def peak_picking(unit, start_time): #checkFile): if (start_time == 0): end_time = 605 else: end_time = start_time + 610 checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_detections.npy" li = np.load(checkFile) peaks = [] saveFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_peaks" for i in range(len(li)): #first input if (i - 1 < 0): if (li[i + 1] < li[i]): peaks.append((li[i], (i * 0.0232))) #last input if ((i + 1) == len(li)): if (li[i - 1] < li[i]): peaks.append((li[i], (i * 0.0232))) #middle inputs if ((i - 1 > 0) and ((i + 1) != len(li)) and (li[i - 1] < li[i]) and (li[i + 1] < li[i])): peaks.append((li[i], (i * 0.0232))) np.save(saveFile, peaks)
def initializeQtTranslations(language=None): from PyQt4.QtCore import QTranslator, QCoreApplication, QLocale if not language: language = str(QLocale.system().name()) # First we try to load the file with the same system language name # Usually in $LANG and looks something like ca_ES, de_DE, etc. file = Paths.searchFile( '%s.qm' % language, 'l10n' ) if not file: # If the first step didn't work try to remove country # information and try again. language = language.split('_')[0] file = Paths.searchFile( '%s.qm' % language, 'l10n' ) # If no translation files were found, don't crash # but continue silently. if file: translator = QTranslator( QCoreApplication.instance() ) translator.load( file ) QCoreApplication.instance().installTranslator( translator ) # First we try to load the file with the same system language name # Usually in $LANG and looks something like ca_ES, de_DE, etc. file = Paths.searchFile( 'qt_%s.qm' % language, 'l10n' ) if not file: # If the first step didn't work try to remove country # information and try again. language = language.split('_')[0] file = Paths.searchFile( 'qt_%s.qm' % language, 'l10n' ) # If no translation files were found, don't crash # but continue silently. if file: translator = QTranslator( QCoreApplication.instance() ) translator.load( file ) QCoreApplication.instance().installTranslator( translator )
def send_login_request(self, username, password, state): #TODO: add encryption and stuff msg = OpCodes.login + username + ',' + password + ';' print 'Sending login message: ' + msg self.sock.send(msg) response = self.recv_one_blocking() if response == OpCodes.login_accepted: print 'login accepted' Paths.init(username) frnds_list_msg = self.recv_one_blocking() #TODO: also check that there aren't any data files of non friends if frnds_list_msg[:OpCodes.num_char] == OpCodes.friends_list: f_list = [f for f in frnds_list_msg[OpCodes.num_char:].split(',') if f] for f in f_list: frnd = Friend.Friend(f) Shared.friends_list.append(frnd) self.sock.setblocking(0) self.message(OpCodes.my_state_changed, state) return True if response == OpCodes.login_declined: print 'login declined' return False
def threshold(unit, start_time, thresh): if (start_time == 0): end_time = 605 else: end_time = start_time + 610 checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_peaks.npy" threshold_peaks = [] predicted = [] groundValues = [] for i in np.load(checkFile): if (i[0] >= thresh): threshold_peaks.append(i) predicted.append(i[1]) #+38340) truth = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + ".txt" for line in open(truth, 'r'): line = line.strip('\n') line = float(line) - 38340 groundValues.append(line) groundValues = np.array(groundValues) predicted = np.array(predicted) F, P, R = mir_eval.onset.f_measure( groundValues, predicted) #(reference_onsets, estimated_onsets) return F, P, R
def onset(unit, start_time, fmin_input, h_length): if (start_time == 0): end_time = 605 else: end_time = start_time + 610 duration_length = end_time - start_time file = p.get_trimmed_audio() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + ".wav" y, sr = librosa.load(file, duration=duration_length) D = librosa.stft(y) times = librosa.frames_to_time(np.arange(D.shape[1])) onset_env = librosa.onset.onset_strength(y=y, sr=sr, fmin=fmin_input, hop_length=h_length) #,fmin=1000) print(onset_env) saveFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_detections" checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_detections.npy" np.save(saveFile, onset_env)
def peak_picking(unit, start_time, end_time): #checkFile): checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_detections.npy" li = np.load(checkFile) #[100,50,30,45,25,60,12,100,90,80,300] peaks = [] saveFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_peaks" for i in range(len(li)): #first input if (i - 1 < 0): if (li[i + 1] < li[i]): #print(li[i],i) peaks.append((li[i], i)) #last input if ((i + 1) == len(li)): if (li[i - 1] < li[i]): peaks.append((li[i], i)) #print(li[i],i) #middle inputs if ((i - 1 > 0) and ((i + 1) != len(li)) and (li[i - 1] < li[i]) and (li[i + 1] < li[i])): peaks.append((li[i], i)) #print(li[i],i) np.save(saveFile, peaks)
