Exemplo n.º 1
0
def load_depth(filePath):
    ''' Loads an depth OpenEXR image.'''

    if oe.isOpenExrFile(filePath) is not True:
        raise Exception("File ", filePath, " does not exist!")

    try:
        ifi = oe.InputFile(filePath)

        # Compute size
        header = ifi.header()
        dw = header["dataWindow"]
        w, h = dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1

        # Read the three channels
        ifiType = header["channels"]["Z"].type.v
        if ifiType is not im.PixelType.FLOAT:
            raise Exception("Only float32 supported! (file is type ", ifiType)

        Z = ifi.channel("Z", im.PixelType(ifiType))
        ifi.close()

        image = np.zeros((h, w), dtype = np.float32) # order = "C"
        image[:, :] = np.core.multiarray.fromstring(Z, dtype = np.float32).reshape(h, w)

    except:
        raise

    return image
Exemplo n.º 2
0
def matte_pass_channel_cleanup(in_path, out_path):
    """
    @params:
        in_path: Path to exr file.
        out_path: Path to write out the new exr file.
    """

    if os.path.exists(in_path) and OpenEXR.isOpenExrFile(in_path):
        channels_to_merge = defaultdict(list)
        base_channels = []

        # Read the file and header
        handle = OpenEXR.InputFile(in_path)
        header = handle.header()

        # Get the channels
        channels = header['channels']
        header['channels'] = {}
        new_channels = {}

        for channel_name, channel_data in channels.iteritems():
            match = CHANNEL_MATCH.match(channel_name)
            if match:
                layer, channel = match.groups()
                channels_to_merge[layer].append(channel)

            elif not ALPHA_MATCH.match(channel_name):
                base_channels.append(channel_name)

        for layer in base_channels:
            all_pixels = array.array( 'f', handle.channel(layer,
                 Imath.PixelType(Imath.PixelType.HALF))).tolist()
            new_channels[layer] = array.array('f', all_pixels).tostring()

        for layer, data in channels_to_merge.iteritems():
            new_pixels = []

            try:
                new_layer_name = layer.split('_')[1]
            except:
                new_layer_name = layer

            # new pixels
            new_pixels = array.array('f',
                    handle.channel('{0}.{1}'.format(layer, data[0])))
            new_channels['matte.{0}'.format(new_layer_name)] = array.array('f',
                                                         new_pixels).tostring()

        # write out new exr
        header['channels'] = dict([(c, HALF) for c in new_channels.keys()])
        out = OpenEXR.OutputFile(out_path, header)
        out.writePixels(new_channels)
Exemplo n.º 3
0
def _load_exr(ctx, filename):
    f = OpenEXR.InputFile(filename)
    dw = f.header()['dataWindow']
    shape = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
    sz = shape[0] * shape[1]
    buf = np.empty(4 * sz, np.float32)
    buf[0::4] = _read_channel(f, 'R')
    buf[1::4] = _read_channel(f, 'G')
    buf[2::4] = _read_channel(f, 'B')
    buf[3::4] = np.ones(sz, np.float32)
    return cl.Image(ctx,
                    cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR,
                    cl.ImageFormat(cl.channel_order.RGBA,
                                   cl.channel_type.FLOAT),
                    shape=shape,
                    hostbuf=buf)
Exemplo n.º 4
0
def get_image(image):
    latlong = OpenEXR.InputFile(image)
    dw = latlong.header()['dataWindow']

    width = dw.max.x - dw.min.x + 1
    height = dw.max.y - dw.min.y + 1

    (r_str, g_str, b_str) = latlong.channels("RGB", pt)
    red = numpy.fromstring(r_str, dtype=numpy.float32)
    red.shape = (height, width)  # (row, col)
    green = numpy.fromstring(g_str, dtype=numpy.float32)
    green.shape = (height, width)  # (row, col)
    blue = numpy.fromstring(b_str, dtype=numpy.float32)
    blue.shape = (height, width)  # (row, col)

    return red, green, blue, width, height
Exemplo n.º 5
0
def exr_to_png(exrfile, pngfile):
    File = OpenEXR.InputFile(exrfile)
    PixType = Imath.PixelType(Imath.PixelType.FLOAT)
    DW = File.header()['dataWindow']
    Size = (DW.max.x - DW.min.x + 1, DW.max.y - DW.min.y + 1)

