Exemplo n.º 1
0
 def save(self, filename='plot'):
     #'eps' workstation doesn't work reliably, but 'ps' is OK
     weps = Ngl.open_wks('ps', filename, self.WorkstationResources)
     Ngl.change_workstation(self.plot, weps)
     Ngl.draw(self.plot)
     Ngl.change_workstation(self.plot, self.workstation)
     Ngl.destroy(weps)
 def save(self,filename = 'plot'):
     #'eps' workstation doesn't work reliably, but 'ps' is OK
     weps = Ngl.open_wks('ps',filename,self.WorkstationResources)
     Ngl.change_workstation(self.plot,weps)
     Ngl.draw(self.plot)
     Ngl.change_workstation(self.plot,self.workstation)
     Ngl.destroy(weps)
Exemplo n.º 3
0
def skewt(fname, p, tc, tdc, z, wspd, wdir, saveas='pdf', barbstride=20):
	wks = Ngl.open_wks(saveas,fname)

	dataOpts                               = Ngl.Resources()  # Options describing 
	"""                                                          # data and plotting.
	dataOpts.sktHeightWindBarbsOn          = True             # Plot wind barbs at
                                                          # height levels.
	dataOpts.sktPressureWindBarbComponents = "SpeedDirection" # Wind speed and 
                                                          # dir [else: u,v].

	dataOpts.sktHeightWindBarbPositions  = hght        # height of wind reports
	dataOpts.sktHeightWindBarbSpeeds     = hspd        # speed
                                                   # [or u components]
	dataOpts.sktHeightWindBarbDirections = hdir        # direction
                                                   # [or v components]
	"""

	skewtOpts                              = Ngl.Resources()
	skewtOpts.sktHeightScaleOn             = True      # default is False
	skewtOpts.sktHeightScaleUnits          = "km"    # default is "feet"
	skewtOpts.sktColoredBandsOn            = False      # default is False
	skewtOpts.sktGeopotentialWindBarbColor = "Red"
	dataOpts.sktPressureWindBarbStride     = barbstride
	skewtOpts.tiMainString                 = "Graw Launch WBB - Env. Instr Lab 5"

	# create a background
	skewt_bkgd = Ngl.skewt_bkg(wks, skewtOpts)
	# plot the darn profile...
	skewt_data = Ngl.skewt_plt(wks, skewt_bkgd, p, tc, tdc, z, \
                                wspd, wdir, dataOpts)
	Ngl.draw(skewt_bkgd)
	Ngl.draw(skewt_data)
	Ngl.frame(wks)

	Ngl.end()
Exemplo n.º 4
0
def hilo_valplot(lons, lats, highs, lows, cfg):
    """
    Special case of having a value plot with a high and low value to 
    plot, which is common for some climate applications
    """
    tmpfp = tempfile.mktemp()

    cmap = numpy.array([[1., 1., 1.], [0., 0., 0.], [1., 0., 0.], \
                    [0., 0., 1.], [0., 1., 0.]], 'f')

    rlist = Ngl.Resources()
    rlist.wkColorMap = cmap
    #rlist.wkOrientation = "landscape"
    wks = Ngl.open_wks("ps", tmpfp, rlist)

    res = iowa()
    res.mpOutlineDrawOrder = "PreDraw"
    plot = Ngl.map(wks, res)
    for key in cfg.keys():
        if key == 'wkColorMap' or key[0] == "_":
            continue
        setattr(res, key, cfg[key])

    txres              = Ngl.Resources()
    txres.txFontHeightF = 0.016
    txres.txFontColor   = "red"
    txres.txJust        = "BottomRight"
    for i in range(len(lons)):
        Ngl.add_text(wks, plot, cfg["_format"] % highs[i], 
                      lons[i], lats[i],txres)

    txres              = Ngl.Resources()
    txres.txFontHeightF = 0.016
    txres.txFontColor   = "blue"
    txres.txJust        = "TopRight"
    for i in range(len(lons)):
        Ngl.add_text(wks, plot, cfg["_format"] % lows[i], 
                      lons[i], lats[i],txres)

    if cfg.has_key("_labels"):
        txres               = Ngl.Resources()
        txres.txFontHeightF = 0.008
        txres.txJust        = "CenterLeft"
        txres.txFontColor   = 1
        for i in range(len(lons)):
            Ngl.add_text(wks, plot, cfg["_labels"][i], 
                     lons[i], lats[i],txres)

    watermark(wks)
    manual_title(wks, cfg)
    vpbox(wks)
    Ngl.draw(plot)
    Ngl.frame(wks)
    del wks

    return tmpfp
Exemplo n.º 5
0
def print_cape_for_timestamp(wrf_data, timestamp, filepath):
    slp = pressure_lib.get_sea_level_pressure(wrf_data)
    cinfo = getvar(wrf_data, "cape_2d", missing=0.0)
    cape = cinfo[0, :, :].fillna(0)

    lat, lon = latlon_coords(slp)
    lat_normal = to_np(lat)
    lon_normal = to_np(lon)

    # rain sum
    cape_res = get_pyngl(cinfo)
    cape_res.nglDraw = False  # don't draw plot
    cape_res.nglFrame = False  # don't advance frame

    cape_res.cnFillOn = True  # turn on contour fill
    cape_res.cnLinesOn = False  # turn off contour lines
    cape_res.cnLineLabelsOn = False  # turn off line labels
    cape_res.cnFillMode = "RasterFill"  # These two resources
    cape_res.cnLevelSelectionMode = "ExplicitLevels"
    cape_res.cnFillColors        = numpy.array([ [255,255,255], [  0,255,  0], [  0,128,  0], \
                                                 [240,230,140], [255,255,  0], [255,140,  0], \
                                                 [255,  0,  0], [139,  0,  0], [186, 85,211],\
                                                 [153, 50,204], [139,  0,139], ],'f') / 255.
    cape_res.cnLevels = numpy.array(
        [.1, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500])

    cape_res = geography_lib.initialize_geography(cape_res, "gray50")

    cape_res.lbTitleString = "Convective available potential energy [CAPE] in (J/kg)"
    cape_res.lbOrientation = "horizontal"
    cape_res.lbTitleFontHeightF = 0.015
    cape_res.lbLabelFontHeightF = 0.015

    cape_res.tiMainString = "Thunderstorm probability (%s)" % timestamp.strftime(
        "%b %d %Y %HUTC")
    cape_res.trGridType = "TriangularMesh"  # can speed up plotting.
    cape_res.tfDoNDCOverlay = True  # required for native projection

    # pressure
    p_res = pressure_lib.get_pressure_resource(lat_normal, lon_normal)

    wk_res = Ngl.Resources()
    wk_res.wkWidth = 2500
    wk_res.wkHeight = 2500
    output_path = "%scape_%s" % (filepath, timestamp.strftime("%Y_%m_%d_%H"))
    wks_comp = Ngl.open_wks("png", output_path, wk_res)

    # creating plots for the measurands
    capeplot = Ngl.contour_map(wks_comp, cape, cape_res)
    pplot = Ngl.contour(wks_comp, slp, p_res)

    Ngl.overlay(capeplot, pplot)
    Ngl.maximize_plot(wks_comp, capeplot)
    Ngl.draw(capeplot)
    Ngl.frame(wks_comp)
    Ngl.delete_wks(wks_comp)  # delete currently used workstation
Exemplo n.º 6
0
 def _draw_plots(self, plots, res):
     """Draw the provided plots."""
     for plot in xrange(self.number_plots):
         # It is OK for a plot to be None, it will just be skipped. This
         # allows the user to have a lot of control over their panel plot.
         if plots[plot] is not None:
             # Set the position of the plot.
             res_pos = Ngl.Resources()
             res_pos.vpXF, res_pos.vpYF = self.plot_coordinates[plot]
             Ngl.set_values(plots[plot], res_pos)
             # Draw to plot.
             Ngl.draw(plots[plot])
Exemplo n.º 7
0
 def __call__(self, *args):
     """Ngl graphics function with modifications applied."""
     # Make a local copy of the resources arguments, preventing them
     # from being modified in the calling namespace. These copied (and
     # possibly modified) are used only inside this method.
     res = list()
     for i, arg in enumerate(args):
         if isinstance(arg, Ngl.Resources):
             res.append((copy(arg), i))
     # Form the new argument list containing copies of the resource
     # variables. We alse need to intercept nglDraw and nglFrame at the top
     # level, making sure they are turned off while modifications are
     # applied. After modifications we can check if drawing and frame
     # advancing was requested and do so then.
     new_args = list(args)
     draw_on = frame_on = False
     for r, i in res:
         draw_on = getattr(r, 'nglDraw', True)
         frame_on = getattr(r, 'nglFrame', True)
         if draw_on:
             setattr(r, 'nglDraw', False)
         if frame_on:
             setattr(r, 'nglFrame', False)
         new_args[i] = r
     # Call the modifier pre-plot methods.
     special_resources = list()
     for modifier in self.modifiers:
         # Run the preplot method of each modifier.
         modifier.preplot(*new_args)
         special_resources += modifier.resource_names
     # Go back and remove all special resources from resource variables
     # before they are passed to the Ngl plotting routine.
     for r, i in res:
         for resource_name in special_resources:
             try:
                 delattr(r, resource_name)
             except AttributeError:
                 pass
     # Make the plot.
     plot = self.f(*new_args)
     # Call the modifier post-plot methods.
     wks = args[0]
     for modifier in self.modifiers:
         modifier.postplot(wks, plot)
     # Check if the plot should be drawn and the frame advanced. Do so now
     # if required.
     if draw_on:
         Ngl.draw(plot)
     if frame_on:
         Ngl.frame(wks)
     # Return the modified plot.
     return plot
Exemplo n.º 8
0
def draw(data, lon, lat, dataSources, latRanges, lonRanges, imgTypes,
         colorBarName, imgOutputPaths, img_output_names, mainTitle, subTitles,
         unit, dataSources1):
    '''
       方法定义: 用于绘图。(画的什么图不清楚,建议名字优化一下)
       @param data: 数据(是否是2D呢??)
       @param lon: 精度
       @param lat: 纬度 (建议常用的查询要素封装成到一个类中去)
       @param dataSources: 数据源
       @param latRanges:   纬度范围
       @param lonRanges: 经度
       @param imgTypes:  图片格式
       @param colorBarName:  颜色名称(到底是啥玩意)
       @param imgOutputPaths: (图片输出路径)
       @param img_output_names: (图片名称)
       @param mainTitle: 主标题
       @param subTitles: 副标题
       @param unit: 单元(什么的单元???)
       @param dataSources1:  数据源1(这个数据源1是干嘛用的,为啥叫1)
       @return: 无返回值,只是用于画图,然后保存而已。
    '''

    #1.数据信息提取Begin
    startLon = lonRanges[0]
    endLon = lonRanges[1]
    startLat = latRanges[0]
    endLat = latRanges[1]

    print(" Longitude starts with %f ,ends with %f " %
          (startLon, endLon))  #获取经纬度起止值(此处建议引入日志配置,而不是简单的print函数)
    print(" Latitude starts with %f ,ends with %f " % (startLon, endLon))
    image_path = output_directory_absolute_path + img_output_names  #指定输出文件 (常量不应该写死在方法内部,应该定义全局变量,或者由配置文件引入。)

    #2.绘图环境配置Begin
    wks = create_workstation(colorBarName, image_path)

    # 3.绘制等值线图
    plot = draw_contour(colorBarName, data, endLat, endLon, imgOutputPaths,
                        lat, lon, startLat, startLon, wks)
    #4.绘制海岸线图
    draw_sea_polyline(endLon, plot, wks)
    Ngl.draw(plot)
    Ngl.frame(wks)
    Ngl.end()

    #5.字体绘制
    im = setting_font(dataSources1, image_path, mainTitle, subTitles, unit)

    #6.加载ncc.png(不清楚这个作用是什么? 背景色吗)
    setting_bgImage(im)
    print(image_path + ".png")
    im.save(image_path + ".png")
Exemplo n.º 9
0
def plot(filename, outputname):
    # set up parameters
    f = Nio.open_file(filename)
    q = f.variables['q'][:, 0, :]
    qY = f.variables['qY'][:, 0, :]
    ae = 6.371229e6
    r2d = 57.2957795
    lat = f.variables['lat'][:, :] * r2d
    lon = f.variables['lon'][:, :] * r2d
    vertx = f.variables['vertx'][:, :, :] * r2d
    verty = f.variables['verty'][:, :, :] * r2d
    ncols = f.variables['nCols'][:]

    #  Open a workstation.
    wks_type = "pdf"
    wks = Ngl.open_wks(wks_type, outputname)
    # Create contour and map resource lists.
    for it in range(1, 2):
        cnres = Ngl.Resources()
        cnres.nglFrame = False
        cnres.nglDraw = False
        cnres.mpGridAndLimbOn = False
        cnres.mpOutlineOn = False
        cnres.mpPerimOn = False  #             ; turn off box around plot
        cnres.nglMaximize = True
        cnres.mpProjection = "Orthographic"  # Change the map projection.
        x_c, y_c = qmoving(it * 24. * 3600., 12. * 24. * 3600., 0. * np.pi, ae)
        cnres.mpCenterLonF = x_c * r2d
        cnres.mpCenterLatF = y_c * r2d
        cnres.mpOutlineOn = False
        cnres.sfXArray = lon[it, 0:ncols[it]]
        cnres.sfYArray = lat[it, 0:ncols[it]]
        cnres.cnLinesOn = True
        cnres.cnFillOn = False
        cnres.cnLineLabelsOn = False
        cnres.cnInfoLabelOn = False
        cnres.cnLevelSelectionMode = "ExplicitLevels"  # Set explicit contour levels
        cnres.cnLevels = np.arange(0.1, 1., 0.1)  # 0,5,10,...,70
        cnres.cnLineThicknessF = 3.
        cnres.pmTickMarkDisplayMode = "Never"
        contour1 = Ngl.contour_map(wks, q[it, 0:ncols[it]], cnres)
        cnres.cnLineColor = "red"
        contour2 = Ngl.contour_map(wks, qY[it, 0:ncols[it]], cnres)
        Ngl.draw(contour1)
        Ngl.draw(contour2)
        # Ngl.draw(vc)
        Ngl.frame(wks)