def threshold(unit, start_time, end_time, thresh): checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str(start_time) + "_E_" + str(end_time) + "_peaks.npy" threshold_peaks = [] predicted = [] groundValues = [] for i in np.load(checkFile): if (i[0]>thresh): threshold_peaks.append(i) predicted.append(i[1]) #+38340) truth = p.get_data() + str(unit).zfill(2) + "_S_" + str(start_time) + "_E_" + str(end_time) + ".txt" for line in open(truth,'r'): line = line.strip('\n') line = float(line) - 38340 groundValues.append(line) groundValues = np.array(groundValues) predicted = np.array(predicted) F, P, R = mir_eval.onset.f_measure(groundValues,predicted) #(reference_onsets, estimated_onsets) print("F-Measure: " + str(F)) print("Precision: " + str(P)) print("Recall: "+ str(R)) print("***********************")
def threshold(unit, start_time, end_time, thresh): checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str(start_time) + "_E_" + str(end_time) + "_peaks.npy" threshold_peaks = [] for i in np.load(checkFile): if (i>thresh): threshold_peaks.append(i) saveFile = p.get_data() + str(unit).zfill(2) + "_S_" + str(start_time) + "_E_" + str(end_time) + "_thresh_peaks.npy" np.save(saveFile, threshold_peaks)
def compare(apps=None, testLocales=None): result = {} c = CompareCollector() fltr = collectFiles(c, apps=apps, locales=testLocales) key = re.compile('[kK]ey') for fl, locales in c.cl.iteritems(): (mod, path) = fl try: parser = Parser.getParser(path) except UserWarning: logging.warning(" Can't compare " + path + " in " + mod) continue parser.read(Paths.get_path(mod, 'en-US', path)) enMap = parser.mapping() for loc in locales: if not result.has_key(loc): result[loc] = { 'missing': [], 'obsolete': [], 'changed': 0, 'unchanged': 0, 'keys': 0 } enTmp = dict(enMap) parser.read(Paths.get_path(mod, loc, path)) for k, v in parser: if not fltr(mod, path, k): if enTmp.has_key(k): del enTmp[k] continue if not enTmp.has_key(k): result[loc]['obsolete'].append((mod, path, k)) continue enVal = enTmp[k] del enTmp[k] if key.search(k): result[loc]['keys'] += 1 else: if enVal == v: result[loc]['unchanged'] += 1 logging.info('%s in %s unchanged' % (k, Paths.get_path(mod, loc, path))) else: result[loc]['changed'] += 1 result[loc]['missing'].extend( filter(lambda t: fltr(*t), [(mod, path, k) for k in enTmp.keys()])) for loc, dics in c.files.iteritems(): if not result.has_key(loc): result[loc] = dics else: for key, list in dics.iteritems(): result[loc][key] = list for loc, mods in c.modules.iteritems(): result[loc]['tested'] = mods return result
def onset(unit, start_time, end_time, fmin_input): file = p.get_trimmed_audio() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + ".wav" y, sr = librosa.load(file, duration=60.0) #"/Users/nicholaswhite/Desktop/test_audio.wav", duration=10.0) D = librosa.stft(y) times = librosa.frames_to_time(np.arange(D.shape[1])) plt.figure() ax1 = plt.subplot(2, 1, 1) #librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), # y_axis='log', x_axis='time',fmin=fmin) S = librosa.feature.melspectrogram(y, sr=sr, fmin=fmin_input) librosa.display.specshow(librosa.power_to_db(S, ref=np.max), y_axis='mel', fmax=8000, x_axis='time') plt.title('Power spectrogram') # Construct a standard onset function onset_env = librosa.onset.onset_strength(y=y, sr=sr, fmin=fmin_input) #,fmin=1000) plt.subplot(2, 1, 2, sharex=ax1) plt.plot(times, 2 + onset_env / onset_env.max(), alpha=0.8, label='Mean (mel)') saveFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_onsets" checkFile = p.get_data() + str(unit).zfill(2) + "_S_" + str( start_time) + "_E_" + str(end_time) + "_onsets.npy" np.save(saveFile, onset_env) # Median aggregation, and custom mel options #onset_env = librosa.onset.onset_strength(y=y, sr=sr, #aggregate=np.median, #fmax=8000, n_mels=256) #plt.plot(times, 1 + onset_env / onset_env.max(), alpha=0.8, #label='Median (custom mel)') # Constant-Q spectrogram instead of Mel #onset_env = librosa.onset.onset_strength(y=y, sr=sr, # feature=librosa.cqt) #plt.plot(times, onset_env / onset_env.max(), alpha=0.8, # label='Mean (CQT)') plt.legend(frameon=True, framealpha=0.75) plt.ylabel('Normalized strength') plt.yticks([]) plt.axis('tight') plt.tight_layout() plt.show()
def getServerFiles(pathArray, ext): serverFiles = [] for path in pathArray: print(path, Paths.isdir(path)) if Paths.isdir(path): print('a') for file in Paths.listdir(path, ext): fileWOExt = file.split('.', 1)[0] if fileWOExt not in serverFiles: serverFiles.append(fileWOExt) return serverFiles