    rgb = [
        numpy.fromstring(File.channel(c, PixType), dtype=numpy.float32)
        for c in 'RGB'
    ]
    for i in range(3):
        rgb[i] = numpy.where(rgb[i] <= 0.0031308, (rgb[i] * 12.92) * 255.0,
                             (1.055 * (rgb[i]**(1.0 / 2.2)) - 0.055) * 255.0)

    rgb8 = [Image.frombytes("F", Size, c.tostring()).convert("L") for c in rgb]
    Image.merge("RGB", rgb8).save(pngfile, "png", quality=100)
Exemplo n.º 6
0
 def test_reading_unknown_exr_type_fails(self):
     image, channels = _MakeTestImage(3, np.float16)
     with tempfile.NamedTemporaryFile() as temp:
         exr.write_exr(temp.name, image, channels)
         exr_file = OpenEXR.InputFile(temp.name)
         # Deliberately break the R channel header info. A mock InputFile is
         # required to override the header() method.
         header_dict = exr_file.header()
         header_dict['channels']['R'].type.v = -1  # Any bad value will do.
         make_mock_exr = collections.namedtuple('MockExr',
                                                ['header', 'channel'])
         mock_broken_exr = make_mock_exr(lambda: header_dict,
                                         exr_file.channel)
         with self.assertRaisesRegexp(RuntimeError,
                                      'Unknown EXR channel type'):
             _ = exr.channels_to_ndarray(mock_broken_exr, ['R', 'G', 'B'])
Exemplo n.º 7
0
def readexr(path):
    """EXR read helper. Requires OpenEXR."""
    import OpenEXR

    fh = OpenEXR.InputFile(path)
    dw = fh.header()['dataWindow']
    w, h = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)

    rgb = [
        np.ndarray([h, w], dtype="float32", buffer=fh.channel(c))
        for c in ['R', 'G', 'B']
    ]
    ret = np.zeros([h, w, 3], dtype='float32')
    for i in [0, 1, 2]:
        ret[:, :, i] = rgb[i]
    return ret
Exemplo n.º 8
0
    def __init__(self, f):
        self.file = OpenEXR.InputFile(f)
        pixelType = Imath.PixelType(Imath.PixelType.FLOAT)

        dw = self.file.header()['dataWindow']
        self.width = dw.max.x - dw.min.x + 1
        self.height = dw.max.y - dw.min.y + 1
        self.size = (self.width, self.height)

        redStr = self.file.channel('R', pixelType)
        greenStr = self.file.channel('G', pixelType)
        blueStr = self.file.channel('B', pixelType)

        self.blue = array.array('f', blueStr)
        self.red = array.array('f', redStr)
        self.green = array.array('f', greenStr)
def readEXRImage(filepath, channelrange):
    """Helper function for reading .exr files from the KAIST dataset.
    Returns an array with dimension ordering (C, H, W) as required by pytorch.
    """
    file = exr.InputFile(filepath)
    channels = ["w{}nm".format(wavelength) for wavelength in channelrange]
    header = file.header()
    ncols = header["displayWindow"].max.x + 1
    nrows = header["displayWindow"].max.y + 1
    pt = Imath.PixelType(Imath.PixelType.HALF)
    imgstrs = file.channels(channels, pt)
    full = np.zeros((len(channels), nrows, ncols), dtype=np.float16)
    for i, imgstr in enumerate(imgstrs):
        red = np.frombuffer(imgstr, dtype=np.float16)
        full[i, :, :] = np.reshape(red, (nrows, ncols))
    return full
Exemplo n.º 10
0
def readExr(file_path):
    exr_file = OpenEXR.InputFile(file_path)
    exr_header = exr_file.header()
    H, W = exr_header['dataWindow'].max.y + 1, exr_header[
        'dataWindow'].max.x + 1
    assert all(
        (exr_header['channels'][channel].type == Imath.PixelType(OpenEXR.HALF)
         for channel in ('R', 'G', 'B')))

