def main(): # Reading Harts Essential Genes if not os.path.isfile('./pickled/essential_nonessential_genes.p'): rd.ReadEssential_NonEssential_Genes() print('Finished Reading Harts Essentiality Genes') essential_genes, nonessential_genes = pickle.load( open("./pickled/essential_nonessential_genes.p", "rb")) if not os.path.isfile('./input/GBM-lib1_l2fc.csv'): rd.ProcessTKODataForDESEQ() # RunAlgorithms('Simulation', 'All') # rd.ProcessTKODataForDESEQ() with open(ff_name, "a") as ff: print('#################################', file=ff) filenames = [ 'HCT116_1-lib1', 'HCT116_2-lib1', 'DLD1-lib1', 'HeLa-lib1', 'RPE1-lib1', 'GBM-lib1' ] # RunAlgorithms(filenames[1], 'All') for i in range(len(filenames)): with open(ff_name, "a") as ff: print(filenames[i], file=ff) RunAlgorithms(filenames[i], 'All') return ()
def main(): depth_file_2016_names = read_file_in_folder(bird_depth_2016_path) depth_file_2017_names = read_file_in_folder(bird_depth_2017_path) depth_file_2018_names = read_file_in_folder(bird_depth_2018_path) GPS_file_2016_names = read_file_in_folder(bird_GPS_2016_path) GPS_file_2017_names = read_file_in_folder(bird_GPS_2017_path) GPS_file_2018_names = read_file_in_folder(bird_GPS_2018_path) depth_files = [depth_file_2016_names, depth_file_2017_names, depth_file_2018_names] GPS_files = [GPS_file_2016_names, GPS_file_2017_names, GPS_file_2018_names] # for i in range(len(depth_files)): for j in range(0, len(depth_files[i])): Trip_time = Read_Data.Read_bird_trip(GPS_files[i][j], 0, 99) GPS_Lon = Read_Data.Read_bird_trip(GPS_files[i][j], 5, 0) GPS_Lat = Read_Data.Read_bird_trip(GPS_files[i][j], 6, 0) water_depth_trip = read_depth_trip_txt(depth_files[i][j]) bird_trip_define_label(Trip_time, GPS_Lon, GPS_Lat, trip_day_define, trip_hour_define, index_sex, sst_data, trip_index) bird_trip_number_of_dives_hour(Trip_time, trip_day_define, trip_hour_define, index_sex, water_depth_data) t_sum.write_xlsm_sum('features_' + str(trip_start_de) + '-' + str(trip_hour_define)) print ('fin')
def search(): a = request.args.get('a', 0, type=str) user_id = request.args.get('uid', 0, type=str) query = a db = dbms.Database() res = db.find_queryresults(query) non_relevant = db.find_nonrelevant(query) update = False #print "NR: " #print non_relevant if res == None: res2 = Read_Data.work(query) temp = copy.deepcopy(res2) #Important - Deep copy of returned results list else: #print "Reading from DB..." if len(res) < 10: res = Read_Data.work(query) update = True print "Results < 10" temp = copy.deepcopy(res) non_relevant_flag = False temp2 = copy.deepcopy(temp) for course in temp2: if course[1] in non_relevant: print "Removing non-relevant course ", course[1] temp.remove(course) non_relevant_flag = True if non_relevant_flag or update: #print "Updating DB..." db.update_queryresults(query, temp) else: db.insert_queryresults(query, temp) if len(temp) > 10: temp = temp[0:10] user_info = conn_data(db, user_id, temp) print "User Info list: ", user_info #print "User not interested list: ", db.find_notinterested(user_id) for i in range(len(user_info)): print user_info[i] temp[i].append(user_info[i]["basic"]) temp[i].append(user_info[i]["adv"]) temp[i].append(user_info[i]["likes"]) ret = isbn.getisbnData(query) return jsonify(result = temp, result2 = ret)