def __init__(self, dataset, direction: RelationDirection, inheritance_graph_path=None): if not inheritance_graph_path: inheritance_graph_path = Paths.inheritance_graph_filename(dataset) self._implements_inheritance_dict = FileUtil.read_dict_from_json( inheritance_graph_path) self._direction = direction self._class2file_map = FileUtil.read_dict_from_json( Paths.classifier_to_file_map_filename(dataset))
def checkLanguages(self): for lan in Paths.listdir(Paths.text): if Paths.isdir(Paths.text+lan): lanCfgFile = Paths.getLanCfgFile(lan) if Paths.isfile(lanCfgFile): settings = loadJsonFile(lanCfgFile, self) if 'errors' in settings and 'lan' in settings: if ('lanNotExists' in settings['errors'] and 'txtTypeNotExists' in settings['errors']): self.availableLan[lan] = settings['lan'] self.baseErrors[lan] = {'lanNotExists': settings['errors']['lanNotExists'], 'txtTypeNotExists': settings['errors']['txtTypeNotExists']}
def compare(apps=None, testLocales=None): result = {} c = CompareCollector() fltr = collectFiles(c, apps=apps, locales=testLocales) key = re.compile('[kK]ey') for fl, locales in c.cl.iteritems(): (mod,path) = fl try: parser = Parser.getParser(path) except UserWarning: logging.warning(" Can't compare " + path + " in " + mod) continue parser.read(Paths.get_path(mod, 'en-US', path)) enMap = parser.mapping() for loc in locales: if not result.has_key(loc): result[loc] = {'missing':[],'obsolete':[], 'changed':0,'unchanged':0,'keys':0} enTmp = dict(enMap) parser.read(Paths.get_path(mod, loc, path)) for k,v in parser: if not fltr(mod, path, k): if enTmp.has_key(k): del enTmp[k] continue if not enTmp.has_key(k): result[loc]['obsolete'].append((mod,path,k)) continue enVal = enTmp[k] del enTmp[k] if key.search(k): result[loc]['keys'] += 1 else: if enVal == v: result[loc]['unchanged'] +=1 logging.info('%s in %s unchanged' % (k, Paths.get_path(mod, loc, path))) else: result[loc]['changed'] +=1 result[loc]['missing'].extend(filter(lambda t: fltr(*t), [(mod,path,k) for k in enTmp.keys()])) for loc,dics in c.files.iteritems(): if not result.has_key(loc): result[loc] = dics else: for key, list in dics.iteritems(): result[loc][key] = list for loc, mods in c.modules.iteritems(): result[loc]['tested'] = mods return result
def collectFiles(aComparer, apps=None, locales=None): ''' returns new files, files to compare, files to remove apps or locales need to be given, apps is a list, locales is a hash mapping applications to languages. If apps is given, it will look up all-locales for all apps for the languages to test. 'toolkit' is added to the list of modules, too. ''' if not apps and not locales: raise RuntimeError, "collectFiles needs either apps or locales" if apps and locales: raise RuntimeError, "You don't want to give both apps or locales" if locales: apps = locales.keys() # add toolkit, with all of the languages of all apps all = set() for locs in locales.values(): all.update(locs) locales['toolkit'] = list(all) else: locales = Paths.allLocales(apps) modules = Paths.Modules(apps) en = FileCollector() l10n = FileCollector() # load filter functions for each app fltrs = [] for app in apps: filterpath = 'mozilla/%s/locales/filter.py' % app if not os.path.exists(filterpath): continue l = {} execfile(filterpath, {}, l) if 'test' not in l or not callable(l['test']): logging.debug('%s does not define function "test"' % filterpath) continue fltrs.append(l['test']) # define fltr function to be used, calling into the app specific ones # if one of our apps wants us to know about a triple, make it so def fltr(mod, lpath, entity=None): for f in fltrs: keep = True try: keep = f(mod, lpath, entity) except Exception, e: logging.error(str(e)) if not keep: return False return True
def loadServerFile(serverFile, userLocFun, globalLocFun, err, textObj=None): if textObj is not None: if textObj.username is not None: userFile = userLocFun(textObj.username, serverFile) if Paths.isfile(userFile): out = loadJsonFile(userFile, textObj) return out globalFile = globalLocFun(serverFile) if Paths.isfile(globalFile): out = loadJsonFile(globalFile, textObj) return out else: if textObj is not None: textObj.getError(err, globalFile) return None