    R, G, B = exr_file.channels(['R', 'G', 'B'])
    image_R = np.frombuffer(R, dtype=np.float16).reshape([H, W])
    image_G = np.frombuffer(G, dtype=np.float16).reshape([H, W])
    image_B = np.frombuffer(B, dtype=np.float16).reshape([H, W])
    image = np.stack([image_R, image_G, image_B], axis=2)

    return image
Exemplo n.º 11
0
def main(exrfile, jpgfile):
    file = OpenEXR.InputFile(exrfile)
    pt = Imath.PixelType(Imath.PixelType.FLOAT)
    dw = file.header()['dataWindow']
    size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)

    rgbf = [Image.fromstring("F", size, file.channel(c, pt)) for c in "RGB"]

    extrema = [im.getextrema() for im in rgbf]
    darkest = min([lo for (lo,hi) in extrema])
    lighest = max([hi for (lo,hi) in extrema])
    scale = 255 / (lighest - darkest)
    def normalize_0_255(v):
        return (v * scale) + darkest
    rgb8 = [im.point(normalize_0_255).convert("L") for im in rgbf]
    Image.merge("RGB", rgb8).save(jpgfile)
Exemplo n.º 12
0
def load_hdr_multichannel(path):
    """
    Loads an HDR file with RGB, normal (3 channels) and depth (1 channel)
    :param path: file location
    :return: HDR image
    """
    pt = Imath.PixelType(Imath.PixelType.FLOAT)
    rgb_img_openexr = OpenEXR.InputFile(path)
    rgb_img = rgb_img_openexr.header()['dataWindow']
    size_img = (rgb_img.max.x - rgb_img.min.x + 1, rgb_img.max.y - rgb_img.min.y + 1)

    # color
    redstr = rgb_img_openexr.channel('color.R', pt)
    red = np.fromstring(redstr, dtype=np.float32)
    red.shape = (size_img[1], size_img[0])

    greenstr = rgb_img_openexr.channel('color.G', pt)
    green = np.fromstring(greenstr, dtype=np.float32)
    green.shape = (size_img[1], size_img[0])

    bluestr = rgb_img_openexr.channel('color.B', pt)
    blue = np.fromstring(bluestr, dtype=np.float32)
    blue.shape = (size_img[1], size_img[0])

    color = np.dstack((red, green, blue))

    # normal
    normal_x_str = rgb_img_openexr.channel('normal.R', pt)
    normal_x = np.fromstring(normal_x_str, dtype=np.float32)
    normal_x.shape = (size_img[1], size_img[0])

    normal_y_str = rgb_img_openexr.channel('normal.G', pt)
    normal_y = np.fromstring(normal_y_str, dtype=np.float32)
    normal_y.shape = (size_img[1], size_img[0])

    normal_z_str = rgb_img_openexr.channel('normal.B', pt)
    normal_z = np.fromstring(normal_z_str, dtype=np.float32)
    normal_z.shape = (size_img[1], size_img[0])

    normal = np.dstack((normal_x, normal_y, normal_z))

    # depth
    depth_str = rgb_img_openexr.channel('distance.Y', pt)
    depth = np.fromstring(depth_str, dtype=np.float32)
    depth.shape = (size_img[1], size_img[0])

    return color, depth, normal
Exemplo n.º 13
0
def ext2hdr(exrpath):
    File = OpenEXR.InputFile(exrpath)
    PixType = Imath.PixelType(Imath.PixelType.FLOAT)
    DW = File.header()['dataWindow']
    Size = (DW.max.x - DW.min.x + 1, DW.max.y - DW.min.y + 1)
    rgb = [
        numpy.fromstring(File.channel(c, PixType), dtype=numpy.float32)
        for c in 'RGB'
    ]
    r = numpy.reshape(rgb[0], (Size[1], Size[0]))
    g = numpy.reshape(rgb[1], (Size[1], Size[0]))
    b = numpy.reshape(rgb[2], (Size[1], Size[0]))
    hdr = numpy.zeros((Size[1], Size[0], 3), dtype=numpy.float32)
    hdr[:, :, 0] = b
    hdr[:, :, 1] = g
    hdr[:, :, 2] = r
    return hdr
Exemplo n.º 14
0
def get_color_array(path):
    pixel_type = Imath.PixelType(Imath.PixelType.FLOAT)
    file = OpenEXR.InputFile(path)
    data_window = file.header()['dataWindow']
    size = (data_window.max.x - data_window.min.x + 1,
            data_window.max.y - data_window.min.y + 1)
    r_str = file.channel('R', pixel_type)
    g_str = file.channel('G', pixel_type)
    b_str = file.channel('B', pixel_type)
    r = np.frombuffer(r_str, dtype=np.float32)
    r.shape = (size[1], size[0], 1)
    g = np.frombuffer(g_str, dtype=np.float32)
    g.shape = (size[1], size[0], 1)
    b = np.frombuffer(b_str, dtype=np.float32)
    b.shape = (size[1], size[0], 1)
    rgb = np.concatenate([r, g, b], axis=2)
    return rgb
Exemplo n.º 15
0
def readEXR(hdrfile):
    pt = Imath.PixelType(Imath.PixelType.FLOAT)
    hdr_t = OpenEXR.InputFile(hdrfile)
    dw = hdr_t.header()['dataWindow']
    size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
    rstr = hdr_t.channel('R', pt)
    gstr = hdr_t.channel('G', pt)
    bstr = hdr_t.channel('B', pt)
    r = np.fromstring(rstr, dtype=np.float32)
    r.shape = (size[1], size[0])
    g = np.fromstring(gstr, dtype=np.float32)
    g.shape = (size[1], size[0])
    b = np.fromstring(bstr, dtype=np.float32)
    b.shape = (size[1], size[0])
    res = np.stack([r, g, b], axis=-1)
    imhdr = np.asarray(res)
    return imhdr
Exemplo n.º 16
0
def getPixels(path):
    image = OpenEXR.InputFile(path)
    header = image.header()
    pt = Imath.PixelType(Imath.PixelType.FLOAT)
    dw = header['dataWindow']
    x, y = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)