def DataReader(self, Input_filename, NumDataSet): ### Read Data ### print('Read Data') self.Data_header1, self.Data_array1, self.Data_stddev1 = ReadData.readData( Input_filename, NumDataSet) self.Input_filename_ = Input_filename self.NumDataSet_ = NumDataSet ReadData.plot_inputdata(self.Data_header1, self.Data_array1, self.Data_stddev1) ### Find Sample Size ### Data_array_numrows = self.Data_array1.shape[0] # Time + All Inducers Data_array_numcols = self.Data_array1.shape[ 1] # Number of RFP Data Per Inducer self.Sample_size = (Data_array_numrows - 1) * Data_array_numcols
def DataReader(self, Input_filename, NumDataSet, Inducer_unit): ### Read Data ### print('Read Data') self.Data_header1, self.Data_array1, self.Data_stddev1, self.Inducer1, self.Inducer_log1, self.Sample_size \ = ReadData.run_readdata(Input_filename, NumDataSet, Inducer_unit) self.Input_filename_ = Input_filename self.NumDataSet_ = NumDataSet
Num_Cross_Folders = 5 G_Mean = np.linspace(0, 0, Num_Cross_Folders) Sensitivity = np.linspace(0, 0, Num_Cross_Folders) Specificity = np.linspace(0, 0, Num_Cross_Folders) G_Mean_GAN = np.linspace(0, 0, Num_Cross_Folders) Sensitivity_GAN = np.linspace(0, 0, Num_Cross_Folders) Specificity_GAN = np.linspace(0, 0, Num_Cross_Folders) for j in range(Num_Cross_Folders): # dir_train = "glass1-5-fold/glass1-5-" + str(j+1) + "tra.dat" # dir_test = "glass1-5-fold/glass1-5-" + str(j+1) + "tst.dat" dir_train = "page-blocks0-5-fold/page-blocks0-5-" + str(j + 1) + "tra.dat" dir_test = "page-blocks0-5-fold/page-blocks0-5-" + str(j + 1) + "tst.dat" RD.Initialize_Data(dir_train) Train_Feature = RD.get_feature() Train_Label = RD.get_label() Train_Label = Train_Label.ravel() print(Train_Feature.shape) print(Train_Label.size) # clf = svm.SVC(C=1, kernel='rbf', gamma= 0.2) # clf.fit(Train_Feature, Train_Label) Feature_samples = RD.get_positive_feature() G = GAN_Build(Feature_samples) Sudo_Samples = Over_Sampling(G, RD.Num_negative - RD.Num_positive, 6) print(Sudo_Samples[0]) print(Sudo_Samples[-1]) Train_Feature = np.concatenate((Train_Feature, Sudo_Samples))
from gurobipy import * import Read_Data import numpy as np import time import DJRP_20190704_V1 #filenumbers = ['01','02','03','04','05','06','07','08','09','10'] filenumbers = ['01', '02', '03', '04', '05'] for number in filenumbers: folder = "_Daten_und_Loesungen\\E\\" filename = "setE-0" + number + ".txt" #nitems, planningHorizon, MJC, DPP, DAVG, HLC, MNC, CNT_WEIGHT, CNT_VALUE, REQ_WEIGHT, REQ_VALUE, MIN_WEIGHT, MIN_VALUE = \ nitems, planningHorizon, S, D, DAVG, h, s_minor, w, v, weightREQ, valueREQ, minWeight, minValue = \ Read_Data.read_Data (folder+filename) # creat periods and items to iterate through periods = range(planningHorizon) items = range(nitems) maxIter = 100 minAmountItems = np.linspace(0.85, 0.99, num=maxIter) # Big M with sum over Demand M = {} for i in items: M[i] = 0 for t in periods: M[i] = M[i] + D[i, t] start = time.time() DJRP_Model, DJRP_z, DJRP_y, DJRP_B, DJRP_I = \ DJRP_20190704_V1.DJRP_run (nitems, planningHorizon, S, D, DAVG, h, s_minor, w, v, weightREQ, valueREQ, minWeight, minValue) #%% Creat patterns # Creat subpatterns and initialize for every period a pattern that can order everything