def generate_inheritance_graph(dataset, tokenizer, output_file=None): """ considers extend-relations Nodes = Code Files dict[file] = ([super classes], [sub classes]) """ if not output_file: output_file = Paths.inheritance_graph_filename(dataset) # Maps classifier name to its containing code file classifier_to_file_map = FileUtil.read_dict_from_json( Paths.classifier_to_file_map_filename(dataset)) inheritance_graph = {} for file in FileUtil.get_files_in_directory(dataset.code_folder()): code_file_representation = tokenizer.tokenize(file) assert isinstance( code_file_representation, CodeFileRepresentation ), "use an appropiate tokenizer to generate a CodeFileRepresentation" super_classes = set() for classifier in code_file_representation.classifiers: for extended_classifier in classifier.get_extended_classifiers_plain_list( ): if not extended_classifier in classifier_to_file_map: log.info( f"SKIP: Unknown super classifier (probably not part of {dataset.name()}): {extended_classifier}" ) continue file_of_super_class = classifier_to_file_map[ extended_classifier] super_classes.add(file_of_super_class) # Add sub class relation from super class' perspective if file_of_super_class in inheritance_graph: inheritance_graph[file_of_super_class][1].add( code_file_representation.file_name) else: inheritance_graph[file_of_super_class] = (set(), { code_file_representation.file_name }) if code_file_representation.file_name in inheritance_graph: inheritance_graph[code_file_representation.file_name][0].update( super_classes) else: inheritance_graph[code_file_representation.file_name] = ( super_classes, set()) FileUtil.write_dict_to_json(output_file, inheritance_graph)
def __init__(self, ground_ip): self.status_vector = dict() self.command_vector = dict() self.ground_ip = ground_ip self.info_logger = InfoLogger() self.data_logger = DataLogger() self.adcs_logger = AdcsLogger() #@TODO where antenna to start #self.adcs_logger.write_info(' {}, {}, {}, {}'.format(0, 0, 0, 0)) self.elink = elinkmanager.ELinkManager(self, self.ground_ip) self.thread_elink = None self.data_manager = DataManager(self, self.info_logger, self.data_logger) self.thread_data_manager = None self.dmc = dmc.DMC(self) self.thread_dmc = None self.heat = heat.HEAT(self) self.thread_heat = None self.adc = adc.ADC(self) self.thread_adc = None self.tx = tx.TX(self) self.thread_tx = None self.counterdown = CounterDown(self) self.paths = paths.Paths() GPIO.setmode(GPIO.BOARD) Master.__instance = self
def send_create_user_request(self, username, password): msg = OpCodes.user_creation + username + ',' + password + ';' print 'Sending create user message: ' + msg self.sock.send(msg) response = self.recv_one_blocking() if response == OpCodes.user_created: print 'user created' Paths.init(username) self.sock.setblocking(0) self.message(OpCodes.my_state_changed, 1) return True if response == OpCodes.user_creation_declined: print 'user creation declined' return False
def __init__(self): """ position: degrees of antenna's base rotated by motor counter_for_overlap: counter to check for overlap overlap_thress: maximun degrees that antenna is able to rotate = 360 + overlap """ if Antenna.__instance is not None: raise Exception("This class is a singleton!") else: try: self.paths = paths.Paths() file_name = "{dir}/{filename}".format(dir="Logs", filename='adcs.log') with FileReadBackwards(file_name, encoding="utf-8") as log_file: for line in log_file: position = line.decode().split(',')[0] counter = line.decode().split(',')[1] theta_antenna_pointing = line.split(',')[2] theta = line.split(',')[3] break except: #@TODO change the default init position and counter position = 0 counter = 0 theta_antenna_pointing = 0 theta = 0 self.position = position self.counter_for_overlap = counter self.theta = theta self.theta_antenna_pointing = theta_antenna_pointing self.overlap_thress = 380 self.sign_for_counter = +1 self.angle_plot = 0 Antenna.__instance = self
def run(self): '''Collect the data from browsers region.properties for all locales ''' locales = [loc.strip() for loc in open('mozilla/browser/locales/all-locales')] uri = re.compile('browser\\.contentHandlers\\.types\\.([0-5])\\.uri') title = re.compile('browser\\.contentHandlers\\.types\\.([0-5])\\.title') res = {} for loc in locales: l = logging.getLogger('locales.' + loc) regprop = Paths.get_path('browser', loc, 'chrome/browser-region/region.properties') p = Parser.getParser(regprop) p.read(regprop) uris = {} titles = {} for key, val in p: m = uri.match(key) if m: o = int(m.group(1)) if uris.has_key(o): l.error('Double definition of RSS reader ' + o) uris[o] = val.strip() else: m = title.match(key) if m: o = int(m.group(1)) if titles.has_key(o): l.error('Double definition of RSS reader ' + o) titles[o] = val.strip() ind = sorted(uris.keys()) if ind != range(len(ind)) or ind != sorted(titles.keys()): l.error('RSS Readers are badly set up') res[loc] = [(titles[o], uris[o]) for o in ind] return res