    im = numpy.zeros((x, y, 3))
    im[:, :, 0] = numpy.frombuffer(image.channel('R', pt),
                                   dtype=numpy.float32).reshape((x, y))
    im[:, :, 1] = numpy.frombuffer(image.channel('G', pt),
                                   dtype=numpy.float32).reshape((x, y))
    im[:, :, 2] = numpy.frombuffer(image.channel('B', pt),
                                   dtype=numpy.float32).reshape((x, y))

    im = numpy.clip(im, 0, 1)
    return srgb.to(im), x, y
Exemplo n.º 17
0
    def __init__(self, image_path):
        exrfile = exr.InputFile(image_path)
        dw = exrfile.header()['dataWindow']
        channels = ['R', 'G', 'B', 'A']

        self.header = exrfile.header()
        self.channels = []
        self.size = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1)
        self.channelData = dict()

        for c in self.header['channels']:
            self.channels.append(c)
            C = exrfile.channel(c, Imath.PixelType(Imath.PixelType.FLOAT))
            C = np.fromstring(C, dtype=np.float32)
            C = np.reshape(C, self.size)

            self.channelData[c] = C
Exemplo n.º 18
0
def process_depth(exr_path):
    depth_exr = OpenEXR.InputFile(exr_path)
    dw = depth_exr.header()['dataWindow']
    sz = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)

    depth = depth_exr.channel('Image.V', Imath.PixelType(Imath.PixelType.FLOAT))
    depth = np.fromstring(depth, dtype='float32')
    depth.shape = (sz[1], sz[0])
    depth = depth.astype('float32') * 10000

    depth = depth.astype(np.uint16)
    mask = 255 * np.ones(shape=depth.shape, dtype='uint8')
    mask[depth == 0] = 0

    os.remove(exr_path)

    return depth, mask
Exemplo n.º 19
0
def exr2arr(exrfile):
    file = OpenEXR.InputFile(exrfile)
    dw = file.header()['dataWindow']

    channels = file.header()['channels'].keys()
    channels_list = list()
    for c in ('R', 'G', 'B', 'A'):
        if c in channels:
            channels_list.append(c)

    # the shape had incorrect order
    #size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
    size = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1)
    color_channels = file.channels(channels_list, Imath.PixelType(Imath.PixelType.FLOAT))
    channels_tuple = [np.fromstring(channel, dtype='f') for channel in color_channels]
    res = np.dstack(channels_tuple)
    return res.reshape(size + (len(channels_tuple),))
Exemplo n.º 20
0
def read_exr_image(exr_filename, channels=['R', 'G', 'B']):
    exrfile = exr.InputFile(exr_filename)
    dw = exrfile.header()['dataWindow']
    isize = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1)
    channelData_arr = dict()

    for c in channels:
        C = exrfile.channel(c, Imath.PixelType(Imath.PixelType.FLOAT))
        C = np.fromstring(C, dtype=np.float32)
        C = np.reshape(C, isize)
        channelData_arr[c] = C