        Ngl.end()
Exemplo n.º 10
0
def plot(filename, outputname, centerlon, centerlat):
    # set up parameters
    f = Nio.open_file(filename)
    q = f.variables['q'][:, 0, :]
    r2d = 57.2957795
    lat = f.variables['lat'][:, :] * r2d
    lon = f.variables['lon'][:, :] * r2d
    vertx = f.variables['vertx'][:, :, :] * r2d
    verty = f.variables['verty'][:, :, :] * r2d
    ncols = f.variables['nCols'][:]

    #  Open a workstation.
    wks_type = "pdf"
    wks = Ngl.open_wks(wks_type, outputname)
    # Create contour and map resource lists.
    for it in range(13):
        cnres = Ngl.Resources()
        cnres.nglFrame = False
        cnres.nglDraw = False
        cnres.mpGridAndLimbOn = False
        cnres.mpOutlineOn = False
        cnres.mpPerimOn = False  #             ; turn off box around plot
        cnres.nglMaximize = True
        cnres.mpProjection = "Orthographic"  # Change the map projection.
        cnres.mpCenterLonF = centerlon
        cnres.mpCenterLatF = centerlat
        cnres.mpOutlineOn = False
        cnres.sfXArray = lon[it, 0:ncols[it]]
        cnres.sfYArray = lat[it, 0:ncols[it]]
        cnres.cnLinesOn = True
        cnres.cnFillOn = False
        cnres.cnLineLabelsOn = False
        cnres.cnInfoLabelOn = False
        cnres.cnLevelSelectionMode = "ExplicitLevels"  # Set explicit contour levels
        cnres.cnLevels = np.arange(0.1, 1., 0.1)  # 0,5,10,...,70
        cnres.cnLineThicknessF = 3.
        cnres.cnLineColor = "red"
        cnres.pmTickMarkDisplayMode = "Never"
        contour1 = Ngl.contour_map(wks, q[it, 0:ncols[it]], cnres)
        gsres = Ngl.Resources()
        gsres.gsLineColor = "Gray25"
        gsres.gsLineThicknessF = 2.0
        for nc in range(ncols[it]):
            Ngl.polyline(wks, contour1, vertx[it, :, nc], verty[it, :, nc],
                         gsres)
        Ngl.draw(contour1)
    Ngl.frame(wks)
    Ngl.end()
Exemplo n.º 11
0
def get_3h_rainsum(previous_data, current_data, timestamp, filepath):
    slp = pressure_lib.get_sea_level_pressure(current_data)
    previous_sum, rain_con = get_cumulated_rain_sum(previous_data)
    current_sum, rain_con = get_cumulated_rain_sum(current_data)
    rain_sum = current_sum - previous_sum

    lat, lon = latlon_coords(rain_con)
    lat_normal = to_np(lat)
    lon_normal = to_np(lon)

    # rain sum
    rr_res = initialize_rain_resource(rain_con)

    rr_res.lbTitleString = "3h rainsum in (mm)"
    rr_res.lbOrientation = "horizontal"
    rr_res.lbTitleFontHeightF = 0.015
    rr_res.lbLabelFontHeightF = 0.015

    rr_res.tiMainString = "3h rainsum (%s)" % timestamp.strftime(
        "%b %d %Y %HUTC")
    rr_res.trGridType = "TriangularMesh"  # can speed up plotting.
    rr_res.tfDoNDCOverlay = True  # required for native projection

    # pressure
    p_res = pressure_lib.get_pressure_resource(lat_normal, lon_normal)

    wk_res = Ngl.Resources()
    wk_res.wkWidth = 2500
    wk_res.wkHeight = 2500
    output_path = "%srain_3h_%s" % (filepath,
                                    timestamp.strftime("%Y_%m_%d_%H"))
    wks_comp = Ngl.open_wks("png", output_path, wk_res)

    # creating plots for the measurands
    rrplot = Ngl.contour_map(wks_comp, rain_sum, rr_res)
    pplot = Ngl.contour(wks_comp, slp, p_res)

    Ngl.overlay(rrplot, pplot)
    Ngl.maximize_plot(wks_comp, rrplot)
    Ngl.draw(rrplot)
    Ngl.frame(wks_comp)
    Ngl.delete_wks(wks_comp)  # delete currently used workstation
def plot_xy(vpx=0.2,vpy=0.8,hei=0.3,wth=0.4,xlab='',ylab='',legend=True, yrev=False, lab=''):
   
   nprof = len(vy)
   
   res = Ngl.Resources()
   res.nglFrame = False
   res.nglPaperOrientation = 'Portrait' 
   res.nglMaximize = False
   res.nglDraw = False
   
   res.xyLineColors = colors
   res.xyLineThicknesses = thicknesses
   
   res.tiYAxisString = ylab
   res.tiXAxisString = xlab
   res.tiMainString = lab
   res.tiMainFontHeightF = 0.015
   res.tiMainOffsetYF = -hei/4.7
   res.tiMainOffsetXF = -wth * 2./5.
   
   res.trXMinF = xmin
   res.trXMaxF = xmax
   res.trYMinF = ymin
   res.trYMaxF = ymax
   res.trYReverse = yrev
   
   res.vpXF = vpx
   res.vpYF = vpy
   res.vpHeightF = hei
   res.vpWidthF = wth
   
   xy = Ngl.xy(wks,vx[0],vy[0],res)
   
   for jn in range(1,nprof):
      res = Ngl.Resources()
      res.gsLineColor                           =  colors[jn]
      res.gsLineDashPattern                     =  patterns[jn]
      res.gsLineThicknessF                      =  thicknesses[jn]
      
      if ( isinstance(vx,list) and len(vx) >= len(vy) ):
         tmpx = vx[jn]
      elif (isinstance(vx,list) and len(vx)-1 < jn ):
         tmpx = vx[0]
      else:
         tmpx = vx
         
      line = Ngl.add_polyline(wks,xy,tmpx,vy[jn],res)
       
   Ngl.draw(xy)
   
   wth2 = 0.08
   hei2 = 0.08
   for jn in range(0,2):
      if (jn == 0):
         x0 = vpx+wth-(wth2)
         y0 = vpy+hei2
         st = 0
         sp = 4
      elif (jn == 1 and nprof > 4):
         x0 = vpx+wth-(2*wth2+0.05)
         y0 = vpy+hei2
         st = 4
         sp = nprof
      lres = Ngl.Resources()
      lres.vpWidthF            =  wth2
      lres.vpHeightF           =  hei2
      lres.lgLineColors        =  colors[st:sp]
      lres.lgLineThicknesses   =  thicknesses[st:sp] 
      lres.lgDashIndexes       =  patterns[st:sp]
      lres.lgLineLabelsOn      =  False
      lres.lgLabelFontHeightF  =  0.008
      if(legend):
         lg = Ngl.legend_ndc(wks,sp-st,titles1[st:sp],x0,y0,lres)
Exemplo n.º 13
0
def main():
    start_year = 1981
    end_year = 2008

    #mean alt
    path_to_yearly = "alt_era_b1_yearly.nc"
    ds = Dataset(path_to_yearly)

    hm = ds.variables["alt"][:]
    years = ds.variables["year"][:]
    years_sel = np.where(( start_year <= years ) & (years <= end_year))[0]
    print(years_sel)

    hm = hm[np.array(years_sel),:,:]
    print(hm.shape)

    good_points = ~np.any(hm < 0, axis = 0)

    hm2d = np.ma.masked_all(good_points.shape)


    hm2d[good_points] = np.mean( hm[ : , good_points],
                        axis = 0)


    #alt from climatology
    sim_data_folder = "/home/huziy/skynet1_rech3/cordex/CORDEX_DIAG/era40_driven_b1"
#    dm = CRCMDataManager(data_folder=sim_data_folder)
#    hc = dm.get_alt_using_monthly_mean_climatology(xrange(start_year,end_year+1))



    coord_file = os.path.join(sim_data_folder, "pmNorthAmerica_0.44deg_ERA40-Int_B1_200812_moyenne")
    basemap, lons2d, lats2d = draw_regions.get_basemap_and_coords(resolution="c",
        file_path = coord_file#, llcrnrlat=40.0, llcrnrlon=-145, urcrnrlon=-10
    )

    #basemap.transform_scalar()

    #basemap = Basemap()
    lons2d[lons2d > 180] -= 360

    x, y = basemap(lons2d, lats2d)
    print(x.min(), x.max())
    permafrost_mask = draw_regions.get_permafrost_mask(lons2d, lats2d)
    mask_cond = (permafrost_mask <= 0) | (permafrost_mask >= 3)

    #plot_utils.apply_plot_params(width_pt=None, width_cm=25,height_cm=35, font_size=12)
    #fig = plt.figure()
    #assert isinstance(fig, Figure)


    h_max = 10
    #cmap = cm.get_cmap("jet",10)
    #cmap.set_over(cmap(1.0))
    clevels = np.arange(0,h_max+1,1)
    #gs = gridspec.GridSpec(1,1)

    all_axes = []
    all_img = []


    #ax = fig.add_subplot(gs[0,0])
    hm2d = np.ma.masked_where(mask_cond | (hm2d > h_max), hm2d)



    wks_res = Ngl.Resources()

    assert isinstance(wks_res, Ngl.Resources)
    wks = Ngl.open_wks("x11", "ALT mean", wks_res)


    wks_res.cnFillOn = True


    wks_res.sfXArray = lons2d
    wks_res.sfYArray = lats2d
    #---Create contours over map.
    map = Ngl.contour_map(wks,hm2d,wks_res)

    #---Draw plot and advance frame. MRB outlines will be included.
    Ngl.draw(map)
    Ngl.frame(wks)
def plot_xy(wks,vx,data_vy,vpx=0.2,vpy=0.8,hei=0.3,xlab='',ylab='',\
                  prof=False,yrev=True,\
                  linecolors = ['red','blue','black','green','yellow'],\
                  linethicknesses=[1,1,1,1,1],
                  linepatterns=[0,0,0,0,0],\
                  titles=[''],\
                  xmin=0.,xmax=1000.,ymin=0.,ymax=100.,\
                  frame=True):
   """
   """
   
   if ( isinstance(data_vy,list) ):
      nprof = len(data_vy)
   else:
      data_vy = [data_vy]
      nprof = 1
   
   vx = fill_blanks(vx,nprof)
   linecolors = fill_blanks(linecolors,nprof)
   linepatterns = fill_blanks(linepatterns,nprof)
   linethicknesses = fill_blanks(linethicknesses,nprof)
   
   if (prof):
      tmp = vx
      vx = data_vy
      data_vy = tmp
   
   
   
   res = Ngl.Resources()
   res.nglFrame = False
   res.nglPaperOrientation = 'Portrait' 
   res.nglMaximize = False
   res.nglDraw = False
   
   res.xyLineColors = linecolors
   
   res.tiYAxisString = ylab
   res.tiXAxisString = xlab
   
   res.trYReverse = yrev
   res.trXMinF = xmin
   res.trXMaxF = xmax
   res.trYMinF = ymin
   res.trYMaxF = ymax
   
   if(prof):
      wth = hei * 1./np.sqrt(2.)
   else:
      wth = hei * np.sqrt(2.)
   res.vpXF = vpx
   res.vpYF = vpy
   res.vpHeightF = hei
   res.vpWidthF = wth
   
   xy = Ngl.xy(wks,vx[0],data_vy[0],res)
   
   for jn in range(1,nprof):
      res = Ngl.Resources()
      res.gsLineColor                           =  linecolors[jn]
      res.gsLineDashPattern                     =  linepatterns[jn]
      res.gsLineThicknessF                      =  linethicknesses[jn]
      
      line = Ngl.add_polyline(wks,xy,vx[jn],data_vy[jn],res)
       
   Ngl.draw(xy)
   
   wth2 = 0.15
   hei2 = 0.08
   for jn in range(0,2):
      if (jn == 0):
         x0 = vpx+wth-(wth2)
         y0 = vpy+hei2
         st = 0
         sp = 4
      elif (jn == 1):
         x0 = vpx+wth-(2*wth2+0.05)
         y0 = vpy+hei2
         st = 4
         sp = 7
      lres = Ngl.Resources()
      lres.vpWidthF            =  wth2
      lres.vpHeightF           =  hei2
      lres.lgLineColors        =  linecolors[st:sp]
      lres.lgLineThicknesses   =  linethicknesses[st:sp] 
      lres.lgDashIndexes       =  linepatterns[st:sp]
      lres.lgLineLabelsOn      =  False
      lres.lgLabelFontHeightF  =  0.01
      lg = Ngl.legend_ndc(wks,sp-st,titles[st:sp],x0,y0,lres)
   #tres = Ngl.Resources()
   #tres.txFontHeightF = 0.015
   #tres.txJust = 'CenterLeft'
   #y = vpy + 0.03
   #x0 = vpx
   #dx = 0.15
   #print nprof
   #print titles
   #for jn in range(0,nprof):
   #   tres.txFontColor = linecolors[jn]
   #   x = x0 + dx*jn
   #   Ngl.text_ndc(wks,titles[jn],x,y,tres)
   
   if (frame):
      Ngl.frame(wks)
def plot_psirr(vpx=0.2, vpy=0.8, hei=0.4, lbar=True, xlab=1,ylab=1):
   
   ##
   ## Colors for hydrothermal stream functions
   ##
   ld   = 550.
   dl   = 50
   
   res = Ngl.Resources()
   res.wkColorMap = 'WhiteBlue'
   #res.wkColorMap = 'BlueWhiteOrangeRed'
   Ngl.set_values(wks,res)
   