from gurobipy import * import Read_Data import Static_Model import matplotlib.pyplot as plt import numpy as np import time #nitems, planningHorizon, MJC, DPP, DAVG, HLC, MNC, CNT_WEIGHT, CNT_VALUE, REQ_WEIGHT, REQ_VALUE, MIN_WEIGHT, MIN_VALUE = \ inst_set = 'setB-002' instance = inst_set + '.txt' nitems, planningHorizon, S, D, DAVG, h, s, w, v, weightREQ, valueREQ, minWeight, minValue = \ Read_Data.read_Data (instance) # Periods and items to iterate through periods = range(planningHorizon) items = range(nitems) #Start modeling m = Model("DJRP_model") #Introduction of variables z = {} #An order is placed at period t y = {} #An order is placed at period t for item i B = {} #Order quantity of item i arriving at the beginning of period t I = {} #Level of inventory of item i at the end of period t for t in periods: z[t] = m.addVar(vtype=GRB.BINARY, name="Z_%s" % str(t)) for i in items: y[i, t] = m.addVar(vtype=GRB.BINARY, name="Y_%s%s" % (str(i), str(t))) B[i, t] = m.addVar(vtype=GRB.INTEGER, name="B_%s%s" % (str(i), str(t)),
authentication = linkedin.LinkedInAuthentication(API_KEY, API_SECRET, RETURN_URL, linkedin.PERMISSIONS.enums.values()) webbrowser.open(authentication.authorization_url) # open this url on your browser return @app.route('/') def home(): return render_template('login.html') @app.route('/redir.html') def redir(): authentication = linkedin.LinkedInAuthentication(API_KEY, API_SECRET, RETURN_URL, linkedin.PERMISSIONS.enums.values()) application = linkedin.LinkedInApplication(authentication) if request.args.get('code', '') != '': authentication.authorization_code = request.args.get('code', '') authentication.get_access_token() ret = {} ret = application.get_profile(selectors=['id', 'first-name', 'last-name', 'location', 'distance', 'num-connections', 'skills', 'educations', 'interests', 'courses', 'following', 'related-profile-views', 'job-bookmarks', 'certifications']) db = dbms.Database() db.insert_user(ret) name = ret['firstName'] return render_template('index.html') else: print "No Auth Code\n" return render_template('login.html') if __name__ == '__main__': app.debug = True Read_Data.preprocess() app.run()
import OptimizationFile import Date_Gen as dg import CovarianceCalc_updated import Read_Data as rd import TrendIndcatorCal import RegionalFactor import tvcw import calendar incep_date = pd.to_datetime('2014-05-20') data_incep_date = pd.to_datetime('2013-05-8') end_date = pd.to_datetime('2014-05-25') #calDate = pd.to_datetime('2014-05-16') #calDate = pd.to_datetime('2013-05-10') """Input Data""" df_input_px, df_input_div, df_reg_factor, df_descrip, df_tax, sr_trading_days = rd.read_data( data_incep_date, end_date) """Cleaning Data""" """ Cleaning data to replace nan with previous day value""" df_input_clean = df_input_px.fillna(method='pad') """reading long term Vol""" LongTermVol = np.transpose(np.array(df_descrip.loc[:, "Long_Term_Volatility"])) """reading Gap""" Gap = np.transpose(np.array(df_descrip.loc[:, "Gap"])) """reading max and minimum""" minWeight = df_descrip.loc[:, "MinWeight_EF"] maxWeight = df_descrip.loc[:, "MaxWeight_EF"] weigthTuple = [] for k in range(0, len(minWeight)): a = minWeight.iloc[k] b = maxWeight.iloc[k] weigthTuple.append((a, b))