    # get the whole array
    img_arr = np.concatenate(
        [channelData_arr[c][..., np.newaxis] for c in ['R', 'G', 'B']],
        axis=2)  # (res, res, 3)
    return img_arr
Exemplo n.º 21
0
def loadexr(filename):
    """Open an exr image and return a numpy array."""
    f = OpenEXR.InputFile(filename)
    dw = f.header()['dataWindow']
    sz = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1)

    # Read the three color channels as 32-bit floats
    FLOAT = Imath.PixelType(Imath.PixelType.FLOAT)
    image = np.empty((sz[0], sz[1], 3), dtype=np.float32)
    image[..., 0] = np.fromstring(f.channel("R", FLOAT),
                                  dtype=np.float32).reshape(sz)
    image[..., 1] = np.fromstring(f.channel("G", FLOAT),
                                  dtype=np.float32).reshape(sz)
    image[..., 2] = np.fromstring(f.channel("B", FLOAT),
                                  dtype=np.float32).reshape(sz)

    return image
Exemplo n.º 22
0
def readEXR(filename):
    """Read color + depth data from EXR image file.
    
    Parameters
    ----------
    filename : str
        File path.
        
    Returns
    -------
    img : Float matrix
    Z : Depth buffer in float32 format or None if the EXR file has no Z channel.
    """

    exrfile = exr.InputFile(filename)
    header = exrfile.header()

    dw = header["dataWindow"]
    isize = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1)

    channelData = dict()

    # convert all channels in the image to numpy arrays
    for c in header["channels"]:
        C = exrfile.channel(c, Imath.PixelType(Imath.PixelType.FLOAT))
        C = np.frombuffer(C, dtype=np.float32)
        C = np.reshape(C, isize)

        channelData[c] = C

    colorChannels = (["R", "G", "B", "A"]
                     if "A" in header["channels"] else ["R", "G", "B"])
    img = np.concatenate(
        [channelData[c][..., np.newaxis] for c in colorChannels], axis=2)

    # linear to standard RGB
    # img[..., :3] = np.where(img[..., :3] <= 0.0031308,
    #                       12.92 * img[..., :3],
    #                        1.055 * np.power(img[..., :3], 1 / 2.4) - 0.055)

    # sanitize image to be in range [0, 1]
    # img = np.where(img < 0.0, 0.0, np.where(img > 1.0, 1, img))

    Z = None if "Z" not in header["channels"] else channelData["Z"]

    return img, Z
Exemplo n.º 23
0
def readEXR(filenameEXR):
    pt = Imath.PixelType(
        Imath.PixelType.FLOAT
    )  #only works hard-coding this and np.float32, instead of using the value from: exr.header()['channels'][c].type
    exr = OpenEXR.InputFile(filenameEXR)
    dw = exr.header()['dataWindow']
    size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
    #this needs to be fixed. 2 of the following 3 lines swap axes.
    rgb = np.swapaxes(
        np.array([
            np.fromstring(exr.channel(c, pt), dtype=np.float32) for c in "RGB"
        ]), 0, 1)  #I guess if we used HALF we would need to use np.float16
    rgb.shape = (size[1], size[0], 3)  #numpy array are (row, col) = (y, x)
    rgb = np.swapaxes(rgb, 0,
                      1)  #(y,x,c) -> (x,y,c) #probably (x,y,c) -> (y,x,c)
    exr.close()
    return rgb
Exemplo n.º 24
0
def read_openexr(fname):
    file = OpenEXR.InputFile(fname)
    header = file.header()
    dw = header['dataWindow']
    pt = Imath.PixelType(Imath.PixelType.HALF)
    shape = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1)
    r = np.frombuffer(file.channel('Color.R', pt),
                      dtype=np.float16).reshape(shape + (1, ))
    g = np.frombuffer(file.channel('Color.G', pt),
                      dtype=np.float16).reshape(shape + (1, ))
    b = np.frombuffer(file.channel('Color.B', pt),
                      dtype=np.float16).reshape(shape + (1, ))
    a = np.frombuffer(file.channel('Color.A', pt),
                      dtype=np.float16).reshape(shape + (1, ))
    img = np.concatenate((r, g, b, a), -1).astype(np.float32)
    file.close()
    return img
def loadEXR(fname, channelNames):
    # Open the input file
    f = OpenEXR.InputFile(fname)