   ##
   ## Reverse colormap
   ##
   del res
   res = Ngl.Resources()
   cmap = Ngl.retrieve_colormap(wks)
   cmap[2:,:] = cmap[-1:1:-1,:]
   res.wkColorMap = cmap
   Ngl.set_values(wks,res)
         
   psi_levels = np.arange(-ld,0.,dl)
   
   if(1):
      
      if(1):
         
         
         del res
         res = Ngl.Resources()
         
         res.nglMaximize                      =  False
         res.nglPaperOrientation              =  'Portrait'
         res.nglFrame                         =  False
         res.nglDraw                          =  False
         
         res.cnFillOn                         =  True
         res.cnLinesOn                        =  True
         res.cnLineLabelsOn                   =  False
         res.cnLineLabelDensityF              =  2
         res.cnLineLabelBackgroundColor       =  -1
         res.cnLevelSelectionMode             =  'ExplicitLevels'
         res.cnLevels                         =  psi_levels
         
         if (lbar):
            res.pmLabelBarSide                   =  'Top'
            res.lbLabelBarOn                     =  True
            res.lbOrientation                    =  'Horizontal'
            res.pmLabelBarDisplayMode            =  'Always'
            res.pmLabelBarWidthF                 =  0.6
            res.pmLabelBarHeightF                =  0.03
            res.pmLabelBarOrthogonalPosF         =  0.07
            #res.pmLabelBarParallelPosF           =  1.1
            res.lbTitleString                    =  'Sv (10~S~9~N~kg/s)'
            res.lbLabelFontHeightF               =  0.012
            res.lbTitleFontHeightF               =  0.015
         else:
            res.pmLabelBarDisplayMode            =  'Never'
         
         res.sfXArray                         =  vx
         res.sfYArray                         =  vy
         
         res.trXMinF                          =  -3
         res.trXMaxF                          =  55
         res.trYMinF                          =  250
         res.trYMaxF                          =  360
         
         res.tiXAxisString                    =  'Latent heat [kJ/kg]'
         res.tiYAxisString                    =  'Dry static energy [kJ/kg]'
         res.tiMainString                     =  title
         res.tiMainOffsetYF                   =  -0.045
         res.tiMainFontHeightF                =  0.015
         
         if (xlab == 1):
            res.tiXAxisOn                     =  True
            res.tmXBLabelsOn                  =  True
            res.tiXAxisSide                   =  'Bottom'
         elif (xlab == -1):
            res.tiXAxisOn                      =  True
            res.tmXBLabelsOn                  =  False
            res.tmXTLabelsOn                  =  True
            res.tiXAxisSide                   =  'Top'
         elif (xlab == 0):
            res.tiXAxisOn                     =  False
            res.tmXBLabelsOn                  =  False
            res.tmXTLabelsOn                  =  False
            
         if (ylab == 1):
            res.tiYAxisOn                     =  True
            res.tmYLLabelsOn                  =  True
            res.tmYRLabelsOn                  =  False
            res.tiYAxisSide                   =  'Left'
         elif (ylab == -1):
            res.tiYAxisOn                     =  True
            res.tmYLLabelsOn                  =  False
            res.tmYRLabelsOn                  =  True
            res.tiYAxisSide                   =  'Right'
         elif (ylab == 0):
            res.tiYAxisOn                     =  False
            res.tmYLLabelsOn                  =  False
            res.tmYRLabelsOn                  =  False
            
         res.vpWidthF                         =  hei
         res.vpHeightF                        =  hei
         
         res.vpYF                             =  vpy
         res.vpXF                             =  vpx
         
         lsmooth = False
         if (lsmooth):
            sigma = 2
            order = 0
            for ji in range(0,2):
               ndimage.filters.gaussian_filter(zplot[:,:],sigma,order=order,\
                                               output=zplot[:,:],\
                                               mode='reflect', cval=0.0)
         
         cont = Ngl.contour(wks,zplot[:,:],res)
         
         ## Clausius-Clapeyron line
         vy_cc = np.linspace(240,360,101)
         press = 101300.
         vx_cc,es = cclap(vy_cc*1000/1004.,press)
         vx_cc = 2.5 * 10**3 * vx_cc
         #ccstring = 'C-C, RH=100%'
         lres = Ngl.Resources()
         lres.gsLineDashPattern         =  15  
         lres.gsLineLabelFontHeightF    =  0.009
         lres.gsLineThicknessF          =  2
         #lres.gsLineLabelString         =  ccstring
         line = Ngl.add_polyline(wks,cont,vx_cc,vy_cc,lres)
         
         ## MSE profile
         lres = Ngl.Resources()
         lres.gsLineDashPattern         =  1
         lres.gsLineThicknessF          =  3  
         line = Ngl.add_polyline(wks,cont,vlh,vdse,lres)
         
         Ngl.draw(cont)
def plot_dots(wks,vx,vy,vpx=0.2,vpy=0.8,hei=0.3,xlab='',ylab='',\
              prof=False,lreg=True,\
              dotcolors = ['red','blue','black','green','yellow'],\
              dotsizes=[1,1,1,1,1],
              dotindices=[9,6,2,3,4,5],\
              titles=[''],\
              xmin=0.,xmax=1000.,ymin=0.,ymax=100.,\
              frame=True):
   """
   """
   
   ndots = len(vy)
   
   print dotcolors
   print dotindices
   print dotsizes
   
   dotcolors = fill_blanks(dotcolors,ndots)
   dotindices = fill_blanks(dotindices,ndots)
   dotsizes = fill_blanks(dotsizes,ndots)
   
   
   res = Ngl.Resources()
   res.nglFrame = False
   res.nglPaperOrientation = 'Portrait' 
   res.nglMaximize = False
   res.nglDraw = False
   
   res.xyMarkLineMode = 'Markers'
   res.xyMonoMarkerColor = False
   res.xyMarkerColors = dotcolors
   res.xyMarkerThicknesses = 2
   res.xyMarkerSizes = np.array(dotsizes) * 0.01
   res.xyMarkers = dotindices
   
   res.tiYAxisString = ylab
   res.tiXAxisString = xlab
   
   res.trXMinF = xmin
   res.trXMaxF = xmax
   res.trYMinF = ymin
   res.trYMaxF = ymax
   
   if(prof):
      wth = hei * 1./np.sqrt(2.)
   else:
      wth = hei * np.sqrt(2.)
   res.vpXF = vpx
   res.vpYF = vpy
   res.vpHeightF = hei
   res.vpWidthF = wth
   
   print vx
   print vy
   print xmin,xmax,ymin,ymax
   xy = Ngl.xy(wks,np.transpose(np.vstack((vx,vx))),np.transpose(np.vstack((vy,vy))),res)
   
   if (lreg):
      ## Fit line
      k,m,cor,sig,err = stats.linregress(vx,vy)
      vx = np.linspace(xmin,xmax,10)
      vy = vx * k + m
      
      # Plot line
      lres = Ngl.Resources()
      lres.gsLineColor = 'black'
      lres.gsLineDashPattern = 1
      lres.gsLineThicknessF = 2
      line = Ngl.add_polyline(wks,xy,vx,vy,lres)
      
      # Print correlations
      text = 'R = '+repr(cor)
      if (sig*100. < 1.):
         text = text + ' (99% sign.)'
      elif (sig*100. < 5.):
         text = text + ' (95% sign.)'
      else:
         text = text + ' (not sign.)'
      tres = Ngl.Resources()
      tres.txFontHeightF = 0.01
      tres.txJust = 'BottomLeft'
      tres.txFontColor = 'black'
      Ngl.text_ndc(wks,text,vpx+wth,vpy-hei-0.03,tres)
      
   Ngl.draw(xy)
   
   #wth2 = 0.15
   #hei2 = 0.08
   #for jn in range(0,2):
   #   if (jn == 0):
   #      x0 = vpx+wth-(wth2)
   #      y0 = vpy+hei2
   #      st = 0
   #      sp = 4
   #   elif (jn == 1):
   #      x0 = vpx+wth-(2*wth2+0.05)
   #      y0 = vpy+hei2
   #      st = 4
   #      sp = 7
   #   lres = Ngl.Resources()
   #   lres.vpWidthF            =  wth2
   #   lres.vpHeightF           =  hei2
   #   lres.lgLineColors        =  linecolors[st:sp]
   #   lres.lgLineThicknesses   =  linethicknesses[st:sp] 
   #   lres.lgDashIndexes       =  linepatterns[st:sp]
   #   lres.lgLineLabelsOn      =  False
   #   lres.lgLabelFontHeightF  =  0.01
   #   lg = Ngl.legend_ndc(wks,sp-st,titles[st:sp],x0,y0,lres)
   if (frame):
      Ngl.frame(wks)
Exemplo n.º 17
0
lbres.lbTitleOffsetF       = 0.00

#---Create the labelbar
labels  = ["0","1","2","3"]
lbid = Ngl.labelbar_ndc (wks,len(labels),labels,0.0,0.,lbres)  

#
# Create some annotation resources indicating how we want to
# attach the labelbar to the plot. The default is the center
# of the plot. Below amOrthogonalPosF is set to move the
# labelbar down and outside the plot.
#                                                                 
amres                  = Ngl.Resources()
amres.amOrthogonalPosF =  0.7
annoid = Ngl.add_annotation(plot,lbid,amres)

txres = Ngl.Resources()
txres.txFontHeightF = 0.01
txres.txJust        = "TopRight"
txres.txPerimOn     = True
txid  = Ngl.add_text(wks,plot,flnm,res.mpMaxLonF,res.mpMaxLatF,txres)

#---This will resize plot so it and the labelbar fit in the frame.
Ngl.maximize_plot(wks, plot)

#---Drawing the original map also draws the attached labelbar.
Ngl.draw(plot)
Ngl.frame(wks)

Ngl.end()
Exemplo n.º 18
0
res.trXMaxF = 20.0
res.trXMinF = 0.0
res.trYMinF = 0.0

#
# Width, height, and position of X axis. Every time the
# axis is redrawn, the vpYF resource will be changed to change
# the position.
#
res.vpXF = 0.2
res.vpYF = 0.9
res.vpHeightF = 0.02
res.vpWidthF = 0.7

xy = Ngl.xy(wks, x, y, res)
Ngl.draw(xy)

#
# Draw 9 different plots demonstrating control of the bottom x-axis
# tickmark labels using the XBFormat string resource. See the description
# of the Floating Point Format Specification scheme in the HLU reference
# guide to learn about the semantics and syntax of the format string:
#
#    http://www.ncl.ucar.edu/Document/Graphics/format_spec.shtml
#
# There are links to this description in the TickMark reference pages under
# the entries for the format string resources (XBFormat, for example).
#

sres = Ngl.Resources()
Exemplo n.º 19
0
Ngl.overlay(map_plot,line_contour_plot)
Ngl.overlay(map_plot,vector_plot)

#
# Change the title.
#
srlist = Ngl.Resources()
srlist.tiMainString = "vectors, line, and filled contours"
Ngl.set_values(map_plot,srlist)

# 
# Draw the map plot, which now contains the vectors and
# filled/line contours.
#
Ngl.maximize_plot(wks,map_plot)    # Maximize size of plot in frame.
Ngl.draw(map_plot)
Ngl.frame(wks)

#
# Change the title.
#
srlist.tiMainString = "line and filled contours"
Ngl.set_values(map_plot,srlist)

#
# Remove the vector plot and redraw. We should now
# just see the line contours and filled contours.
#
Ngl.remove_overlay(map_plot,vector_plot,0)
Ngl.draw(map_plot)
Ngl.frame(wks)
Exemplo n.º 20
0
taus_above_zero = Numeric.take(taus,ind_above_zero)
px[0::5] = (taus_above_zero - dx/2.).astype(taus.typecode())
px[1::5] = (taus_above_zero - dx/2.).astype(taus.typecode())
px[2::5] = (taus_above_zero + dx/2.).astype(taus.typecode())
px[3::5] = (taus_above_zero + dx/2.).astype(taus.typecode())
px[4::5] = (taus_above_zero - dx/2.).astype(taus.typecode())
py[0::5] = rain_res.trYMinF
py[1::5] = Numeric.take(rain03,ind_above_zero)
py[2::5] = Numeric.take(rain03,ind_above_zero)
py[3::5] = rain_res.trYMinF
py[4::5] = rain_res.trYMinF
polyg    = Ngl.add_polygon(wks,rainhist,px,py,pgres)

#
# For the outlines, we don't need the fifth point.
#
polyl    = Ngl.add_polyline(wks,rainhist,px,py,pgres)
temptmsz  = Ngl.xy(wks,taus,tempht,tempsfc_res)

# ---------------------- overlay, draw, and advance frame ---------
Ngl.overlay(rhfill,templine)   # Overlay temperature contour on rh plot.
Ngl.overlay(rhfill,windlayer)  # Overlay windbarbs on rh plot.

Ngl.draw(rhfill)
Ngl.draw(rainhist)
Ngl.draw(temptmsz)
Ngl.frame(wks)

Ngl.end()
Exemplo n.º 21
0
if Animate:
#
# Loop through time (the rightmost dimension of "T") and generate
# a contour/map plot at each time step.
#
  for nt in range(1,T.shape[0]):
    print "plotting day ",nt+1
#
# There's no need to recreate the contour/map plot since
# the only thing changing is the data and the title, so
# use Ngl.set_values to change the necessary two resources.
# Using Ngl.set_values will result in slightly faster code.
#
    srlist2.sfDataArray   = T[nt,:,:]  
    srlist1.lbTitleString = "Day " + str(nt+1)

    Ngl.set_values(map.contour,srlist1)      # changing labelbar string
    Ngl.set_values(map.sffield,srlist2)      # changing data

#
# Draw new contour/map plot and advance the frame.
#
    Ngl.draw(map.base)
    Ngl.frame(wks)
else:
  print "Only one frame was generated."
  print "Set 'Animate' to True if you want to generate all 31 frames."