if ii not in nominal_feature: z[ii] = np.max( np.where(bounds[:, ii] <= initial_sample[ii])[0]) if z[ii] > 99: z[ii] -= 1 else: z[ii] = initial_sample[ii] data[k, :] = z file = 'High_IR_Data/shuttle-2_vs_5.dat' name = file.split('.')[0] print(name) RD.Initialize_Data(file) print('Number of Positive: ', RD.Num_positive) print('Number of Negative: ', RD.Num_negative) nominal_feature = [] data = RD.get_feature() num_samples = data.shape[0] num_features = data.shape[1] num_bins = 100 bounds = np.zeros((num_bins + 1, num_features)) for i in range(num_features): if i not in nominal_feature: bounds[:, i] = np.histogram(data[:, i], bins=num_bins)[1] nf = RD.get_negative_feature()
#! /usr/bin/env python # -*- coding: utf-8 -*- "利用pytorch的构架来实现BP神经网络" "本示例用于实现澳大利亚电力数据的拟合实验,每天半个小时采样一点,采样为48个点,输入数据为7周相同时刻的点,输出为第8周同时刻的点." "模型结构为,输入-隐藏-输出:7-50-1" import torch from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np import math import Read_Data # 读取数据,由于做归一化处理,保留最大最小值 training_in, training_out, test_in, test_out, maxE, minE = Read_Data.ReadElectricity( ) # 将numpy的array格式转换为torch的Tensor,记得将类型转为floatTensor x = torch.from_numpy(training_in).float() y = torch.from_numpy(training_out).float() # 转换为Variable的类型 x = Variable(x) y = Variable(y) x_test = torch.from_numpy(test_in).float() y_test = torch.from_numpy(test_out).float() x_test = Variable(x_test) y_test = Variable(y_test) step = 7000
#nominal_value = ['M', 'F', 'I'] nominal_index = [1,2,3] nominal_value = [['icmp', 'tcp', 'udp'], ['auth', 'bgp', 'courier', 'csnet_ns', 'ctf', 'daytime', 'discard', 'domain', 'domain_u', 'echo', 'eco_i', 'ecr_i', 'efs', 'exec', 'finger', 'ftp', 'ftp_data', 'gopher', 'hostnames', 'http', 'http_443', 'imap4', 'IRC', 'iso_tsap', 'klogin', 'kshell', 'ldap', 'link', 'login', 'mtp', 'name', 'netbios_dgm', 'netbios_ns', 'netbios_ssn', 'netstat', 'nnsp', 'nntp', 'ntp_u', 'other', 'pm_dump', 'pop_2', 'pop_3', 'printer', 'private', 'red_i', 'remote_job', 'rje', 'shell', 'smtp', 'sql_net', 'ssh', 'sunrpc', 'supdup', 'systat', 'telnet', 'tftp_u', 'time', 'tim_i', 'urh_i', 'urp_i', 'uucp', 'uucp_path', 'vmnet', 'whois', 'X11', 'Z39_50'], ['OTH', 'REJ', 'RSTO', 'RSTOS0', 'RSTR', 'S0', 'S1', 'S2', 'S3', 'SF', 'SH']] #RD.Initialize_Data(file) RD.Initialize_Data(file, has_nominal=True, nominal_index=nominal_index, nominal_value=nominal_value) print('Number of Positive: ', RD.Num_positive) print('Number of Negative: ', RD.Num_negative) nominal_feature = [1,2,3,6,7,8,10,11,13,14,17,18,19,20,21] #nominal_feature = [0,1,2,3,4,5,6,7,8,9] data = RD.get_feature() num_samples = data.shape[0] num_features = data.shape[1] num_bins = 100 bounds = np.zeros((num_bins+1, num_features)) for i in range(num_features): if i not in nominal_feature: bounds[:, i] = np.histogram(data[:, i], bins=num_bins)[1] nf = RD.get_negative_feature()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 25 09:14:27 2019 @author: LeaGrahn """ from gurobipy import * import Read_Data #nitems, planningHorizon, MJC, DPP, DAVG, HLC, MNC, CNT_WEIGHT, CNT_VALUE, REQ_WEIGHT, REQ_VALUE, MIN_WEIGHT, MIN_VALUE = \ nitems, planningHorizon, S, D, DAVG, h, s, w, v, weightREQ, valueREQ, minWeight, minValue = \ Read_Data.read_Data ('setB-001.txt') # creat periods and items to iterate through periods = range(planningHorizon) items = range(nitems) #%% Creat patterns import itertools # Initialization patterns = [] elements = [] combinations = [] # ## Fill patterns with one-item-patterns #demand={} #maxweight={} #maxvalue={}