    # Compute the size
    dw = f.header()['dataWindow']
    sz = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)

    # Read the three  color channels as 32-bit floats
    FLOAT = Imath.PixelType(Imath.PixelType.FLOAT)
    channels = [
        array.array('f', f.channel(Chan, FLOAT)).tolist()
        for Chan in channelNames
    ]

    channels = [np.array(channel).reshape(sz) for channel in channels]
    return np.array(channels)
 def load_exr(self, prefix_dir, prefix, file_kind, expected_height,
              expected_width):
     exr_file = OpenEXR.InputFile(
         os.path.join(prefix_dir, prefix + "-" + file_kind + ".exr"))
     cm_dw = exr_file.header()['dataWindow']
     exr_data = np.fromstring(exr_file.channel(
         'R', Imath.PixelType(Imath.PixelType.HALF)),
                              dtype=np.float16)
     exr_data.shape = (cm_dw.max.y - cm_dw.min.y + 1,
                       cm_dw.max.x - cm_dw.min.x + 1)  # rows, cols
     if exr_data.shape[0] != expected_height:
         print("[ERROR] ", prefix, file_kind, " != expected image height",
               exr_data.shape[0], expected_height)
     if exr_data.shape[1] != expected_width:
         print("[ERROR] ", prefix, file_kind, " width != image width",
               exr_data.shape[1], expected_width)
     return exr_data
Exemplo n.º 27
0
def convert_to_numpy(img_list, intens=None):
    imgs = []
    for idx, img_name in enumerate(img_list):
        if idx % 10 == 0:
            print('Current idx %d' % (idx))
        img = exr_to_array(OpenEXR.InputFile(img_name), 'color')
        if intens is not None:
            img = np.dot(img, intens[idx])
            save_suffix = '_calib.npy'
        else:
            save_suffix = '_uncalib.npy'
        imgs.append(img)
    img_array = np.concatenate(imgs, 2)
    save_name = os.path.dirname(img_name) + save_suffix
    print('Saving numpy array to %s' % (save_name))
    np.save(save_name, img_array)
    return img_array
def ConvertEXRToJPG(exrfile, jpgfile):
    File = OpenEXR.InputFile(exrfile)
    PixType = Imath.PixelType(Imath.PixelType.FLOAT)
    DW = File.header()['dataWindow']
    Size = (DW.max.x - DW.min.x + 1, DW.max.y - DW.min.y + 1)

    rgb = [
        np.fromstring(File.channel(c, PixType), dtype=np.float32)
        for c in 'RGB'
    ]
    for i in range(3):
        rgb[i] = np.where(rgb[i] <= 0.0031308, (rgb[i] * 12.92) * 255.0,
                          (1.055 * (rgb[i]**(1.0 / 2.4)) - 0.055) * 255.0)

    rgb8 = [Image.frombytes("F", Size, c.tostring()).convert("L") for c in rgb]
    # rgb8 = [Image.fromarray(c.astype(int)) for c in rgb]
    Image.merge("RGB", rgb8).save(jpgfile, "JPEG", quality=95)
Exemplo n.º 29
0
def get_point_cloud_from_exr(path, pos, ori, intrinsic):
    exr_file = OpenEXR.InputFile(path)
    PixType = Imath.PixelType(Imath.PixelType.FLOAT)
    DW = exr_file.header()['dataWindow']
    Size = (DW.max.x - DW.min.x + 1, DW.max.y - DW.min.y + 1)
    rgb = [
        np.frombuffer(exr_file.channel(c, PixType), dtype=np.float32)
        for c in 'RGB'
    ]
    img = np.reshape(rgb[0], (Size[1], Size[0]))
    depth = cv2.resize(
        img, (224, 224),
        interpolation=cv2.INTER_NEAREST)  # all float number indicate distance
    pc = Depth2PointCloud(depth, intrinsic, ori, pos,
                          org_size=img.shape).transpose()
    inf_idx = (pc != pc) | (np.abs(pc) > 100)
    pc[inf_idx] = 0.0
    pc_index = np.nonzero(pc[:, 2] > 0.002)[0]
    pc = pc[pc_index]

    pc_x = pc[:, 0]
    pc_y = pc[:, 1]
    pc_z = pc[:, 2]
    del_idx = (pc_x < -0.22 / 2) | (pc_x > 0.22 / 2) | (pc_y < -0.22 / 2) | (
        pc_y > 0.22 / 2) | (pc_z > 0.22)
    pc = pc[np.logical_not(del_idx)]