def calculate_jaccard(dataset, req_word_chooser, code_word_chooser, output_file=None, output_suffix=""): if not output_file: output_file = Paths.precalculated_jaccard_sims_csv_filename( dataset, type(req_word_chooser).__name__, type(code_word_chooser).__name__, output_suffix) req_dict = {} # req_dict[Filename] = [relevant, words, of, file] code_dict = {} # code_dict[Filename] = [relevant, words, of, file] for file in FileUtil.get_files_in_directory(dataset.req_folder()): req_dict[FileUtil.get_filename_from_path( file)] = req_word_chooser.get_words(file) for file in FileUtil.get_files_in_directory(dataset.code_folder()): code_dict[FileUtil.get_filename_from_path( file)] = code_word_chooser.get_words(file) df = pandas.DataFrame(None, index=req_dict.keys(), columns=code_dict.keys()) for req_name in req_dict: for code_name in code_dict: df.at[req_name, code_name] = _calculate_jaccard_similarity( req_dict[req_name], code_dict[code_name]) FileUtil.write_dataframe_to_csv(df, output_file)
def __init__(self): directory = Paths.this_directory() self.sess = tf.Session() imgs = tf.placeholder(tf.float32, [None, 224, 224, 3]) self.vgg = vgg16.vgg16(imgs, directory + '/pre_trained/vgg16_weights.npz', self.sess)
def __init__(self): ''' Path loads the file where the preferences are stored, Doing that you avoid to pass the path every time you need to get or set any preference. ''' path = Paths.getPreferencesFile() super(Preferences, self).__init__(path)
def compareDirs(reference, locale, otherObserver=None, merge_stage=None): '''Compare reference and locale dir. Optional arguments are: - otherObserver. A object implementing notify(category, _file, data) The return values of that callback are ignored. ''' o = Observer() cc = ContentComparer(o) if otherObserver is not None: cc.add_observer(otherObserver) cc.set_merge_stage(merge_stage) dc = DirectoryCompare(Paths.EnumerateDir(reference)) dc.setWatcher(cc) dc.compareWith(Paths.EnumerateDir(locale)) return o
def __init__(self, dataset, direction: RelationDirection, implements_graph_path=None): if not implements_graph_path: implements_graph_path = Paths.implements_graph_filename(dataset) super(ImplementsRule, self).__init__(dataset, direction, implements_graph_path)
def __init__(self): self.path_to_ui = Paths.modulePath() + "/MergeFilesPanel.ui" self.form = Gui.PySideUic.loadUi(self.path_to_ui) #buttons = QtGui.QDialogButtonBox(QtGui.QDialogButtonBox.Ok|QtGui.QDialogButtonBox.Cancel) #buttons.button(QtGui.QDialogButtonBox.Ok).setText("Display") self.form.tree.setHeaderLabels(['Item', 'Parameters']) self.form.tree.header().setResizeMode( QtGui.QHeaderView.ResizeToContents)
def __init__(self, population_size, initial_individual_size, dataset, duplicate_individuals_allowed, duplicate_genes_allowed, max_generations, crossover_probability, max_crossover_size, mutation_probability, max_mutation_size, precalculated_genes_files=[], child_population_size=None): self.seed_data = TraceLinkSeedData() #self.seed_data.add_seed_data(Paths.precalculated_all_filelevel_sims_csv_filename(dataset, "FastTextUCNameDescFlowRodriguezIdentifierWMDTLP"), "wmd", True, req_file_ext="TXT", code_file_ext="java") self.seed_data.add_seed_data(Paths.precalculated_req_code_tfidf_cos_sim_filename(dataset, "UCNameDescFlowChooser", "RodriguezCodeChooser"), "tfidf-cossim") self.seed_data.add_seed_data(Paths.precalculated_jaccard_sims_csv_filename(dataset, "UCNameDescFlowChooser", "RodriguezCodeChooser"), "jaccard") precalculated_genes = [] for file_path in precalculated_genes_files: precalculated_genes.append(Gene.load_precalculated_tracelinks_into_genes(file_path, self.seed_data, "TXT", "java")) self.max_generations = max_generations self.mutation_probability = mutation_probability self.max_mutation_size = max_mutation_size self.crossover_probability = crossover_probability self.max_crossover_size = max_crossover_size super(StandardNSGA2Factory, self).__init__(population_size, initial_individual_size, self.seed_data, duplicate_individuals_allowed, duplicate_genes_allowed, dataset.solution_matrix("TXT", "java"), precalculated_genes, child_population_size)
def readPyroFile(dirPath, file, GUIobj=None): output = None # initialize output dictionary textObj = Texts.getTextObj( GUIobj ) # if Text object is not given (user sets language) use english Text object if Paths.isdir(dirPath): # if directory exists if Basic.isTxt(file): # if file is a txt file filePath = Basic.joinFilePath( dirPath, file) # join directory path with file name if Paths.isfile(filePath): # if file exists # TODO check if this could be replaced with some poandas built-in method: ',' in 'Čas' colum is the main problem with open(filePath, 'r') as fileR: # read all file's content fileContent = fileR.read() with open(filePath, 'w') as fileW: # replace all ',' with '.' fileW.write(fileContent.replace(',', '.')) # read the