def computeInitialSolution(): # http://apmonitor.com/che263/index.php/Main/PythonOptimization #import statistics #nitems, planningHorizon, MJC, DPP, DAVG, HLC, MNC, CNT_WEIGHT, CNT_VALUE, REQ_WEIGHT, REQ_VALUE, MIN_WEIGHT, MIN_VALUE = \ nitems, planningHorizon, S, D, DAVG, h, s, w, v, weightREQ, valueREQ, minWeight, minValue = \ Read_Data.read_Data ('setA-002.txt') items = range(nitems) periods = range(planningHorizon) Dm = {} ss = {} Soc = S[0] for i in items: Dm[i] = 0 ss[i] = s[i, 0] for t in periods: Dm[i] = Dm[i] + D[i, t] Dm[i] = Dm[i] / planningHorizon # Modelling optimization function def objective(x): T = x[nitems] Total_holding_cost = 0 Total_setup_cost = 0 for i in items: Total_holding_cost = Total_holding_cost + x[i] * T * 0.5 * Dm[ i] * h[i] Total_setup_cost = Total_setup_cost + (1 / T) * (ss[i] / x[i]) Total_setup_cost = Total_setup_cost + (Soc / T) return Total_holding_cost + Total_setup_cost #def objective(x): # return sum((x[0:items] * x[items] * Dm[0:items] * 0.5 * h[0:items]) \ # + (1 / x[items]) * (ss[0:items] / x[0:items])) + (1 / x[items]) * Soc def constraint_value(x): c_v = 0 T = x[nitems] if (valueREQ == 1): for i in items: c_v = c_v + (x[i] * T * Dm[i] * v[i]) c_v = c_v - minValue return c_v def constraint_weight(x): c_w = 0 T = x[nitems] if (weightREQ == 1): for i in items: c_w = c_w + (x[i] * T * Dm[i] * w[i]) c_w = c_w - minWeight return c_w # Define decision variables and initialize parameters x0 = np.zeros( nitems + 1 ) # the number of integer multipliers of T that a replensishment of item i will last for i in items: x0[i] = 1.0 x0[items] = planningHorizon # T # show initial objective print('Initial Objective: ' + str(objective(x0))) # Constraints # Constraints bnds = [] for i in range(nitems + 1): bnds.append([1.0, 5.0]) con1 = { 'type': 'ineq', 'fun': constraint_value } # for instance of the formula, a - b >= 0 con2 = {'type': 'ineq', 'fun': constraint_weight} cons = ([con1, con2]) ## start = time.time() # SLSQP only solver can solve nonlinear solution = minimize(objective,x0,method='SLSQP',\ bounds=bnds, constraints=cons) x = solution.x end = time.time() print('conputational time = {}'.format(end - start)) # show final objective print('Final Objective: ' + str(objective(x))) # print solution print('Solution') for i in items: # print(str(x[i])) print('x{} = '.format(i) + str(x[i])) print('T = ' + str(x[nitems])) #Round values from the static solution Ts = int(round(x[nitems])) k = {} for i in items: k[i] = int(round(x[i])) TC_rounded = 0 for i in items: TC_rounded = TC_rounded + k[i] * Ts * Dm[i] * 0.5 * h[i] + (1 / Ts) * ( ss[i] / k[i]) TC_rounded = (TC_rounded + Soc / Ts) * planningHorizon #Initialize z and y z = {} y = {} B = {} I = {} for i in items: for t in range(planningHorizon): z[t] = 0 y[i, t] = 0 B[i, t] = 0 #Conversion from the static to the dynamic for i in items: Dm[i] = round(Dm[i]) for t in range(0, planningHorizon, Ts * k[i]): B[i, t] = Dm[i] * Ts * k[i] z[t] = 1 y[i, t] = 1 for i in items: for t in range(planningHorizon): if t != 0: I[i, t] = I[i, t - 1] + B[i, t] - D[i, t] else: I[i, t] = B[i, t] - D[i, t] #Total cost with the dynamic objective function with the static solution. newTC = 0 for t in range(planningHorizon): for i in items: newTC = newTC + s[i, t] * y[i, t] + h[i] * I[i, t] newTC = newTC + S[t] * z[t] print(TC_rounded) print(newTC) return z, y, B