    xyz_max = pc.max(0)
    xyz_min = pc.min(0)
    xyz_diff = xyz_max - xyz_min
    xyz_idx = np.where(xyz_diff < 0.22 / 10)[0]
    if xyz_idx.shape[0] > 0:
        xyz_max[xyz_idx] += (0.22 / 10)
        xyz_min[xyz_idx] -= (0.22 / 10)
    grids = generate_grid(0.22, 10)
    grid_choose = (xyz_min.reshape(1, -1) <= grids) * (grids <=
                                                       xyz_max.reshape(1, -1))
    grid_choose = (grid_choose.sum(1) == 3)
    grids = grids[grid_choose]
    if grids.shape[0] > 400:
        idx = np.random.choice(np.arange(grids.shape[0]), 400, replace=False)
        grids = grids[idx]
    contact_index = np.arange(pc.shape[0])
    pc = pc / np.array([0.22 / 2, 0.22 / 2, 0.22])
    return pc, grids, contact_index
Exemplo n.º 30
0
	def loadEXR(self, filename):
		import OpenEXR
		import Imath
		
		pt = Imath.PixelType(Imath.PixelType.HALF)
		image = OpenEXR.InputFile(filename)
		header = image.header()
		dw = header['dataWindow']
		channels = header['channels']
		size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
		self.source_width = size[0]
		self.source_height = size[1]
		
		if self.parm("width").eval() != 0:
			self.width = self.parm("width").eval()
		else:
			self.width = self.source_width
					
		if self.parm("height").eval() != 0:
			self.height = self.parm("height").eval() 
		else:
			self.height = self.source_height
		
		redstr = image.channel('R', pt)
		host_buff_r = numpy.fromstring(redstr, dtype = numpy.float16)
		host_buff_r.shape = (size[1], size[0]) # Numpy arrays are (row, col)
		self.devInBufferR = cl.Image(self.engine.ctx, self.engine.mf.READ_ONLY | self.engine.mf.COPY_HOST_PTR, cl.ImageFormat(cl.channel_order.INTENSITY, cl.channel_type.HALF_FLOAT), shape=(self.source_width, self.source_height,), pitches=(self.source_width * 2,), hostbuf=host_buff_r)
		
		greenstr = image.channel('G', pt)
		host_buff_g = numpy.fromstring(greenstr, dtype = numpy.float16)
		host_buff_g.shape = (size[1], size[0]) # Numpy arrays are (row, col)
		self.devInBufferG = cl.Image(self.engine.ctx, self.engine.mf.READ_ONLY | self.engine.mf.COPY_HOST_PTR, cl.ImageFormat(cl.channel_order.INTENSITY, cl.channel_type.HALF_FLOAT), shape=(self.source_width, self.source_height,), pitches=(self.source_width * 2,), hostbuf=host_buff_g)
		
		bluestr = image.channel('B', pt)
		host_buff_b = numpy.fromstring(bluestr, dtype = numpy.float16)
		host_buff_b.shape = (size[1], size[0]) # Numpy arrays are (row, col)
		self.devInBufferB = cl.Image(self.engine.ctx, self.engine.mf.READ_ONLY | self.engine.mf.COPY_HOST_PTR, cl.ImageFormat(cl.channel_order.INTENSITY, cl.channel_type.HALF_FLOAT), shape=(self.source_width, self.source_height,), pitches=(self.source_width * 2,), hostbuf=host_buff_b)
		