Ngl.end()
Exemplo n.º 22
0
def simple_contour(lons, lats, vals, cfg):
    """
    Generate a simple contour plot, okay 
    """
    tmpfp = tempfile.mktemp()
    rlist = Ngl.Resources()
    if cfg.has_key("wkColorMap"):
        rlist.wkColorMap = cfg['wkColorMap']
    #rlist.wkOrientation = "landscape"

    # Create Workstation
    wks = Ngl.open_wks( "ps",tmpfp,rlist)
 
    # Create Analysis
    if cfg.has_key("_conus"):
        analysis, res = grid_conus(lons, lats, vals)
    elif cfg.get("_northeast", False):
        analysis, res = grid_northeast(lons, lats, vals)
    elif cfg.get("_midwest", False):
        analysis, res = grid_midwest(lons, lats, vals)
    else:
        analysis, res = grid_iowa(lons, lats, vals)
    analysis = numpy.transpose(analysis)

    for key in cfg.keys():
        if key == 'wkColorMap' or key[0] == "_":
            continue
        setattr(res, key, cfg[key])
    if cfg.has_key("_MaskZero"):
        mask = numpy.where( analysis <= 0.02, True, False)
        analysis = numpy.ma.array(analysis, mask=mask)

    # Generate Contour
    if numpy.min(analysis) == numpy.max(analysis):
        if cfg.has_key("_conus"):
            res = conus()
        elif cfg.has_key("_midwest"):
            res = midwest()
        else:
            res = iowa()
        contour = Ngl.map(wks, res)
    else:
        contour = Ngl.contour_map(wks,analysis,res)

    if cfg.has_key("_showvalues") and cfg['_showvalues']:
        txres              = Ngl.Resources()
        txres.txFontHeightF = 0.012
        for i in range(len(lons)):
            if cfg.has_key("_valuemask") and cfg['_valuemask'][i] is False:
                continue
            Ngl.add_text(wks, contour, cfg["_format"] % vals[i], 
                     lons[i], lats[i],txres)

    Ngl.draw( contour )

    watermark(wks)
    manual_title(wks, cfg)
    vpbox(wks)
    Ngl.frame(wks)
    del wks
    return tmpfp
Exemplo n.º 23
0
def simple_grid_fill(xaxis, yaxis, grid, cfg):
    """
    Generate a simple plot, but we already have the data!
    """
    tmpfp = tempfile.mktemp()
    rlist = Ngl.Resources()
    if cfg.has_key("wkColorMap"):
        rlist.wkColorMap = cfg['wkColorMap']
    #rlist.wkOrientation = "landscape"

    # Create Workstation
    wks = Ngl.open_wks( "ps",tmpfp,rlist)
    if cfg.has_key("_conus"):
        res = conus()
    elif cfg.get("_midwest", False):
        res = midwest()
    elif cfg.get("_louisiana", False):
        res = louisiana2()
    else:
        res = iowa2()

    if cfg.has_key("_MaskZero"):
        mask = numpy.where( grid <= 0.01, True, False)
        grid = numpy.ma.array(grid, mask=mask)
 
    for key in cfg.keys():
        if key == 'wkColorMap' or key[0] == "_":
            continue
        setattr(res, key, cfg[key])
    res.sfXArray = xaxis
    res.sfYArray = yaxis
    # Generate Contour
    contour = Ngl.contour_map(wks,grid,res)

#    if cfg.has_key("_showvalues") and cfg['_showvalues']:
#        txres              = Ngl.Resources()
#        txres.txFontHeightF = 0.012
#        for i in range(len(xaxis)):
#            if cfg.has_key("_valuemask") and cfg['_valuemask'][i] is False:
#                continue
#            Ngl.add_text(wks, contour, cfg["_format"] % vals[i], 
#                     lons[i], lats[i],txres)

    if cfg.has_key('_drawx'):
        for lo, la in zip(cfg['_drawx'], cfg['_drawy']):
            #print 'Adding Polygon!'
            plres  = Ngl.Resources() 
            plres.gsEdgesOn   = True      
            plres.gsEdgeColor = "black"
            plres.gsFillColor = -1
            Ngl.add_polygon(wks, contour, lo, la, plres)




    if cfg.get("_showvalues", False):
        txres              = Ngl.Resources()
        txres.txFontHeightF = 0.012
        (rows, cols) = numpy.shape(xaxis)
        for row in range(rows):
            for col in range(cols):
                if xaxis[row,col] > res.mpMinLonF and xaxis[row,col] < res.mpMaxLonF and yaxis[row,col] > res.mpMinLatF and yaxis[row,col] < res.mpMaxLatF:
                    Ngl.add_text(wks, contour, cfg["_format"] % grid[row, col], 
                                 xaxis[row, col], yaxis[row, col], txres)
    Ngl.draw(contour)

    if cfg.get('_watermark', True):
        watermark(wks)
    manual_title(wks, cfg)
    Ngl.frame(wks)
    del wks

    return tmpfp
Exemplo n.º 24
0
def simple_valplot(lons, lats, vals, cfg):
    """
    Generate a simple plot of values on a map!
    """
    tmpfp = tempfile.mktemp()

    rlist = Ngl.Resources()
    if cfg.has_key("wkColorMap"):
        rlist.wkColorMap = cfg['wkColorMap']
    #rlist.wkOrientation = "landscape"

    # Create Workstation
    wks = Ngl.open_wks( "ps",tmpfp,rlist)
    if cfg.has_key("_conus"):
        res = conus()
    elif cfg.get("_midwest", False):
        res = midwest()
    else:
        res = iowa()
    if cfg.has_key("_spatialDataLimiter"):
        xmin, ymin, xmax, ymax = [ min(lons), min(lats), 
                                        max(lons), max(lats) ]
        res.mpMinLonF    = xmin - 0.25
        res.mpMaxLonF    = xmax + 0.25
        res.mpMinLatF    = ymin - 0.25
        res.mpMaxLatF    = ymax + 0.25
        res.mpCenterLonF = (xmax + xmin)/2.0  # Central Longitude
        res.mpCenterLatF = (ymax + ymin)/2.0  # Central Latitude
    res.mpOutlineDrawOrder = "PreDraw"
    res.mpUSStateLineColor = 10
    res.mpNationalLineColor = 10

    for key in cfg.keys():
        if key == 'wkColorMap' or key[0] == "_":
            continue
        setattr(res, key, cfg[key])

    plot = Ngl.map(wks, res)
    if cfg.has_key("_stationplot"):
        Ngl.wmsetp("col", 1)
        Ngl.wmsetp("ezf",1)
        if cfg.has_key("_removeskyc"):
            Ngl.wmsetp("WBC", 0.001) # Get rid of sky coverage
            Ngl.wmsetp("WBF", 0) # Put barb at center, no sky coverage
            Ngl.wmsetp("WBR", 0.001) # Size of calm circle
        #Ngl.wmsetp("WBL", 0.18) # Size of labels
        #Ngl.wmsetp("WBS", 0.029) # Size of wind barb shaft
        Ngl.wmstnm(wks, lats, lons, vals)
    else:
        txres              = Ngl.Resources()
        txres.txFontHeightF = 0.014
        txres.txJust        = "BottomCenter"
        for i in range(len(lons)):
            Ngl.add_text(wks, plot, cfg.get("_format",'%s') % vals[i], 
                      lons[i], lats[i],txres)
    if cfg.has_key("_labels"):
        txres               = Ngl.Resources()
        txres.txFontHeightF = 0.008
        txres.txJust        = "TopCenter"
        txres.txFontColor   = 14
        for i in range(len(lons)):
            Ngl.add_text(wks, plot, cfg["_labels"][i], 
                     lons[i], lats[i],txres)

    watermark(wks)
    manual_title(wks, cfg)
    Ngl.draw(plot)
    vpbox(wks)
    Ngl.frame(wks)
    del wks

    return tmpfp

    vpbox(wks)
Exemplo n.º 25
0
cnres.nglMaximize = True  # Maximize plot in frame
cnres.nglDraw = False  # Don't draw plot
cnres.nglFrame = False  # Don't advance the frame

cnres.cnFillOn = True  # Turn on contour fill
cnres.cnFillPalette = cmap[:-3, :]

cnres.cnLevelSelectionMode = "ManualLevels"
cnres.cnLevelSpacingF = nice_spc
cnres.cnMinLevelValF = nice_min
cnres.cnMaxLevelValF = nice_max

cnres.lbOrientation = "Vertical"  # Default is horizontal

cnres.tiMainString = "This is a title"
cnres.tiXAxisString = "X axis"
cnres.tiYAxisString = "Y axis"

contourplot = Ngl.contour(wks, data, cnres)

# Draw plot with viewport and bounding boxes.
Ngl.draw(contourplot)
draw_bb_box(wks, contourplot)
draw_vp_box(wks, contourplot)

# Advance frame.
Ngl.frame(wks)

Ngl.end()
Exemplo n.º 26
0
Arquivo: ngl11p.py Projeto: yyr/pyngl
patterns[:] = -1

for i in xrange(len(levels)):
  if (levels[i] <= -6.):
    patterns[i] = 5
  else:
    if (levels[i] > 0.):
      patterns[i] = 17.
patterns[-1]  = 17 # last pattern

rlist = Ngl.Resources()
rlist.cnFillPatterns = patterns
rlist.cnFillScaleF = 0.8
Ngl.set_values(contour,rlist)

Ngl.draw(contour)  # Draw the contour plot.

txres               = Ngl.Resources()    # Annotate plot with some text.
txres.txFontHeightF = 0.015
Ngl.text_ndc(wks,"~F25~U Component",  .270,.815,txres)
Ngl.text_ndc(wks,"~F25~(m-s~S~-1~N~)",.765,.815,txres)


txres.txFontHeightF = 0.025   # Label right Y axis.
txres.txAngleF      = 90.
Ngl.text_ndc(wks,"~F25~Height (km)",.89,.5,txres)

Ngl.frame(wks) # Advance the frame.

#----------- Begin second plot -----------------------------------------
Exemplo n.º 27
0
#
wks_type = "png"
wks = Ngl.open_wks(wks_type, "skewt2")

skewtOpts = Ngl.Resources()
skewtOpts.sktWindSpeedMissingV = -999.  # Missing value for
# wind speed.
skewtOpts.sktWindDirectionMissingV = -999.  # Missing value for
# wind direction.
skewtOpts.sktColoredBandsOn = True  # Default is False
skewtOpts.tiMainString = "Raob Data; No Winds"

skewt_bkgd = Ngl.skewt_bkg(wks, skewtOpts)
skewt_data = Ngl.skewt_plt(wks, skewt_bkgd, p, tc, tdc, z,  \
                                wspd, wdir, skewtOpts)
Ngl.draw(skewt_bkgd)
Ngl.draw(skewt_data)
Ngl.frame(wks)

#
#  Plot 2 - Create background skew-T and plot sounding and winds.
#
wspd = Ngl.fspan(0., 150., nlvl)  # wind speed at each level.
wdir = Ngl.fspan(0., 360., nlvl)  # wind direction.

#
#  Create a few artificial "pibal" reports.
#
hght = numpy.array([1500., 6000., 10000., 15000.], 'f')  # Meters
hspd = numpy.array([50., 27., 123., 13.], 'f')
hdir = numpy.array([315., 225., 45., 135.], 'f')
Exemplo n.º 28
0
if Animate:
    #
    # Loop through time (the rightmost dimension of "T") and generate
    # a contour/map plot at each time step.
    #
    for nt in range(1, T.shape[0]):
        print("plotting day {}".format(nt + 1))
        #
        # There's no need to recreate the contour/map plot since
        # the only thing changing is the data and the title, so
        # use Ngl.set_values to change the necessary two resources.
        # Using Ngl.set_values will result in slightly faster code.
        #
        srlist2.sfDataArray = T[nt, :, :]
        srlist1.lbTitleString = "Day {}".format(nt + 1)

        Ngl.set_values(map.contour, srlist1)  # changing labelbar string
        Ngl.set_values(map.sffield, srlist2)  # changing data

        #
        # Draw new contour/map plot and advance the frame.
        #
        Ngl.draw(map.base)
        Ngl.frame(wks)
else:
    print("Only one frame was generated.")
    print("Set 'Animate' to True if you want to generate all 31 frames.")

Ngl.end()
Exemplo n.º 29
0
if(not os.path.exists(filename)):
  print("You do not have the necessary shapefiles to run this example.")
  print("The comments at the top of this script tell you how to get the files.")
  sys.exit()

f = Nio.open_file(filename, "r")

#---Read data off shapefile
mrb_lon = f.variables["x"][:]
mrb_lat = f.variables["y"][:]

#---Add MRB outlines to map
lines = add_mrb_lines(wks,map,mrb_lat,mrb_lon)

#---Draw plot and advance frame. MRB outlines will be included.
Ngl.draw(map)
Ngl.frame(wks)

#
# Get the approximate index values that contain the area
# we don't want to mask.
#
# This will make our gc_inout loop below go faster, because we're
# not checking every single lat/lon point to see if it's inside
# or outside the area of interest.
#
min_mrb_lat = min(mrb_lat)
max_mrb_lat = max(mrb_lat)
min_mrb_lon = min(mrb_lon)
max_mrb_lon = max(mrb_lon)
Exemplo n.º 30
0
Arquivo: map2.py Projeto: yyr/pyngl
#
# Tropic of capricorn. Note: currently there is a limit on the 
# number of characters in a line label that prevents the '|'
# character from being used between each letter in a label 
# of this length.
#
gsres.gsLineLabelString = "tr|o|p|ic of c|a|p|r|i|c|o|rn"

py[0:2] = [-23.5, -23.5]
Ngl.polyline(wks,map,px[:2],py[:2],gsres)

# Arctic circle

gsres.gsLineLabelString = "a|r|c|t|i|c c|i|r|c|l|e"

py[0:2] = [66.5, 66.5]
Ngl.polyline(wks,map,px[:2],py[:2],gsres)

# Antarctic circle

gsres.gsLineLabelString = "|a|n|t|a|r|c|t|i|c c|i|r|c|l|e"

py[0:2] = [-66.5, -66.5]
Ngl.polyline(wks,map,px[:2],py[:2],gsres)

Ngl.draw(map)                         # Now draw the map and 
Ngl.frame(wks)                        # advance the frame.