file with pandas output = read_csv( filePath, delimiter='\t', encoding='windows-1250', #decimal=',' ) # transform "Čas" column to timedelta if 'Čas' in output: try: # if transformation is succesful store it in column 't' output['t'] = to_timedelta( output['Čas']).dt.total_seconds( ) #.astype('timedelta64[s]') except: # if transformation is not succesful store 'Čas' column in column 't' and raise warning output['t'] = output['Čas'] textObj.getWarning('timeFrmWrong', filePath) output = output.drop(columns=['Čas']) return output textObj.getError( 'fileNotExists', filePath) # if file does not exist raise fileNotExists error return output # return output=None return output # if file is not txt return output=None textObj.getErrorText( 'dirNotExists', dirPath) # if file does not exist raise 'dirNotExists' error return output # return output=None
def save_vgg_to_pb_file(): directory = Paths.this_directory() sess = tf.Session() imgs = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg16.vgg16(imgs, directory + '/pre_trained/vgg16_weights.npz', sess) save_graph_to_file(sess, sess.graph, 'out/output_graph.pb') # This is for humans with gfile.FastGFile('out/output_labels.txt', 'w') as f: f.write('\n'.join(class_names) + '\n')
def readPyroDir(dirPath, textObj=None): output = {} # initialize output dictionary textObj = Texts.getTextObj( textObj ) # if Text object is not given (user sets language) use english Text object if Paths.isdir(dirPath): # if directory exists for file in Paths.listdir(dirPath): # iterate trough its content out = readPyroFile( dirPath, file, textObj) # try to read every item in the directory if out is not None: # if file as been read fileName = Basic.removeExt( file) # get file name without extension output[ fileName] = out # store file content in a output dictionary textObj.moveErrorsToWarnings() return output # return output dictionary, warnings list and None error else: # if directory does not exist raise 'dirNotExists' error textObj.getError('dirNotExists', dirPath) return None # return None
def main(): global should_exit global user_input global can_start_user_input #init Paths.check_all() Shared.my_data = MyData.MyData.load_user() Shared.server = Server() init_friends() print 'Friends List: { ' + ','.join([fr.data.username for fr in Shared.friends_list]) + ' }' parser = MessageParser.MessageParser() input_parser = UserInputParser.UserInputParser() can_start_user_input = True print '\nEntering main loop' print '\n------------\n' while not should_exit: #try: Shared.server.update() while not user_input.empty(): should_exit = input_parser.parse(user_input.get()) while not Shared.server.incoming_messages.empty(): parser.parse(Shared.server.incoming_messages.get()) for fd in Shared.friends_list: fd.update() #allow the CPU to take a nap time.sleep(1.0/30.0) #except: #exit nicely when an exception is raised. # break Shared.server.disconnect() for frnd in Shared.friends_list: frnd.close() print 'Friends disconnected'
def Initialize(self): from PyQt4 import QtCore, QtGui import Paths import gui import Sea Gui.addIconPath(Paths.iconsPath()) Gui.addLanguagePath(Paths.translationsPath()) items = ["Sea_AddSystem", "Sea_AddComponent", "Sea_AddExcitation", "Sea_AddMaterial"] self.appendToolbar(str(QtCore.QT_TRANSLATE_NOOP("Sea", "Add item")), items) self.appendMenu(str(QtCore.QT_TRANSLATE_NOOP("Sea", "Add item")), items) items = ["Sea_RunAnalysis", "Sea_StopAnalysis", "Sea_ClearAnalysis"]; self.appendToolbar(str(QtCore.QT_TRANSLATE_NOOP("Sea", "Analysis")), items) self.appendMenu(str(QtCore.QT_TRANSLATE_NOOP("Sea", "Analysis")), items) Log('Loading Sea module... done\n')
def test_finds_the_weasel(): directory = Paths.this_directory() sess = tf.Session() imgs = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg = vgg16.vgg16(imgs, directory + '/pre_trained/vgg16_weights.npz', sess) img1 = imread(directory + '/Tests/Images/laska.png', mode='RGB') img1 = imresize(img1, (224, 224)) prob = sess.run(vgg.probs, feed_dict={vgg.imgs: [img1]})[0] assert prob[356] == pytest.approx(0.693235, 0.000001)
def initializeTranslations(language=None): import locale import gettext name = 'koo' try: locale.setlocale(locale.LC_ALL, '') except: # If locale is not supported just continue # with default language print "Warning: Unsupported locale." if not language: language, encoding = locale.getdefaultlocale() if not language: language = 'C' # Set environment variables otherwise it doesn't properly # work on windows os.environ.setdefault('LANG', language) os.environ.setdefault('LANGUAGE', language) # First of all search the files in the l10n directory (in case Koo was # not installed in the system). directory = Paths.searchFile( 'l10n' ) if directory: try: lang = gettext.translation(name, directory, fallback=False) except: directory = None if not directory: # If the first try didn't work try to search translation files # in standard directories 'share/locale' directory = Paths.searchFile( os.path.join('share','locale') ) lang = gettext.translation(name, directory, fallback=True) lang.install(unicode=1)