		if(channels.get('A') is not None):
			alphastr = image.channel('A', pt)
			host_buff_a = numpy.fromstring(alphastr, dtype = numpy.float16)
			host_buff_a.shape = (size[1], size[0]) # Numpy arrays are (row, col)
			self.devInBufferA = cl.Image(self.engine.ctx, self.engine.mf.READ_ONLY | self.engine.mf.COPY_HOST_PTR, cl.ImageFormat(cl.channel_order.INTENSITY, cl.channel_type.HALF_FLOAT), shape=(self.source_width, self.source_height,), pitches=(self.source_width * 2,), hostbuf=host_buff_a)
		else:
			self.devInBufferA = cl.Image(self.engine.ctx, self.engine.mf.READ_ONLY | self.engine.mf.COPY_HOST_PTR, cl.ImageFormat(cl.channel_order.INTENSITY, cl.channel_type.HALF_FLOAT), shape=(self.source_width, self.source_height,), pitches=(self.source_width * 2,), hostbuf=numpy.ones(self.source_width * self.source_height, dtype = numpy.float16))
Exemplo n.º 31
0
def colorDeptImage(colorFile, depthFile):
    pt = Imath.PixelType(Imath.PixelType.FLOAT)
    depthFile_ = OpenEXR.InputFile(depthFile)
    dw = depthFile_.header()['dataWindow']
    size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
    depthstr = depthFile_.channel('Y', pt)
    depth = np.fromstring(depthstr, dtype=np.float32)
    depth.shape = (size[1], size[0])

    img = cv2.imread(colorFile)
    imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    res, thresh = cv2.threshold(imgray, 120, 255, 0)
    img0, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                                 cv2.CHAIN_APPROX_SIMPLE)
    contours = list(
        filter(
            lambda x: cv2.contourArea(x) > 1000 and cv2.contourArea(x) < 5000,
            contours))
Exemplo n.º 32
0
def loadImageWithOpenEXR(exrfile):
    # Taken from http://discourse.techart.online/t/exr-files-into-pyqt-interface/3325/9
    file = OpenEXR.InputFile(exrfile)
    pt = Imath.PixelType(Imath.PixelType.FLOAT)
    dw = file.header()['dataWindow']
    size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)

    rgbf = [Image.frombytes("F", size, file.channel(c, pt)) for c in "RGB"]

    extrema = [im.getextrema() for im in rgbf]
    darkest = min([lo for (lo,hi) in extrema])
    lighest = max([hi for (lo,hi) in extrema])
    scale = 255 / (lighest - darkest)
    def normalize_0_255(v):
         return (v * scale) + darkest
    rgb8 = [im.point(normalize_0_255).convert("L") for im in rgbf]
    myjpg = Image.merge("RGB", rgb8)
    return myjpg
Exemplo n.º 33
0
def exrHeaderInfo(imagePath):
    '''
    check if the EXR is valid, read the header and return a key, value dict of its values
    '''
    if not 'OpenEXR' in sys.modules.keys():
        print "No openEXR module"
        return

    #check it is a valid EXR
    if OpenEXR.isOpenExrFile(imagePath):
        infile = OpenEXR.InputFile(imagePath)

    if not infile.isComplete():
        print "Invalid EXR: %s" %imagePath
        #return True here as we still want the directory scan to continue
        return True

    EXRheader = infile.header()
    rDict = {}
    for k,v in EXRheader.iteritems():
        rDict[k]=v
        #print k,v

    return rDict
Exemplo n.º 34
0
Arquivo: exr.py Projeto: tvogels/pyexr
def open(filename):
  # Check if the file is an EXR file
  if not OpenEXR.isOpenExrFile(filename):
    raise Exception("File '%s' is not an EXR file." % filename)
  # Return an `InputFile`
  return InputFile(OpenEXR.InputFile(filename), filename)
Exemplo n.º 35
-1
def load_rgb(filePath):
    ''' Loads an rgb OpenEXR image.'''

    if oe.isOpenExrFile(filePath) is not True:
        raise Exception("File ", filePath, " does not exist!")

    try:
        ifi = oe.InputFile(filePath)

        # Compute size
        header = ifi.header()
        dw = header["dataWindow"]
        w, h = dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1

        # Read the three channels
        ifiType = header["channels"]["R"].type.v
        if ifiType is not im.PixelType.UINT:
            raise Exception("Only uint32 supported! (file is type ", ifiType)

        R = ifi.channel("R", im.PixelType(ifiType))
        G = ifi.channel("G", im.PixelType(ifiType))
        B = ifi.channel("B", im.PixelType(ifiType))
        ifi.close()

        image = np.zeros((h, w, 3), dtype = np.uint32) # order = "C"
        image[:, :, 0] = np.core.multiarray.fromstring(R, dtype = np.uint32).reshape(h, w)
        image[:, :, 1] = np.core.multiarray.fromstring(G, dtype = np.uint32).reshape(h, w)
        image[:, :, 2] = np.core.multiarray.fromstring(B, dtype = np.uint32).reshape(h, w)

    except:
        raise

    return image