Ngl.end()
Exemplo n.º 31
0
tstrings.append(Ngl.add_text(wks,plot,"CH~B~4~N~ + N~B~2~N~O",2,-.97,txres))
tstrings.append(Ngl.add_text(wks,plot,"Mineral Dust",3,-2.4,txres))
tstrings.append(Ngl.add_text(wks,plot,"Continental ice",4,-4.35,txres))
tstrings.append(Ngl.add_text(wks,plot,"+ sea level",4,-4.6,txres))
tstrings.append(Ngl.add_text(wks,plot,"Vegetation",5,-1.77,txres))
tstrings.append(Ngl.add_text(wks,plot,"Orbital",6,0.45,txres))

#
# Draw two vertical strings on left side of plot.
#
txres.txFontHeightF = 0.009
txres.txAngleF      = 90.
Ngl.text_ndc(wks,"cooling",0.11,0.835,txres)
Ngl.text_ndc(wks,"warming",0.11,0.95,txres) 

Ngl.draw(plot)    # Draw the plot; all of the attached lines and
                  # text strings will also get drawn.

#========================================================================== 
print "Beginning robinson map projection section"

Ngl.define_colormap(wks,"wh-bl-gr-ye-re")

mpres             = Ngl.Resources()     # New resource list for map plots.

mpres.nglMaximize = False
mpres.nglFrame    = False
mpres.vpWidthF    = 0.5
mpres.vpHeightF   = 0.32
mpres.vpXF        = .11
mpres.vpYF        = .75
Exemplo n.º 32
0
max_cont = 100.0
min_cont = 0.0

res.cnLevelSelectionMode = "ManualLevels"
res.cnMinLevelValF = min_cont
res.cnMaxLevelValF = max_cont
res.cnLevelSpacingF = 2.5
res.cnLineThicknessF = 2.5

# create relative humidity plot for analysis data

rh_plot = ngl.contour_map(wks, rh, res)

ngl.maximize_plot(wks, rh_plot)
ngl.draw(rh_plot)
ngl.frame(wks)

ngl.destroy(wks)
del res

###################################################################################################

# open forecast file

f_fili = "GFS_forecast_%s_%s.nc" % (init_dt[:8], init_dt[8:10])
forecast = nio.open_file(diri + f_fili)

# loop through forecast times

for i in range(0, len(fore)):
Exemplo n.º 33
0
    res.cnLineColor = "steelblue1"

    res.cnLevelSelectionMode = "ManualLevels"
    res.cnMinLevelValF = -85.0
    res.cnMaxLevelValF = 115.0
    res.cnLevelSpacingF = 100.0

    # plot ITD and overlay on colour contours

    ws_plot2 = ngl.contour(wks, ws, res)

    ngl.overlay(ws_plot, ws_plot2)

ngl.overlay(ws_plot, uv_plot)
ngl.maximize_plot(wks, ws_plot)
ngl.draw(ws_plot)
ngl.frame(wks)

ngl.destroy(wks)
del res
del vcres

###################################################################################################

# open forecast file

f_fili = "GFS_forecast_%s_%s.nc" % (init_dt[:8], init_dt[8:10])
forecast = nio.open_file(diri + f_fili)

# loop through forecast times
Exemplo n.º 34
0
        #添加框框#
        # 注意必须将frame和draw资源设置为手动
        res = Ngl.Resources()
        res.nglFrame            = False   # Don't draw plot or advance frame
        res.nglDraw             = False   # until we add shapefile outlines.
        # 注意必须先转换成一维的数组
        lnres = Ngl.Resources()
        lnres.gsLineColor="red"
        lnres.gsLineThicknessF=5.0
        lnres.gsLineDashPattern=0

        lon=np.ravel([80,100,100,80,80])
        lat=np.ravel([50,50,0,0,50])
        lnid = Ngl.add_polyline(wks,plot,lon,lat,lnres)
        # 手动画图和翻页
        Ngl.draw(plot)
        Ngl.frame(wks) # 翻页操作
    vp # view port(vp) 和视觉有关的属性
        # make plot bigger
        res.vpXF = 0.1
        res.vpYF = 0.9
        res.vpWidthF = 0.8
        res.vpHeightF = 0.8


# 画地图的等值线图
contour = Ngl.contour_map
Ngl.draw(contour) # 画到画布上

Ngl.frame(wks)
# 循环画图时特别重要, The maximum number of open PostScript workstations is fifteen.
Exemplo n.º 35
0
bres.tmXBLabelFontHeightF    = 0.015        # Make labels smaller. This
                                            # will affect Y labels too.

#---Set the values and labels for the Y axis of blank plot.
bres.tmYLMode                = "Explicit"
bres.tmYLValues              = lat_values
bres.tmYLLabels              = lat_labels

#---Align four corners of both plots, that is, don't do data transformation
bres.tfDoNDCOverlay          = True  

#---Create the blank plot.
blank = Ngl.blank_plot(wks,bres)

#---Draw blank plot for debugging purposes.
#Ngl.draw(blank)
#Ngl.frame(wks)

#---Overlay blank plot on existing map plot.
Ngl.overlay(map.base,blank)

#---Resize map so it fits within frame
Ngl.maximize_plot(wks, map)

#---Drawing the original map also draws the overlaid blank plot
Ngl.draw(map)
Ngl.frame(wks)


Ngl.end()
Exemplo n.º 36
0
    res.mpMinLatF = lattr
    res.mpMaxLatF = latbl
    res.mpOutlineBoundarySets = "AllBoundaries"
    res.mpNationalLineColor = -1
    res.mpNationalLineThicknessF = 2.0
    res.mpGeophysicalLineColor = -1
    res.mpGeophysicalLineThicknessF = 2.0
    res.mpGridLatSpacingF = 5.0
    res.mpGridLonSpacingF = 5.0
    res.mpGridLineThicknessF = 2.0
    res.mpGridLineColor = colour
    res.cnMonoLineColor = True

    grid_plot = ngl.map(wks, res)

    ngl.maximize_plot(wks, grid_plot)
    ngl.draw(grid_plot)
    ngl.frame(wks)

    ngl.destroy(wks)
    del res

    os.system('mogrify -trim grid_' + colour + '_' + region + '.png')

#   if region == "WA" or region == "unknownWA":
#      os.system('mogrify -trim grid_'+colour+'_'+region+'.png')
#      os.system('mogrify -resize 886x600 grid_'+colour+'_'+region+'.png')
#   elif region == "EA" or region == "unknownEA":
#      os.system('mogrify -trim grid_'+colour+'_'+region+'.png')
#      os.system('mogrify -resize 600x733 grid_'+colour+'_'+region+'.png')
def plot_psirr_lines(vpx=0.2, vpy=0.8, hei=0.4, xlab=1,ylab=1):
   
   psi_levels = np.array([-500,-50])
   
   if(1):
      
      if(1):
         
         res = Ngl.Resources()
         
         res.nglMaximize                      =  False
         res.nglPaperOrientation              =  'Portrait'
         res.nglFrame                         =  False
         res.nglDraw                          =  False
         
         res.cnFillOn                         =  False
         res.cnLinesOn                        =  True
         res.cnLineLabelsOn                   =  True
         res.cnLineLabelDensityF              =  2
         res.cnLineLabelBackgroundColor       =  -1
         res.cnLevelSelectionMode             =  'ExplicitLevels'
         res.cnLevels                         =  psi_levels
         res.cnMonoLineColor                  =  True
         res.cnLineColor                      =  'blue'
         res.cnLineThicknessF                 =  2
         res.cnInfoLabelOn                    =  False
         
         res.sfXArray                         =  vx
         res.sfYArray                         =  vy
         
         res.trXMinF                          =  -3
         res.trXMaxF                          =  55
         res.trYMinF                          =  250
         res.trYMaxF                          =  360
         
         res.tiXAxisString                    =  'Latent heat [kJ/kg]'
         res.tiYAxisString                    =  'Dry static energy [kJ/kg]'
         res.tiMainString                     =  title
         
         if (xlab == 1):
            res.tiXAxisOn                     =  True
            res.tmXBLabelsOn                  =  True
            res.tiXAxisSide                   =  'Bottom'
         elif (xlab == -1):
            res.tiXAxisOn                      =  True
            res.tmXBLabelsOn                  =  False
            res.tmXTLabelsOn                  =  True
            res.tiXAxisSide                   =  'Top'
         elif (xlab == 0):
            res.tiXAxisOn                     =  False
            res.tmXBLabelsOn                  =  False
            res.tmXTLabelsOn                  =  False
            
         if (ylab == 1):
            res.tiYAxisOn                     =  True
            res.tmYLLabelsOn                  =  True
            res.tmYRLabelsOn                  =  False
            res.tiYAxisSide                   =  'Left'
         elif (ylab == -1):
            res.tiYAxisOn                     =  True
            res.tmYLLabelsOn                  =  False
            res.tmYRLabelsOn                  =  True
            res.tiYAxisSide                   =  'Right'
         elif (ylab == 0):
            res.tiYAxisOn                     =  False
            res.tmYLLabelsOn                  =  False
            res.tmYRLabelsOn                  =  False
            
         res.vpWidthF                         =  hei
         res.vpHeightF                        =  hei
         
         res.vpYF                             =  vpy
         res.vpXF                             =  vpx
         
         lsmooth = False
         if (lsmooth):
            sigma = 2
            order = 0
            for ji in range(0,2):
               ndimage.filters.gaussian_filter(zplot1[:,:],sigma,order=order,\
                                               output=zplot[:,:],\
                                               mode='reflect', cval=0.0)
         
         cont1 = Ngl.contour(wks,zplot1[:,:],res)
         
         ## Clausius-Clapeyron line
         vy_cc = np.linspace(240,360,101)
         press = 101300.
         vx_cc,es = cclap(vy_cc*1000/1004.,press)
         vx_cc = 2.5 * 10**3 * vx_cc
         #ccstring = 'C-C, RH=100%'
         lres = Ngl.Resources()
         lres.gsLineDashPattern         =  15  
         lres.gsLineLabelFontHeightF    =  0.009
         lres.gsLineThicknessF          =  3
         #lres.gsLineLabelString         =  ccstring
         line = Ngl.add_polyline(wks,cont1,vx_cc,vy_cc,lres)
         
         ## MSE profiles
         lres = Ngl.Resources()
         lres.gsLineDashPattern         =  1
         lres.gsLineThicknessF          =  7  
         lres.gsLineColor               =  'blue'
         line = Ngl.add_polyline(wks,cont1,vlh1,vdse1,lres)
         
         
         res.cnLineColor = 'red'
         
         cont2 = Ngl.contour(wks,zplot2[:,:],res)
         
         ## MSE profiles
         lres = Ngl.Resources()
         lres.gsLineDashPattern         =  1
         lres.gsLineThicknessF          =  7  
         lres.gsLineColor               =  'red'
         line = Ngl.add_polyline(wks,cont2,vlh2,vdse2,lres)
         
         Ngl.overlay(cont2,cont1)
         Ngl.draw(cont2)
Exemplo n.º 38
0
# and that the appropriate tickmarks were turned off in certain areas,
# these two plots should look like one plot, but with two separate
# curves and two separate Y axes.
#
# Also, change the main title of the first plot to reflect that
# we have two vars here, and remove the main title from the second plot.
#
sres = Ngl.Resources()
sres.tiMainString = "Two variables with individual scales"
Ngl.set_values(plot1, sres)

sres = Ngl.Resources()
sres.tiMainOn = False
Ngl.set_values(plot2, sres)

Ngl.draw(plot1)
Ngl.draw(plot2)
Ngl.frame(wks)

#
# Just to show it can be done, add the second plot as an annotation
# of the first plot.
#
sres = Ngl.Resources()
sres.amZone = 0  # '0' means centered over base plot.
sres.amResizeNotify = True
anno = Ngl.add_annotation(plot1, plot2, sres)

#
# Change the main title to reflect this is an added annotation.
#
def plot_dots(vpx=0.2,vpy=0.8,hei=0.3,wth=0.4,xlab='',ylab='',legend=True, yrev=False, lab=''):
   
   
   
   res = Ngl.Resources()
   res.nglFrame = False
   res.nglPaperOrientation = 'Portrait' 
   res.nglMaximize = False
   res.nglDraw = False
   
   res.xyMarkLineMode = 'Markers'
   res.xyMonoMarkerColor = True
   res.xyMarkerColor = 'black'
   res.xyMarkerThicknessF = 2
   res.xyMarkerSizeF = 0.01
   
   res.tiYAxisString = ylab
   res.tiXAxisString = xlab
   res.tiMainString = lab
   res.tiMainFontHeightF = 0.015
   res.tiMainOffsetYF = -hei/4.7
   res.tiMainOffsetXF = -wth * 2./5.
   
   res.trXMinF = xmin
   res.trXMaxF = xmax
   res.trYMinF = ymin
   res.trYMaxF = ymax
   res.trYReverse = yrev
   
   res.vpXF = vpx
   res.vpYF = vpy
   res.vpHeightF = hei
   res.vpWidthF = wth
   
   xy = Ngl.xy(wks,np.transpose(np.vstack((vx,vx))),np.transpose(np.vstack((vy,vy))),res)
   
   if(1):
      ## Fit line
      k,m,cor,sig,err = stats.linregress(vx,vy)
      vx2 = np.linspace(xmin,xmax,10)
      vy2 = vx2 * k + m
      
      # Plot line
      lres = Ngl.Resources()
      lres.gsLineColor = 'black'
      lres.gsLineDashPattern = 1
      lres.gsLineThicknessF = 2
      line = Ngl.add_polyline(wks,xy,vx2,vy2,lres)
      
      # Print correlations
      text = 'k = %.2f  R = %4.2f' % (k,cor)
      if (sig*100. < 1.):
         text = text + ' (99% sign.)'
      elif (sig*100. < 5.):
         text = text + ' (95% sign.)'
      else:
         text = text + ' (not sign.)'
      tres = Ngl.Resources()
      tres.txFontHeightF = 0.012
      tres.txJust = 'CenterLeft'
      tres.txFontColor = 'black'
      Ngl.text_ndc(wks,text,vpx,vpy+0.02,tres)
       
   Ngl.draw(xy)
Exemplo n.º 40
0
cnres.sfYArray                 = time

cnres.tmXBMode                 = "Explicit"    # Label X and Y axes
cnres.tmYLMode                 = "Explicit"    # with explicit labels.
cnres.tmXBValues               = lon_values
cnres.tmYLValues               = time_values
cnres.tmXBLabels               = lon_labels
cnres.tmYLLabels               = time_labels

cnres.nglPointTickmarksOutward = True

contour = Ngl.contour(wks,chi,cnres)  # Create, but don't draw contour plot.

neg_dash_contours(contour)           # Dash the negative contours.

