non Terminal States
            SequenceSample = FromSequence.ReturnSample(self.batch)
            X0s, X1s, As, Rs, _ = SequenceSample.AsList()
            # Q under current policy
            Qpolicy_X0 = self.Predict(X0s)
            Qpolicy_X1 = self.Predict(X1s)
            QpAcn_X0 = [Qpolicy_X0[i][As[i]] for i in range(len(Qpolicy_X0))]
            QpMax_X1 = [max(Qpolicy_X1[i]) for i in range(len(Qpolicy_X1))]
            # taget Q
            QtAcn_X0 = [
                QpAcn_X0[i] + self.alpha * (Rs[i] + QpMax_X1[i] - QpAcn_X0[i])
                for i in range(len(QpAcn_X0))
            ]
            if FromSequence.Nterminal > 0:
                X0s = X0s + Xt
                As = As + At
                QtAcn_X0 = QtAcn_X0 + Rt
            # Generate X As Combination of State and Action
            XA = self._RetXActAs01(X0s, As)  # MOHI
            print("Iteration" + str(k))
            # Fit
            NN.ModelFit(self.QModel[0],
                        np.array(XA),
                        np.array(QtAcn_X0),
                        Epochs=100,
                        StopAt=StopAt)
        return
Exemplo n.º 5
0
def review_ModelFit():
    for typ in ModelTypes:
        NNx = NN.clsNN(1,1,1,Type=typ)
        NN.ModelFit(NNx.model[0],x1,f20(x1), Epochs=10, StopAt=[1.0e-3])
        Ynn = NN.ModelPredict(NNx.model[0],x1)
        plot(x1,f20(x1),Ynn)