def precalculate(cls, dataset, req_word_chooser, code_word_chooser, output_vector_file=None, output_sim_file=None, output_suffix=""): if not output_vector_file: output_vector_file = Paths.precalculated_req_code_tfidf_vectors_filename( dataset, type(req_word_chooser).__name__, type(code_word_chooser).__name__, output_suffix) if not output_sim_file: output_sim_file = Paths.precalculated_req_code_tfidf_cos_sim_filename( dataset, type(req_word_chooser).__name__, type(code_word_chooser).__name__, output_suffix) file_contents, req_file_names, code_file_names = [], [], [] for file in FileUtil.get_files_in_directory(dataset.req_folder()): file_contents.append(" ".join(req_word_chooser.get_words(file))) req_file_names.append(FileUtil.get_filename_from_path(file)) for file in FileUtil.get_files_in_directory(dataset.code_folder()): file_contents.append(" ".join(code_word_chooser.get_words(file))) code_file_names.append(FileUtil.get_filename_from_path(file)) TFIDFPrecalculator().precalculate_and_write( file_contents, req_file_names + code_file_names, output_vector_file) t = TFIDFData(output_vector_file) df = pandas.DataFrame(None, index=req_file_names, columns=code_file_names) for req_file_name in req_file_names: for code_file_name in code_file_names: df.at[req_file_name, code_file_name] = Util.calculate_cos_sim( t.get_vector(req_file_name), t.get_vector(code_file_name)) FileUtil.write_dataframe_to_csv(df, output_sim_file)
def iterateFiles(self, mod, locale): base = Paths.get_base_path(mod, locale) cutoff = len(base) + 1 for dirpath, dirnames, filenames in os.walk(base): try: # ignore CVS dirs dirnames.remove('CVS') except ValueError: pass dirnames.sort() filenames.sort() for f in filenames: leaf = dirpath + '/' + f yield (leaf[cutoff:], leaf)
def collectFiles(aComparer, apps = None, locales = None): ''' returns new files, files to compare, files to remove apps or locales need to be given, apps is a list, locales is a hash mapping applications to languages. If apps is given, it will look up all-locales for all apps for the languages to test. 'toolkit' is added to the list of modules, too. ''' if not apps and not locales: raise RuntimeError, "collectFiles needs either apps or locales" if apps and locales: raise RuntimeError, "You don't want to give both apps or locales" if locales: apps = locales.keys() # add toolkit, with all of the languages of all apps all = set() for locs in locales.values(): all.update(locs) locales['toolkit'] = list(all) else: locales = Paths.allLocales(apps) modules = Paths.Modules(apps) en = FileCollector() l10n = FileCollector() # load filter functions for each app fltrs = [] for app in apps: filterpath = 'mozilla/%s/locales/filter.py' % app if not os.path.exists(filterpath): continue l = {} execfile(filterpath, {}, l) if 'test' not in l or not callable(l['test']): logging.debug('%s does not define function "test"' % filterpath) continue fltrs.append(l['test']) # define fltr function to be used, calling into the app specific ones # if one of our apps wants us to know about a triple, make it so def fltr(mod, lpath, entity = None): for f in fltrs: keep = True try: keep = f(mod, lpath, entity) except Exception, e: logging.error(str(e)) if not keep: return False return True
def __init__(self, username): self.username = username self.chat_data = [] self.profile_data = { 'fname':'', 'lname':'', 'picture':'', 'birthday':''} self.profile_data_file_path = Paths.friends_data_path + Paths.slash + self.username + Paths.data_file_extension self.chat_data_file_path = Paths.chat_data_path + Paths.slash + self.username + Paths.data_file_extension Paths.check_all() Paths.file_safety(self.profile_data_file_path) Paths.file_safety(self.chat_data_file_path) self.load_data()
def __init__(self): self.ui = os.path.join(Paths.uiPath(), 'AddCoupling.ui')