Ngl.draw(contour)            # Now draw contours and
Ngl.frame(wks)               # advance the frame.

#
# Set some new resources to control how the lines are labeled.
# Use Ngl.set_values to apply these new resources to our existing
# plot.
#

nrlist                          = Ngl.Resources()

nrlist.cnLineLabelPlacementMode = "Computed"
nrlist.cnLineLabelDensityF      = 3.         # < 1.0 = less, > 1.0 = more
nrlist.cnLineLabelInterval      = 1          # Label every line if possible.
Ngl.set_values(contour,nrlist)
Exemplo n.º 41
0
vcres.vcLineArrowThicknessF     = 2.0

# create vector plot for analysis data and overlay on colour contours level 1

uv_plot1  = ngl.vector(wks,u_1,v_1,vcres)

# create vector plot for analysis data and overlay on colour contours level2

vcres.vcLineArrowColor = "Red"

uv_plot2 = ngl.vector(wks,u_2,v_2,vcres)

ngl.overlay(shear_plot,uv_plot1)
ngl.overlay(shear_plot,uv_plot2)
ngl.maximize_plot(wks, shear_plot)
ngl.draw(shear_plot)
ngl.frame(wks)

ngl.destroy(wks)
del res
del vcres


###################################################################################################

# open forecast file

f_fili = "GFS_48h_forecast_%s_%s.nc" % (init_dt[:8], init_dt[8:10])
forecast = nio.open_file(diri+f_fili)

# loop through forecast times
Exemplo n.º 42
0
#    Skew-T resource names decided on.
#     

import Ngl

wks_type = "ps"
wks = Ngl.open_wks (wks_type, "skewt1")

#
#  First plot - default background
#
skewtOpts              = Ngl.Resources()
skewtOpts.tiMainString = "Default Skew-T"
skewt_bkgd = Ngl.skewt_bkg(wks, skewtOpts)

Ngl.draw(skewt_bkgd)
Ngl.frame(wks)
del skewtOpts

#
#  Second plot - fancier background 
#
skewtOpts                   = Ngl.Resources()
skewtOpts.sktColoredBandsOn = True    # default is False
skewtOpts.sktHeightScaleOn  = True    # default is False
skewtOpts.tiMainString      = "USAF Skew T, Log(p); DOD-WPC 9-16-1"
 
skewt_bkgd     = Ngl.skewt_bkg(wks, skewtOpts)
Ngl.draw(skewt_bkgd)
Ngl.frame(wks)
del skewtOpts
Exemplo n.º 43
0
ores.cnFillOpacityF = 1.0  # Fully opaque
ores.lbLabelBarOn = False  # Turn off labelbar
ores.sfMissingValueV = u._FillValue

ores.sfXArray = lon['lon|-120:120']
ores.sfYArray = lat['lat|-30:30']

# Use PyNIO's selection syntax to subset the lat/lon area of interest
overlay_plot = Ngl.contour(wks, u['time|i1 lat|-30:30 lon|-120:120'], ores)

# Overlay the contour plot on the contour/map plot
Ngl.overlay(base_plot, overlay_plot)

# Drawing the base plot draws both plots
Ngl.draw(base_plot)
Ngl.frame(wks)

# Create the contour/plot again, but with no transparency
del bres.cnFillOpacityF
plot = Ngl.contour_map(wks, u[1, :, :], bres)

# Set resources for a partially transparent polygon.
gnres = Ngl.Resources()
gnres.gsFillOpacityF = 0.6  # mostly opaque
gnres.gsFillColor = "white"

lat_box = [-30, -30, 30, 30, -30]
lon_box = [-120, 120, 120, -120, -120]

# Add a partially opaque filled polygon box to the filled contours
Exemplo n.º 44
0
def trj(wks, x, y, time, res=None):
    ''' Plots trajectories with arrow heads attached.

    plot = trj(wks, x, y, time, res=None)

    wks : The identifier returned from calling Ngl.open_wks.

    x,y : The X and Y coordinates of the curve(s). These values can be
          one-dimensional NumPy arrays, NumPy masked arrays or two-dimensional
          NumPy arrays. If x and/or y are two-dimensional, then the leftmost
          dimension determines the number of curves.

    time : Time coordinates of the trajectories. These values can be
          one-dimensional NumPy arrays, NumPy masked arrays

    res:   Resource list using following special resources:

    Special resources:

    trjArrowStep  :     Number of samples between arrow heads.
                        Default: 10

    trjArrowOffsetF :   Shift the position of the arrows along the curve.
                        Should be between 0. and 1.
                        Default: 0.5

    trjArrowDirection : can be 'pos' or 'neg' to select direction of the
                        arrows.
                        Default: 'pos'

    trjArrowXShapeF :   Array containing the x NDC coordinates of the arrow
                        head relative to the heads centre.
                        Default: Equiliteral triangle

    trjArrowYShapeF :   Array containing the y NDC coordinates of the arrow
                        head relative to the heads centre.
                        Default: Equiliteral triangle

    trjArrowXScaleF :   Scales arrow head in X direction, befor rotation is
                        applied.
                        Default: 1.

    trjArrowYScaleF :   Scales arrow head in y direction, befor rotation is
                        applied.
                        Default: 1.

    trjArrowSizeF :     Scales the size of an arrow head.
                        Default: 0.02

    The arrow heads are plotted with add_polygon, so all gs* attributes of the
    resource list are applied to the arrow heads polygon.
    '''

    if not res:
        res = ngl.Resources()

    # set default values:
    if not hasattr(res, 'trjArrowStep'):
        res.trjArrowStep = 10
    if not hasattr(res, 'trjArrowOffsetF'):
        res.trjArrowOffsetF = .5
    else:
        res.trjArrowOffsetF -= np.floor(res.trjArrowOffsetF)
    if not hasattr(res, 'trjArrowDirection'):
        res.trjArrowDirection = 'pos'
    if not hasattr(res, 'trjArrowXShapeF'):
        res.trjArrowXShapeF = [np.sqrt(3) / 3.,
                              -np.sqrt(3) / 6.,
                              -np.sqrt(3) / 6.]
    res.trjArrowXShapeF = np.asarray(res.trjArrowXShapeF)
    if not hasattr(res, 'trjArrowYShapeF'):
        res.trjArrowYShapeF = [0., .5, -.5]
    res.trjArrowYShapeF = np.asarray(res.trjArrowYShapeF)
    if not hasattr(res, 'trjArrowXScaleF'):
        res.trjArrowXScaleF = 1.
    if not hasattr(res, 'trjArrowYScaleF'):
        res.trjArrowYScaleF = 1.
    if not hasattr(res, 'trjArrowSizeF'):
        res.trjArrowSizeF = .02

    # check for draw and frame
    if hasattr(res, "nglDraw"):
        doDraw = res.nglDraw
    else:
        doDraw = True
    res.nglDraw = False
    if hasattr(res, "nglFrame"):
        doFrame = res.nglFrame
    else:
        doFrame = True
    res.nglFrame = False

    # Convert to mask array
    x = np.ma.asarray(x)
    y = np.ma.asarray(y)
    time = np.ma.asarray(time)

    # check input data
    if x.shape != y.shape:
        raise ValueError("Inconsistend shape. x, y and time must have the "
                            + "same shape.")

    if x.ndim < 1 or x.ndim > 2:
        raise ValueError("Input arrays x and y must be of rank 1 or 2.")

    if np.rank(x) == 1:
        # add singleton dimension to the begining
        x = x[np.newaxis, ...]
        y = y[np.newaxis, ...]

    # Dimension of trajectories
    dim = 0

    # mask all missig values
    np.ma.masked_where(y.mask, x, copy=False)
    np.ma.masked_where(x.mask, y, copy=False)

    # create line plot resource
    res_lines = copy.deepcopy(res)

    # remove trj* attributes from res_lines
    for attr in dir(res_lines):
        if attr[0:3] == "trj" or (attr[0:2] == "gs" and attr[2] != "n"):
            delattr(res_lines, attr)

    # create line plot
    plot = ngl.xy(wks, x, y, res_lines)

    # get axes length in data coordinates
    xAxisLen, yAxisLen = [ngl.get_float(plot, "tr" + ax + "MaxF")
                          - ngl.get_float(plot, "tr" + ax + "MinF")
                          for ax in "XY"]

    # get marker color
    # to be implemented

    # place Marker
    marker_id = []
    for t in xrange(x.shape[dim]):
        xt = x[t, ...].compressed()
        yt = y[t, ...].compressed()
        tt = time[::res.trjArrowStep]

        # shift time by offset
        if res.trjArrowOffsetF != 0.:
            tt = tt[:-1] + res.trjArrowOffsetF * (tt[1:] - tt[:-1])

        # itterate over markers
        for tm in tt:
            # find nearest indices in time array
            idx = (np.abs(time - tm)).argmin().min()
            if time[idx] < tm:
                idx1 = idx
                idx2 = idx + 1
            elif time[idx] > tm:
                idx1 = idx - 1
                idx2 = idx
            else:
                if idx == 0:
                    idx1 = idx
                    idx2 = idx + 1
                else:
                    idx1 = idx - 1
                    idx2 = idx

            if idx >= len(xt) - 1:
                continue
            # interpolate linearly to get coordinates
            ds = (tm - time[idx1]) / (time[idx2] - time[idx1])
            xm, ym = [coord[idx1] + ds * (coord[idx2] - coord[idx1])
                      for coord in [xt, yt]]
            x1, y1 = ngl.datatondc(plot, xt[idx1], yt[idx1])
            x2, y2 = ngl.datatondc(plot, xt[idx2], yt[idx2])
            angle = np.arctan2(y2 - y1, x2 - x1)

            # create marker resource
            res_marker = copy.deepcopy(res)
            # scale adjust marker scale
            res_marker.trjArrowXScaleF = res.trjArrowXScaleF * xAxisLen
            res_marker.trjArrowYScaleF = res.trjArrowYScaleF * yAxisLen

            marker_id.append(
                _plot_trj_marker(wks, plot, xm, ym, angle, res_marker))

        if doDraw:
            ngl.draw(plot)
            res.nglDraw = True
        if doFrame:
            ngl.frame(wks)
            res.nglFrame = True

    return plot
Exemplo n.º 45
0
res.mpGeophysicalLineColor = "gray40"
res.mpGeophysicalLineThicknessF = 1.5
res.cnMonoLineColor = True

res.cnLevelSelectionMode = "ManualLevels"
res.cnMinLevelValF = 0.0
res.cnMaxLevelValF = 65.0
res.cnLevelSpacingF = 2.5
res.cnLineThicknessF = 2.5

# create PWAT plot for analysis data

PWAT_plot = ngl.contour_map(wks, PWAT, res)

ngl.maximize_plot(wks, PWAT_plot)
ngl.draw(PWAT_plot)
ngl.frame(wks)

ngl.destroy(wks)
del res
del PWAT
#del CIN

###################################################################################################

# open forecast file

f_fili = "GFS_forecast_%s_%s.nc" % (init_dt[:8], init_dt[8:10])
forecast = nio.open_file(diri + f_fili)

# loop through forecast times
Exemplo n.º 46
0
#  Transpose the array so we can plot it, because Natgrid returns it
#  as an X x Y array, rather than Y x X which PyNGL expects.
#
zt = numpy.transpose(zo)

contour = Ngl.contour(wks,zt,resources)

#
# Add some polymarkers showing the original locations of the X,Y points.
#
poly_res               = Ngl.Resources()
poly_res.gsMarkerIndex = 16
poly_res.gsMarkerSizeF = 0.015
Ngl.add_polymarker(wks,contour,x,y,poly_res)

Ngl.draw(contour)
Ngl.frame(wks)


#
# Now turn on RasterFill for the contours and compare.
#
resources.tiMainString          = "Interpolation to a 2D grid (RasterFill)"
resources.cnFillMode            = 'RasterFill'
contour                         = Ngl.contour(wks,zt,resources)

#
#  Draw polymarkers again.
#
Ngl.add_polymarker(wks,contour,x,y,poly_res)
Ngl.draw(contour)
Exemplo n.º 47
0
def draw_colormap(wks, cmap):

    #---Read as RGBA array
    cmapr = Ngl.read_colormap_file(cmap)

    #---Set some options
    orientation = "horizontal"  #  "horizontal" or "vertical"
    lbres = Ngl.Resources()

    if (orientation == "vertical"):
        width = 0.2
        height = 1.0  # full height of viewport
        xpos = 0.5 - width / 2.  # centered
        ypos = 1.0  # flush w/top of viewport
    else:
        height = 0.2
        width = 1.0  # full width of viewport
        xpos = 0.0  # flush right
        ypos = 0.5 + height / 2.  # centered

    lbres.vpWidthF = width
    lbres.vpHeightF = height
    lbres.lbOrientation = orientation
    lbres.lbLabelsOn = False
    lbres.lbBoxLinesOn = False

    #---Make sure labelbar fills the viewport region we specified
    lbres.lbBoxMinorExtentF = 1.0
    lbres.lbTopMarginF = 0.0
    lbres.lbBottomMarginF = 0.0
    lbres.lbRightMarginF = 0.0
    lbres.lbLeftMarginF = 0.0

    #---Necessary so we get all solid fill
    lbres.lbMonoFillPattern = True
    lbres.lbFillColors = cmapr

    cmaplen = cmapr.shape[0]
    labels = ["" for x in range(cmaplen)]

    lbid = Ngl.labelbar_ndc(wks, cmaplen, labels, xpos, ypos, lbres)
    Ngl.draw(lbid)

    #---Draw a box around the labelbar
    xbox = [xpos, xpos + width, xpos + width, xpos, xpos]
    ybox = [ypos, ypos, ypos - height, ypos - height, ypos]

    lnres = Ngl.Resources()
    lnres.gsLineThicknessF = 1.5
    Ngl.polyline_ndc(wks, xbox, ybox, lnres)

    lnres = Ngl.Resources()
    lnres.gsLineThicknessF = 1.5
    Ngl.polyline_ndc(wks, xbox, ybox, lnres)