from gurobipy import * import Read_Data import Static_Model #nitems, planningHorizon, MJC, DPP, DAVG, HLC, MNC, CNT_WEIGHT, CNT_VALUE, REQ_WEIGHT, REQ_VALUE, MIN_WEIGHT, MIN_VALUE = \ nitems, planningHorizon, S, D, DAVG, h, s, w, v, weightREQ, valueREQ, minWeight, minValue = \ Read_Data.read_Data ('setA-002.txt') zs, ys, Bs = Static_Model.computeInitialSolution() # creat periods and items to iterate through periods = range(planningHorizon) items = range(nitems) M = {} for i in items: M[i] = 50000 warehouseC = 0 budgetC = 0 minC = 0 truckC = 0 #%% Creat patterns import itertools # Initialization patterns = [] combinations = [] elements = [0] * nitems patterns.append(tuple(elements)) #fill patterns with only initial solution pattern for t in periods: if zs[t] == 1:
from __future__ import print_function from matplotlib import pyplot as plt import pandas as pd import numpy as np from matplotlib import colors as mcolors import Read_Data as RD import seaborn as sns colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS) #file = 'shuttle-2_vs_5.dat' file = 'abalone19.dat' name = file.split('.')[0] RD.Initialize_Data(file, has_nominal=True, nominal_index=[0], nominal_value=['M', 'F', 'I']) print('Number of Positive: ', RD.Num_positive) print('Number of Negative: ', RD.Num_negative) #df = pd.DataFrame(RD.Features, columns=['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9']) df = pd.DataFrame(RD.Features, columns=[ 'Sex', 'Length', 'Diameter', 'Height', 'Whole_Weight', 'Shucked_Weight', 'Viscera_Weight', 'Shell_Weight' ]) #df['Label'] = pd.Series(RD.Labels, index=df.index) df['Label'] = RD.Labels #sns.FacetGrid(df, hue='Label').map(plt.scatter, 'Sex', 'Length')
print("Input data = "+species+" from " + data_dir) print("Total no. of particles =" +str(N_part_total)) print("No. of particles used =" +str(N_part)) #Partition the total input file with N particles into mpi_size parts: mpi_borders = np.linspace(0, N_part, mpi_size + 1).astype('int') my_border_low = mpi_borders[mpi_rank] my_border_high = mpi_borders[mpi_rank+1] #Redefining N_part as number of particles analysed per processor N_part = my_border_high - my_border_low #Read Trajectory Data time, U, E, B, Energy = Read_Data.Read_Trajectory_Data(my_border_low, my_border_high, data_dir, species) #Comment: U is used to denote the proper relativistic velocity, which is U = gamma*V N = len(time) #Process Trajectory Data using chosen wavelet and edge mode if mpi_rank==0: print('Processing Data for particles...') #Transfrom the data and compute new quantities: time, V, E, b, V_par, V_perp, vpar, vperp, Acc_mag, Acc_par, Acc_perp1, Acc_perp2 = Process_Data.Process_raw(time, U, E, B, Omega_c, q, m) N_pad = len(vpar[0,:]) ref=int(np.ceil(N/4)) #vpar_Global=Diffusion(vpar,ref,N)