def main(): s = RandomFSSequence( no_of_shifts=2, min_length=50, max_length=100 ) s.generate() print s.info( "without UGA" ) # a Sequence object #t = BiologicalSequence( s.sequence ) #t = BiologicalSequence( "GCTGGTGGGGTAGCAGGTGTTTCTGTTGACTTGATATTATTTCCTCTGGATACCATTAAAACCAGGCTGCAGAGTCCCCAAGGATTTAGTAAGGCTGGTGGTTTTCATGGAATATATGCTGGCGTTCCTTCTGCTGCTATTGGATCCTTTCCTAATG" ) t = BiologicalSequence( "AAATGACGAACACAGAGGAAAGAAGAGAGGCAACTGCTGAGGTCCCCTAGGCCTTTGAGAAAACGGAGTTGTACCTTTGGCAACATAAGTGCATATCTACAAGAAAGGCGATAATGTAGACACCAAGGGAATGGGTACTGTCCAAAAAGAAATGCCTCACAAATGTCACCATGGCAAAACTAAAAGAGTCTACAAAGTTACCTAGCATGCTGTTGGCATCATTGTAAACAAACAAGTTAAGGGCAAGATTCTTGCCAAGAGAATTAATATGCATATTGGGCATATTAAGCACTCTAAGAGCCAAGATGATTTCCTGAAAGTGTGTGAAGGAAAATAACCAGCATAAAGAGGGAAGCTAAAGAGAAACCTGAAGCTGCAGCCTGTTCCACCCAGAGAAGCACACTTTGTAAGAACCAATGAAAAGGAGCCTGAGCTGCTGGAGTCTATTAACTGAATTCATGGT" ) #t = RandomSequence( 100 ) #t.generate() # t.stops.append( "UGA" ) print print t.info() for i in xrange( 3 ): print t.colour_frame( i, sep="" ) print " |"*(( s.length )//10 ) t.get_stop_sequence() print "The raw stop sequence (%s)..." % len( t.stop_sequence ) print t.stop_sequence print # now to create paths p = Paths( t.stop_sequence ) print "The sanitised stop sequence (%d)..." % len( p.unique_frame_sequence ) print p.unique_frame_sequence print print "Create the branches from the stop sequence..." p.create_branches() print print "Create a tree..." T = Tree() print "View and graft the branches..." for B in p.branches: #print B T.graft( B ) print T print "Build the paths..." paths = T.get_paths( simplify=True ) print paths print for frame in xrange( 3 ): print "Frameshift sequences for frame %d:" % frame for j in T.get_frame_paths( frame ): print len( j ), " : ", j print """ frameshifted_sequence, fragments = t.frameshift_from_path( all_paths[0] ) q = BiologicalSequence( s.sequence ) print s.info() for i in xrange( 3 ): print q.colour_frame( i, sep="" ) print " |"*(( s.length )//10 ) print print " ".join( fragments ) print print t.path print t.colour_frameshifted_sequence( sep="" ) print " |"*(( s.length )//10 ) """ for i in xrange( 3 ): all_paths = T.get_frame_paths( i ) for a in all_paths: frameshifted_sequence, fragments, frameshift_signals = t.frameshift_from_path( a ) print t.path print t.colour_frameshifted_sequence( sep="" ) print " ".join( fragments ) print " ".join( frameshift_signals ) print
} handler = DummyHandler() parser = sax.make_parser() parser.setContentHandler(handler) parser.setFeature(sax.handler.feature_namespaces, True) locales = [loc.strip() for loc in open('mozilla/browser/locales/all-locales')] locales.insert(0, 'en-US') sets = {} details = {} for loc in locales: l = logging.getLogger('locales.' + loc) try: lst = open(Paths.get_path('browser',loc,'searchplugins/list.txt'),'r') except IOError: l.error("Locale " + loc + " doesn't have search plugins") details[Paths.get_path('browser',loc,'searchplugins/list.txt')] = { 'error': 'not found' } continue sets[loc] = {'list': []} regprop = Paths.get_path('browser', loc, 'chrome/browser-region/region.properties') p = Parser.getParser(regprop) p.read(regprop) orders = {} for key, val in p: m = re.match('browser.search.order.([1-9])', key) if m: orders[val.strip()] = int(m.group(1))
def __init__(self): self.ui = os.path.join(Paths.uiPath(), 'AddExcitation.ui')
def __init__(self): self.ui = os.path.join(Paths.uiPath(), 'AddComponent.ui')
def __init__(self): self.ui = os.path.join(Paths.uiPath(), 'AddMaterial.ui')
def corridorGraphReduction(g, rg, cost=None, outcost="cost", edataname="edata", pathname = "path", reversepathname="reversepath"): vset = set() eset = set() equeue = deque() #first find all vertices with order =1 or >2 for v in g.getVertexList(): ae = g.getAdjacentEdges(v) o = len(ae) if o == 1 or o > 2: #add it to the set and the new graph vset.add(v) rg.addVertex(v) for key in g.getVertexDataKeys(v): rg.setVertexData(v, key, g.getVertexData(v, key)) #put properties here for e in ae: equeue.append(e) while (len(equeue) > 0): e = equeue.popleft() if e in eset: continue ce = e ei = g.getEdgeInfo(ce) fromv = ei[0] if ei[0] in vset else ei[1] startv = fromv add = 0 datae = {} path = [] #follow the current path while True: if outcost is not None: effc = 1 if cost is None else g.getEdgeData(ce, cost) add += effc if pathname is not None: path.append((fromv, ce)) if edataname is not None: datae[ce] = {} for key in g.getEdgeDataKeys(ce): datae[ce][key] = g.getEdgeData(ce, key) tov = g.getEdgeEnd(fromv, ce) if tov in vset: eset.add(ce) #get the other edge on tov and addede = rg.addEdge(startv, tov) if outcost is not None: rg.setEdgeData(addede, outcost, add) if edataname is not None: rg.setEdgeData(addede, edataname, datae) if pathname is not None: path.append((tov, None)) rg.setEdgeData(addede, pathname, path) if reversepathname is not None: rg.setEdgeData(addede, reversepathname, Paths.getReversePath(path)) break #get the other edge on tov and set ce and fromv ae = g.getAdjacentEdges(tov) ne = None for e in ae: if ce != e: ne = e; break ce = ne fromv = tov return
def __init__(self): self.ui = os.path.join(Paths.uiPath(), 'AddSystem.ui')