    #---Add name of the color map
    txres = Ngl.Resources()
    txres.txFontHeightF = 0.02
    if (orientation == "vertical"):
        txres.txJust = "TopRight"
        Ngl.text_ndc(wks, cmap, xpos, 1.0, txres)
    else:
        txres.txJust = "BottomCenter"
        Ngl.text_ndc(wks, cmap, 0.5, ypos, txres)

    Ngl.frame(wks)  # Advance the frame
Exemplo n.º 48
0
Arquivo: lt.py Projeto: v1j4y/MATHS
res3.tmYLLabelsOn = False
res3.tmYLMinorOn  = False

#
# Turn on the right Y labels and tickmarks and move the axis string to
# the right.
#
res3.tmYRLabelsOn = False
res3.tmYROn       = False
res3.tmYUseLeft   = False
res3.tmYRFormat   = "f"      # Gets rid of unnecessary trailing zeros

plot3 = Ngl.xy(wks,x2,y2,res3)

# Two plots

sres = Ngl.Resources()
Ngl.set_values(plot1,sres)

sres = Ngl.Resources()
Ngl.set_values(plot2,sres)

sres = Ngl.Resources()
Ngl.set_values(plot3,sres)

Ngl.draw(plot1)
Ngl.draw(plot2)
Ngl.draw(plot3)
Ngl.frame(wks)

Exemplo n.º 49
0
res.mpGeophysicalLineColor    = "gray40"
res.mpGeophysicalLineThicknessF = 1.5
res.cnMonoLineColor           = True

res.cnLevelSelectionMode = "ManualLevels"
res.cnMinLevelValF       = 1000.0
res.cnMaxLevelValF       = 6000.0
res.cnLevelSpacingF      = 250.0
res.cnLineThicknessF     = 2.5

# create PWAT plot for analysis data

MD_plot = ngl.contour_map(wks,MD,res)

ngl.maximize_plot(wks, MD_plot)
ngl.draw(MD_plot)
ngl.frame(wks)

ngl.destroy(wks)
del res
del MD
#del CIN

###################################################################################################

# open forecast file

f_fili = "GFS_forecast_%s_%s.nc" % (init_dt[:8], init_dt[8:10])
forecast = nio.open_file(diri+f_fili)

# loop through forecast times
Exemplo n.º 50
0
def grid_order_contourplot(model, grid, first_varying_var, cut_domain):

    # define paths #

    path = dict(base='/', plots='data/plots/experimental/gridpoint_order/')
    print('plotting model: {}'.format(model))

    # load icosahedral grid information #

    if grid == 'icosahedral':
        clat, clon, vlat, vlon = read_grid_coordinates(model, grid)
        data_array1 = np.arange(clat.shape[0], dtype='float32')
    else:
        clat, clon = read_grid_coordinates(model, grid)
        clon = clon - 180
        if first_varying_var == 'lon':
            data_array1 = np.arange(clat.shape[0] * clon.shape[0],
                                    dtype='float32').reshape(
                                        (clat.shape[0], clon.shape[0]))
        elif first_varying_var == 'lat':
            data_array1 = np.arange(clat.shape[0] * clon.shape[0],
                                    dtype='float32').reshape(
                                        (clon.shape[0], clat.shape[0])).T

    print('data_array1:', data_array1.shape, 'clat:', clat.shape, 'clon:',
          clon.shape)
    if grid == 'icosahedral':
        print('vlat:', vlat.shape, 'vlon:', vlon.shape)
    print('data_array1 min,max:', data_array1.min(), data_array1.max())
    print('clat min,max:', clat.min(), clat.max())
    print('clon min,max:', clon.min(), clon.max())
    if grid == 'icosahedral':
        print('vlat min,max:', vlat.min(), vlat.max())
        print('vlon min,max:', vlon.min(), vlon.max())
    print('------------------------------------------')

    if cut_domain['name'] == 'uncut':
        data_array1_cut = data_array1
    else:
        margin_deg = 0
        if grid == 'icosahedral':
            data_array1_cut, clat, clon, vlat, vlon \
              = cut_by_domain(cut_domain, grid, data_array1, clat, clon, vlat, vlon, margin_deg)
        else:
            data_array1_cut, clat, clon \
              = cut_by_domain(cut_domain, grid, data_array1, clat, clon, None, None, margin_deg)

    print('data_array1:', data_array1_cut.shape, 'clat:', clat.shape, 'clon:',
          clon.shape)
    if grid == 'icosahedral':
        print('vlat:', vlat.shape, 'vlon:', vlon.shape)
    print('data_array1_cut min,max:', data_array1_cut.min(),
          data_array1_cut.max())
    print('clat min,max:', clat.min(), clat.max())
    print('clon min,max:', clon.min(), clon.max())
    if grid == 'icosahedral':
        print('vlat min,max:', vlat.min(), vlat.max())
        print('vlon min,max:', vlon.min(), vlon.max())

    if grid == 'icosahedral':
        plot_name = 'gridpoint_order_{}_{}_global_{}'.format(
            model, grid, cut_domain['name'])
    else:
        plot_name = 'gridpoint_order_{}_{}_{}-varying-first_global_{}'.format(
            model, grid, first_varying_var, cut_domain['name'])

    # plot basic map with borders #

    wks_res = Ngl.Resources()
    x_resolution = 800
    y_resolution = 800
    wks_res.wkWidth = x_resolution
    wks_res.wkHeight = y_resolution

    wks_res.wkColorMap = 'BkBlAqGrYeOrReViWh200'
    levels1 = np.linspace(data_array1.min(), data_array1.max(), 200)

    wks_type = 'png'
    wks = Ngl.open_wks(wks_type, path['base'] + path['plots'] + plot_name,
                       wks_res)

    mpres = Ngl.Resources()
    mpres.mpProjection = 'CylindricalEquidistant'
    mpres.mpLimitMode = 'LatLon'
    mpres.mpCenterLonF = 0.0
    mpres.mpCenterLatF = 0.0
    mpres.mpMinLonF = -180.
    mpres.mpMaxLonF = 180.
    mpres.mpMinLatF = -90.
    mpres.mpMaxLatF = 90.

    mpres.nglMaximize = False
    mpres.vpXF = 0.003
    mpres.vpYF = 1.00
    mpres.vpWidthF = 0.86
    mpres.vpHeightF = 1.00
    mpres.mpMonoFillColor = 'True'
    mpres.mpFillColor = -1

    #Ngl.set_values(wks,mpres)
    mpres.mpFillOn = True
    #resources.cnFillDrawOrder   = 'Predraw'     # draw contours first
    mpres.mpGridAndLimbOn = False
    mpres.mpGreatCircleLinesOn = False

    #mpres.mpOutlineDrawOrder       = 'PreDraw'
    mpres.mpDataBaseVersion = 'LowRes'
    mpres.mpDataSetName = 'Earth..4'
    mpres.mpOutlineBoundarySets = 'national'
    mpres.mpGeophysicalLineColor = 'black'
    mpres.mpNationalLineColor = 'black'
    mpres.mpGeophysicalLineThicknessF = 2. * x_resolution / 1000
    mpres.mpNationalLineThicknessF = 2. * x_resolution / 1000

    mpres.mpPerimOn = True
    mpres.mpPerimLineColor = 'black'
    mpres.mpPerimLineThicknessF = 8.0 * x_resolution / 1000
    mpres.tmXBOn = False
    mpres.tmXTOn = False
    mpres.tmYLOn = False
    mpres.tmYROn = False

    mpres.nglDraw = False  #-- don't draw plot
    mpres.nglFrame = False  #-- don't advance frame

    basic_map = Ngl.map(wks, mpres)

    # plot variable1 in shading/contours #

    v1res = Ngl.Resources()
    v1res.sfDataArray = data_array1_cut
    v1res.sfXArray = clon
    v1res.sfYArray = clat
    if grid == 'icosahedral':
        v1res.cnFillMode = 'CellFill'
        v1res.sfXCellBounds = vlon
        v1res.sfYCellBounds = vlat
    else:
        v1res.cnFillMode = 'RasterFill'
    v1res.sfMissingValueV = 9999

    v1res.cnLinesOn = False  # Turn off contour lines.
    v1res.cnFillOn = True
    #v1res.cnFillOpacityF        = 0.5
    #v1res.cnFillDrawOrder       = 'Predraw'
    v1res.cnLineLabelsOn = False
    v1res.cnLevelSelectionMode = 'ExplicitLevels'
    v1res.cnLevels = levels1

    # set resources for a nice label bar #

    v1res.lbLabelBarOn = True
    v1res.lbAutoManage = False
    v1res.lbOrientation = 'vertical'
    v1res.lbLabelOffsetF = 0.04  # minor axis fraction: the distance between colorbar and numbers
    v1res.lbBoxMinorExtentF = 0.20  # minor axis fraction: width of the color boxes when labelbar down
    v1res.lbTopMarginF = 0.05  # make a little more space at top for the unit label
    v1res.lbRightMarginF = 0.0
    v1res.lbBottomMarginF = 0.0
    v1res.lbLeftMarginF = -0.35

    v1res.cnLabelBarEndStyle = 'ExcludeOuterBoxes'
    #v1res.cnLabelBarEndStyle    = 'IncludeOuterBoxes'
    #v1res.cnExplicitLabelBarLabelsOn = True
    #v1res.pmLabelBarDisplayMode =  'Always'
    v1res.pmLabelBarWidthF = 0.10
    #v1res.lbLabelStrings        = label_str_list
    v1res.lbLabelFontHeightF = 0.010
    #v1res.lbBoxCount            = 40
    v1res.lbBoxSeparatorLinesOn = False
    v1res.lbBoxLineThicknessF = 4
    #v1res.lbBoxEndCapStyle     = 'TriangleBothEnds'
    v1res.lbLabelAlignment = 'InteriorEdges'
    v1res.lbLabelStride = 1

    v1res.nglFrame = False
    v1res.nglDraw = False

    v1plot = Ngl.contour(wks, data_array1_cut, v1res)

    # plot label bar unit #

    text_str = 'Index'
    text_res_1 = Ngl.Resources()
    text_res_1.txFontColor = 'black'
    text_x = 0.975
    text_y = 0.72
    text_res_1.txFontHeightF = 0.012

    Ngl.overlay(basic_map, v1plot)

    Ngl.draw(basic_map)
    Ngl.text_ndc(wks, text_str, text_x, text_y, text_res_1)
    Ngl.frame(wks)
    Ngl.destroy(wks)
    #Ngl.end()

    # cut top and bottom whitespace of plot #

    im = Image.open(path['base'] + path['plots'] + plot_name + '.png')
    image_array = np.asarray(im.convert('L'))
    image_array = np.where(image_array < 255, 1, 0)
    image_filter = np.amax(image_array, axis=1)
    vmargins = [
        np.nonzero(image_filter)[0][0],
        np.nonzero(image_filter[::-1])[0][0]
    ]
    #print(vmargins)
    #print(im.size)

    im_cropped = Image.new(
        'RGB', (im.size[0], im.size[1] - vmargins[0] - vmargins[1]),
        (255, 255, 255))
    im_cropped.paste(
        im.crop((0, vmargins[0], im.size[0], im.size[1] - vmargins[1])),
        (0, 0))
    #print(im_cropped.size)
    im.close()
    im_cropped.save(path['base'] + path['plots'] + plot_name + '.png', 'png')
    im_cropped.close()

    del data_array1, data_array1_cut, clat, clon
    if grid == 'icosahedral':
        del vlat, vlon

    return
Exemplo n.º 51
0
res.tiMainFontColor = "Navy"
res.tiMainOffsetYF = 0.02
res.tiMainFontHeightF = 0.035
res.tiYAxisString = "Left Y axis string"

res.stMonoLineColor = False  # Use multiple colors for streamlines.
res.stLineThicknessF = 2.0  # Twice as thick

res.lbOrientation = "Horizontal"
res.pmLabelBarOrthogonalPosF = -0.02
res.pmLabelBarHeightF = 0.1
res.pmLabelBarWidthF = 0.6

plot = Ngl.streamline_scalar(wks, u, v, spd, res)  # Create streamline plot.

txres = Ngl.Resources()  # Text resources desired
txres.txFontColor = "OrangeRed"

subtitles(wks, plot, "Left string", "Center string", "Right string", txres)

del txres.txFontColor  # Go back to foreground color (black)
txres.txFontHeightF = 0.029
right_axis(wks, plot, "Right Y axis string", txres)

Ngl.maximize_plot(wks, plot)

Ngl.draw(plot)  # Drawing the plot will draw the three subtitles attached.
Ngl.frame(wks)

Ngl.end()
Exemplo n.º 52
0
res.trXMaxF = 20.0
res.trXMinF = 0.0
res.trYMinF = 0.0

#
# Width, height, and position of X axis. Every time the
# axis is redrawn, the vpYF resource will be changed to change
# the position.
#
res.vpXF = 0.2
res.vpYF = 0.9
res.vpHeightF = 0.02
res.vpWidthF = 0.7

xy = Ngl.xy(wks, x, y, res)
Ngl.draw(xy)

#
# Draw 9 different plots demonstrating control of the bottom x-axis
# tickmark labels using the XBFormat string resource. See the description
# of the Floating Point Format Specification scheme in the HLU reference
# guide to learn about the semantics and syntax of the format string:
#
#    http://www.ncl.ucar.edu/Document/Graphics/format_spec.shtml
#
# There are links to this description in the TickMark reference pages under
# the entries for the format string resources (XBFormat, for example).
#

sres = Ngl.Resources()
Exemplo n.º 53
0
res.mpFillOn             =  False                  #-- don't draw map outlines
res.mpGridAndLimbOn      =  False                  #-- don't draw grid lines

res.cnFillMode           = "CellFill"              #-- set fill mode
res.sfXArray             =  x                      #-- transform x to mesh scalar field
res.sfYArray             =  y                      #-- transform y to mesh scalar field
res.sfXCellBounds        =  vlon                   #-- needed if set cnFillMode = "CellFill"
res.sfYCellBounds        =  vlat                   #-- needed if set cnFillMode = "CellFill"

res.tiMainString         = "ICON grid - raster fill"
res.tiMainOffsetYF       =  0.03                   #-- move main title towards plot