# dir_train = "glass1-5-fold/glass1-5-" + str(j+1) + "tra.dat" # dir_test = "segment0-5-fold/segment0-5-" + str(j+1) + "tst.dat" # dir_train = "segment0-5-fold/segment0_SMOTE/result" + str(j) + "s0.tra" # dir_test = "segment0-5-fold/segment0_SMOTE/result" + str(j) + "s0.tst" # dir_train = "segment0-5-fold/segment0_SMOTE_TomekLinks/result" + str(j) + "s0.tra" # dir_test = "segment0-5-fold/segment0_SMOTE_TomekLinks/result" + str(j) + "s0.tst" # dir_train = "yeast4-5-fold/yeast4-5-" + str(j + 1) + "tra.dat" dir_test = "yeast4-5-fold/yeast4-5-" + str(j + 1) + "tst.dat" # dir_train = "yeast4-5-fold/yeast4_SMOTE/result" + str(j) + "s0.tra" # dir_test = "yeast4-5-fold/yeast4_SMOTE/result" + str(j) + "s0.tst" # dir_train = "yeast4-5-fold/yeast4_SMOTE_ENN/result" + str(j) + "s0.tra" # dir_test = "yeast4-5-fold/yeast4_SMOTE_ENN/result" + str(j) + "s0.tst dir_train = "yeast4-5-fold/yeast4_SMOTE_RSB/yeast4-5-" + str( j + 1) + "tra.dat" RD.Initialize_Data(dir_train) Train_Feature_o = RD.get_feature() Train_Label = RD.get_label() Train_Label = Train_Label.ravel() RD.Initialize_Data(dir_test) Test_Feature_o = RD.get_feature() Test_Label = RD.get_label() Test_Label = Test_Label.ravel() min_max_scaler = preprocessing.MinMaxScaler() all_set = np.concatenate((Train_Feature_o, Test_Feature_o)) min_max_scaler.fit(all_set) Train_Feature = min_max_scaler.transform(Train_Feature_o) Test_Feature = min_max_scaler.transform(Test_Feature_o)
from __future__ import print_function from matplotlib import pyplot as plt from matplotlib import colors as mcolors import numpy as np import Read_Data as RD colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS) #dir = "wine-5-fold/wine-5-1tra.dat" dir = "KSMOTE_IECON15_InputData.csv" RD.Initialize_Data(dir) for i in range(0, RD.Num_Features): for j in range(i + 1, RD.Num_Features): if i != j: fig = plt.figure() p1 = plt.scatter(RD.Stage_1_Feature[:, i], RD.Stage_1_Feature[:, j], marker='o', color='#539caf', label='1', s=10, alpha=0.4) p2 = plt.scatter(RD.Stage_2_Feature[:, i], RD.Stage_2_Feature[:, j], marker='+', color=colors["forestgreen"], label='2', s=20, alpha=0.6)
import tensorflow as tf import train_nn import train_nn_TrainingAugmentation import Read_Data IMAGE_SIZE = 256 BATCH_SIZE = 6 with open('classes.txt') as f: con = f.read() class_ = con.splitlines() label = {} for i in range(len(class_)): a, b = class_[i].split('#') label[int(a)] = b print(label) img_test, img_name = Read_Data.Read_Test_TFRecords( 'Weed_InputData_Final_Test*', IMAGE_SIZE) img_test_batch, img_name_batch = tf.train.batch([img_test, img_name], batch_size=BATCH_SIZE) keep_prob = tf.placeholder(tf.float32) #logits = train_nn_TrainingAugmentation.Model(img_test_batch, keep_prob) logits = train_nn.Model(img_test_batch, keep_prob) pred = tf.argmax(tf.nn.softmax(logits), 1) saver = tf.train.Saver() with tf.Session() as sess: sess.run( [tf.global_variables_initializer(), tf.local_variables_initializer()]) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # results04 saver = tf.train.import_meta_graph(
