Exemplo n.º 1
0
def do_gridSearch(training_shp, training_image, model_out_path, bands):
    PYEO_model.train_cairan_model(image_path=training_image,
                                  shp_path=training_shp,
                                  outModel_path=model_out_path,
                                  bands=bands,
                                  attribute='Id',
                                  shape_projection_id=32630)
Exemplo n.º 2
0
def do_grid_search(
    training_shape,
    training_image,
    image_out_path,
    model_out_path,
):
    PYEO_model.train_cairan_model(image_dir=s0_dir,
                                  outModel_path=outModel,
                                  bands=8,
                                  attribute='Code')

    features, classes = get_training_data(training_image,
                                          training_shape,
                                          attribute="Id")
    print(features.shape)
    print(classes.shape)

    X_train, X_test, y_train, y_test = train_test_split(
        features.astype(np.uint8),
        classes.astype(np.uint8),
        train_size=0.7,
        test_size=0.3)

    # grid search for the best parameters for SVM
    # https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
    # C_range = np.logspace(0, 1, 2, base=10)  # base = 2 for a fine tuning
    # gamma_range = np.logspace(0, 128, 2, base=10)
    # param_grid = dict(gamma=gamma_range, C=C_range)
    # cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
    # grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv, n_jobs=6)
    # grid.fit(X_train, y_train)
    #
    # print("The best parameters are %s with a score of %0.2f"
    #       % (grid.best_params_, grid.best_score_))
    # c, gamma = grid.best_params_
    #  c=
    #  gamma =
    model = svm.SVC(kernel='rbf')
    #    model = TPOTClassifier(generations=10, population_size=20, verbosity=2,n_jobs=-1)
    model.fit(features, classes)
    print(model.score(X_test, y_test))
    model.export(model_out_path)