#-- create the contour plot to retrieve levels and colors
plot = Ngl.contour_map(wks,var,res)

Ngl.draw(plot)
Ngl.frame(wks)
del(levels)

#========== second plot ============

#-- retrieve the colors and levels from contour plot
levels   =  list(Ngl.get_float_array(plot.contour,"cnLevels"))
labels   =  list(Ngl.get_string_array(plot.contour,"cnLevels"))
nlevels  =  len(levels)

#-- define colormap (RGB value range 0-255)
colormap255 = np.array([[  0,   0,   0], [255, 255, 255], [ 80, 255, 255], \
                        [ 27,  44,  98], [ 45, 102, 175], [ 66, 133, 196], \
                        [ 90, 166, 217], [119, 189, 230], [148, 211, 243], \
                        [215, 239, 249], [237, 248, 252], [255, 255, 255], \
Exemplo n.º 54
0
# Make sure map plot is same size as contour/map plot.
mpres.nglMaximize      = False      # this must be turned off otherwise plot will be resized!
mpres.vpXF             = bres.vpx       
mpres.vpYF             = bres.vpy       
mpres.vpWidthF         = bres.vpw
mpres.vpHeightF        = bres.vph

# Turn off since they are already drawn in contour/map plot.
mpres.pmTickMarkDisplayMode = "Never"   

# Make the ocean white and land transparent. This will mask out the contour fill over ocean.
mpres.mpOceanFillColor       = "white"
mpres.mpInlandWaterFillColor = "white"
mpres.mpLandFillColor        = "transparent"

# Create a map plot with the white ocean and transparent land.
map_plot = Ngl.map(wks, mpres)

#
# If you need to resize the plots later---for example, to use in
# a panel---then it's easier to make one plot an annotation of
# the other.
#
annoid = Ngl.add_annotation(contour_map_plot, map_plot)
Ngl.draw(contour_map_plot)   # This draws both plots
Ngl.frame(wks)

Ngl.end()

Exemplo n.º 55
0
resources.vpYF = 0.90  # Change size and location of plot.
resources.vpXF = 0.18
resources.vpWidthF = 0.74
resources.vpHeightF = 0.74
resources.trYMaxF = 980  # Set the maximum value for the Y axes.

resources.tiYAxisString = "Depth of a subsurface stratum"

xy = Ngl.xy(xwks, xo, zt[2:9:2, :], resources)  # Draw an XY plot.

#----------- Draw to other workstations  ------------------------------

Ngl.change_workstation(contour, cgmwks)  # Change the workstation that the
Ngl.change_workstation(xy, cgmwks)  # contour and XY plot is drawn to.
Ngl.draw(contour)  # Draw the contour plot to the new
Ngl.frame(cgmwks)  # workstation and advance the frame.
Ngl.draw(xy)  # Draw the XY plot to the new
Ngl.frame(cgmwks)  # workstation and advance the frame.

Ngl.change_workstation(contour, pswks)  # Do the same for the PostScript
Ngl.change_workstation(xy, pswks)  # workstation.
Ngl.draw(contour)
Ngl.frame(pswks)
Ngl.draw(xy)
Ngl.frame(pswks)

Ngl.change_workstation(contour, pdfwks)  # And for the PDF workstation...
Ngl.change_workstation(xy, pdfwks)
Ngl.draw(contour)
Ngl.frame(pdfwks)
Exemplo n.º 56
0
dirc = Ngl.pynglpath("data")
f    = Nio.open_file(os.path.join(dirc,"cdf","uv300.nc"))
u    = f.variables["U"][0,:,8]
lat  = f.variables["lat"][:]

#---Start the graphics section
wks_type = "png"
wks = Ngl.open_wks (wks_type,"newcolor2")     # Open "newcolor2.png" for graphics

#---Set some resources.
res          = Ngl.Resources()
res.nglDraw  = False
res.nglFrame = False

plot  = Ngl.xy (wks,lat,u,res)              # Create plot

txres                = Ngl.Resources()         # text mods desired
txres.txFont         = 30
txres.txFontHeightF  = 0.04                    # font smaller. default big
txres.txFontOpacityF = 0.10                    # highly transparent
txres.txAngleF       = 45.

txid = Ngl.add_text(wks,plot,"Preliminary Data",10,15,txres) 

Ngl.draw(plot)        # Drawing plot will draw attached text
Ngl.frame(wks)        # Advance frame


Ngl.end()

Exemplo n.º 57
0
Arquivo: ngl08p.py Projeto: akrherz/me
resources.vpYF      = 0.90  # Change size and location of plot.
resources.vpXF      = 0.18
resources.vpWidthF  = 0.74
resources.vpHeightF = 0.74
resources.trYMaxF = 980  # Set the maximum value for the Y axes.

resources.tiYAxisString = "Depth of a subsurface stratum"

xy = Ngl.xy(xwks,xo,zt[2:9:2,:],resources) # Draw an XY plot.

#----------- Draw to other workstations  ------------------------------

Ngl.change_workstation(contour,cgmwks)   # Change the workstation that the
Ngl.change_workstation(xy,cgmwks)        # contour and XY plot is drawn to.
Ngl.draw(contour)                        # Draw the contour plot to the new
Ngl.frame(cgmwks)                        # workstation and advance the frame.
Ngl.draw(xy)                             # Draw the XY plot to the new
Ngl.frame(cgmwks)                        # workstation and advance the frame.

Ngl.change_workstation(contour,pswks)  # Do the same for the PostScript
Ngl.change_workstation(xy,pswks)       # workstation.
Ngl.draw(contour)
Ngl.frame(pswks)
Ngl.draw(xy)
Ngl.frame(pswks)

Ngl.change_workstation(contour,pdfwks)  # And for the PDF workstation...
Ngl.change_workstation(xy,pdfwks) 
Ngl.draw(contour)
Ngl.frame(pdfwks)
Exemplo n.º 58
0
#
wks_type = "ps"
wks = Ngl.open_wks(wks_type, "skewt2")

skewtOpts                          = Ngl.Resources()
skewtOpts.sktWindSpeedMissingV     = -999.     # Missing value for 
                                               # wind speed.
skewtOpts.sktWindDirectionMissingV = -999.     # Missing value for 
                                               # wind direction.
skewtOpts.sktColoredBandsOn        = True      # Default is False
skewtOpts.tiMainString             = "Raob Data; No Winds" 

skewt_bkgd = Ngl.skewt_bkg(wks, skewtOpts)
skewt_data = Ngl.skewt_plt(wks, skewt_bkgd, p, tc, tdc, z,  \
                                wspd, wdir, skewtOpts)
Ngl.draw(skewt_bkgd)
Ngl.draw(skewt_data)
Ngl.frame(wks)

#
#  Plot 2 - Create background skew-T and plot sounding and winds.
#
wspd = Ngl.fspan(0., 150., nlvl)   # wind speed at each level.
wdir = Ngl.fspan(0., 360., nlvl)   # wind direction.

#
#  Create a few artificial "pibal" reports.
#
hght = numpy.array([1500., 6000., 10000., 15000.], 'f') # Meters
hspd = numpy.array([  50.,   27.,   123.,    13.], 'f')
hdir = numpy.array([ 315.,  225.,    45.,   135.], 'f')
Exemplo n.º 59
0
     plres.gsFillColor = colors[2]

  if (unemp[i] >= 0.04):
     plres.gsFillColor = colors[3]

  startSegment = geometry[i][geom_segIndex]
  numSegments  = geometry[i][geom_numSegs]
  lines = []
  for seg in range(startSegment, startSegment+numSegments):
    startPT = segments[seg, segs_xyzIndex]
    endPT = startPT + segments[seg, segs_numPnts] - 1
    lines.append(Ngl.add_polygon(wks, plot, lon[startPT:endPT],  \
                                 lat[startPT:endPT], plres))
    segNum = segNum + 1

Ngl.draw(plot)

# Make a labelbar...
labels = [ "1", "2", "3", "4" ]

lres                    = Ngl.Resources()
lres.vpWidthF           = 0.50             # location
lres.vpHeightF          = 0.05             # " " 
lres.lbPerimOn          = False            # Turn off perimeter.
lres.lbOrientation      = "Horizontal"     # Default is vertical.
lres.lbLabelAlignment   = "BoxCenters"     # Default is "BoxCenters".
lres.lbFillColors       = colors
lres.lbMonoFillPattern  = True             # Fill them all solid.
lres.lbLabelFontHeightF = 0.012            # label font height
lres.lbTitleString      = "percent"        # title
lres.lbTitlePosition    = "Bottom"         # location of title
Exemplo n.º 60
0
def plot_oope_map(data, figname, size_class=None, percentage=1):

    ''' Draws 2D OOPE maps.

    :param xarray.Dataset data: 2D OOPE array. Dims must be (y, x, comm, size)
    :param str figname: Name of the figure file (must end by .png or .pdf)
    :param list size_class: Size classes to output (in m)
    :param float percentage: percentage used to saturate colorbar from percentile.
     Colorbar is saturated from values of the (X) and (100 - X) percentile.

    :return: None
    
    '''

    if size_class is None:
        size_class = [1e-3, 1e-2, 1e-1, 1]

    # sort size class in ascending order, and add 0 and infinity as size bounds
    size_class = np.sort(size_class)

    if size_class[0] != 0:
        size_class = np.concatenate(([0], size_class), axis=0)
    if size_class[-1] != np.Inf:
        size_class = np.concatenate((size_class, [np.Inf]), axis=0)

    # Check that the OOPE dataset has 4 dimensions (i.e. no time dimension)
    ndims = len(data['OOPE'].dims)

    if ndims != 4:
        message = 'Data must have dimensions of size (lat, lon, comm, wei)'
        print(message)
        sys.exit(0)

    # Recover data variables
    length = data['length'].values
    oope = data['OOPE'].values
    lon = data['longitude'][:].values
    lat = data['latitude'][:].values
    comm = data['community'][:].values.astype(np.int)

    # mask oope where land
    oope = np.ma.masked_where(np.isnan(oope), oope)

    comm_string = misc.extract_community_names(data)

    if figname.endswith('png'):
        form = 'png'
    elif figname.endswith('pdf'):
        form = 'pdf'
    else:
        message = 'Figure name should end with png or pdf'
        print(message)
        sys.exit(0)

    # opens the document
    wks = Ngl.open_wks(form, figname)

    # set the document colormap
    # resngl = Ngl.Resources()
    # resngl.wkColorMap = 'precip2_15lev'
    # Ngl.set_values(wks, resngl)

    # Add gray to the workspace
    Ngl.new_color(wks, 0.7, 0.7, 0.7)

    # init the plot resources
    # For a detailed description, see https://www.ncl.ucar.edu/Document/Graphics/Resources/
    res = Ngl.Resources()

    # not necessary, just a good habit
    res.nglDraw = False
    res.nglFrame = False

    # Set map resources.
    res.mpLimitMode = "LatLon"     # limit map via lat/lon
    res.mpMinLatF = lat.min()         # map area
    res.mpMaxLatF = lat.max()         # latitudes
    res.mpMinLonF = lon.min()         # and
    res.mpMaxLonF = lon.max()         # longitudes
    res.mpFillOn = True
    res.mpLandFillColor = "LightGray"
    res.mpOceanFillColor = -1
    res.mpInlandWaterFillColor = "LightBlue"
    res.mpGeophysicalLineThicknessF = 1  # thickness of coastlines

    # coordinates for contour plots
    res.sfXArray = lon
    res.sfYArray = lat

    res.cnFillOn = True  # filled contour
    res.cnLinesOn = False  # no lines
    res.cnLineLabelsOn = False  # no labels
    res.cnInfoLabelOn = False  # no info about contours

    res.cnFillMode = 'CellFill'  # contourf=AreaFill, pcolor="CellFill" or "RasterFill"
    res.lbOrientation = "Horizontal"  # colorbar orientation
    res.lbLabelFontHeightF = 0.012  # colorbar label fontsize
    res.lbTitlePosition = "Bottom"  # position of colorbar title
    res.lbTitleFontHeightF = 0.012  # title font height

    # res.cnFillPalette = "wgne15"
    res.cnFillPalette = "WhiteBlueGreenYellowRed"

    txres = Ngl.Resources()
    txres.txJust = "BottomCenter"
    txres.txFontHeightF = 0.02

    res.cnLevelSelectionMode = 'ExplicitLevels'
    res.cnMaxLevelCount = 41
    res.mpGridAndLimbOn = True

    # Equations are complicated with NCARG
    # see https://www.ncl.ucar.edu/Applications/fcodes.shtml
    res.lbTitleString = "OOPE (J.kg~S~-1~N~.m~S~-2~N~)"  # title of colorbar

    # Loop over communities
    for icom in comm:
        # Loop over size classes
        for isize in xrange(0, len(size_class) - 1):

            # Extract sizes comprised between the size class bound
            iw = np.nonzero((length >= size_class[isize]) & (length < size_class[isize+1]))[0]
            if iw.size == 0:
                continue

            # Integrate OOPE for the given community and given size class
            temp = oope[:, :, icom, iw]
            temp = np.sum(temp, axis=-1)

            # Finds the colorbar limits
            cmin, cmax = misc.find_percentile(temp, percentage=1)

            # draw the contour maps
            # defines the contour
            res.cnLevels = np.linspace(cmin, cmax, res.cnMaxLevelCount)
            mapplot = Ngl.contour_map(wks, temp, res)

            # add title
            title = 'Community=%s, %.2E m <= L < %.2E m' % (comm_string[icom], size_class[isize], size_class[isize + 1])
            Ngl.text_ndc(wks, title, 0.5, 0.85, txres)

            # draws the map
            Ngl.draw(mapplot)

            # add a page to the pdf output
            Ngl.frame(wks)