from sklearn.tree import DecisionTreeClassifier import numpy as np import pickle import Read_Data import Score_Of_Algorithm data = {} for index in range(1, int(Read_Data.count_files("./folds")/2) + 1): data[f'X{index}_train'], data[f'y{index}_train']= Read_Data.read_data_in_folds_folder(f'./folds/patient{index}_train.csv') data[f'X{index}_test'] , data[f'y{index}_test'] = Read_Data.read_data_in_folds_folder(f'./folds/patient{index}_test.csv') dtc = DecisionTreeClassifier() accuracy_score, precision_score, recall_score, f1_score = [], [], [], [] for index in range(1, int(len(data)/4) + 1): dtc.fit(data[f'X{index}_train'], data[f'y{index}_train']) # Saving model to disk pickle.dump(dtc, open(f'./models/Decision_Tree_{index}.pkl', 'wb')) pred = dtc.predict(data[f'X{index}_test']) accuracy_score.append(Score_Of_Algorithm.accuracy_can_modify(data[f'y{index}_test'], pred)) x, y = Score_Of_Algorithm.precision_recall_can_modify(data[f'y{index}_test'], pred) precision_score.append(x) recall_score.append(y) f1_score.append(Score_Of_Algorithm.f1_score_can_modify(data[f'y{index}_test'], pred)) print("Accuracy score:", accuracy_score[index - 1]) print("Precision and Recall score:", precision_score[index - 1], recall_score[index - 1])
import Read_Data IMAGE_SIZE = 256 BATCH_SIZE = 20 ''' with open('classes.txt') as f: con = f.read() class_ = con.splitlines() label = {} for i in range(len(class_)): a, b = class_[i].split('#') label[int(a)] = b print(label) ''' #img_valid, img_label = Read_Data.Read_TFRecords('Weed_InputData_Valid_120.tfre*') img_valid, img_label = Read_Data.Read_TFRecords('Weed_InputData_Valid_Augmentation*') img_p, label_p = Read_Data.Preprocess(img_valid, img_label, IMAGE_SIZE) img_valid_batch, img_label_batch = tf.train.batch([img_p, label_p], batch_size = BATCH_SIZE) keep_prob = tf.placeholder(tf.float32) #logits = train_nn.Model(img_valid_batch, keep_prob) #logits = train_nn_Training.Model(img_valid_batch, keep_prob) logits = train_nn_TrainingAugmentation.Model(img_valid_batch, keep_prob) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(img_label_batch, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()]) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) # BEST Model_Saver06_Final_Augmentation saver = tf.train.import_meta_graph('./Model_Saver06_Final_Augmentation/model_save.ckpt-13.meta')
def search(): a = request.args.get('a', 0, type=str) res = Read_Data.work(a) return jsonify(result = res)
import pandas as pd import numpy as np import Read_Data import datetime """ Defining BT period """ incep_date = pd.to_datetime('2011-01-05') #inceptiondate for index is fixed end_date = pd.to_datetime( input("Enter date in backtest end date in YYYY-MM-DD format: ") ) #Taking end date of BT from user next_opendate = pd.to_datetime( input("Enter date next Opendate in YYYY-MM-DD format: ")) print("Start and End Date defined") #printing status on console """Reading data""" df_input_px, df_mapping, df_rebal_details, df_input_CD, df_input_CAo = Read_Data.read_data( incep_date, end_date) """FX conversion methodology""" df_FX_conv_method = pd.DataFrame( columns=["FX", "Ticker", "Methodology", "Factor"]) df_FX_conv_method["FX"] = df_mapping["Currency"] df_FX_conv_method["Ticker"] = df_mapping["Ccy_mapping"] df_FX_conv_method.set_index("FX", inplace=True) df_FX_conv_method.drop_duplicates(inplace=True) for curncy in df_FX_conv_method.index: if curncy[-1].islower(): df_FX_conv_method.loc[curncy, "Factor"] = 100 else: df_FX_conv_method.loc[curncy, "Factor"] = 1 if df_FX_conv_method.loc[curncy, "Ticker"][:3] == "USD": df_FX_conv_method.loc[curncy, "Methodology"] = "inverse"