Exemplo n.º 1
0
def recommend( usr, pwd ):
    userInfo, allWeibos = Weibo.authentication( usr, pwd )
    label = Recommendation.recommend( allWeibos )
    labelIdx = int(label[0])
    tag = labels[labelIdx]
    books = Douban.getRecommondBooks(tag)
    for book in books:
        print book
    return books, userInfo
def changeUser():
    global currentUser
    currentUser = Recommendation.getRandomUserID()
    #rest the sentiment score
    SentimentAnalysis.reset()
    currentSentimentScore = SentimentAnalysis.initSentimentScore()

    trackObjs = getUserRecommendation()
    htmlSnippet = render_template('recommendation.html', trackObjs=trackObjs)

    data = jsonify({'datax': htmlSnippet, 'currentUser': str(currentUser)})
    return data
Exemplo n.º 3
0
class Environnement():
    def __init__(self,
                 N_items,
                 N_recommended,
                 behaviour="random",
                 rewardType='Similarity',
                 rewardParameters=[1, 1],
                 proba_p=0.7,
                 specific_items=None,
                 name='envi_01'):  #proba_p for ramdom choice (customer)
        self.items = Items(N_items)
        self.recommendation = Recommendation(self.items, N_recommended)
        self.customer = Customer(self.items, self.recommendation, behaviour,
                                 proba_p, specific_items)
        self.name = name
        self.rewardType = rewardType
        self.rewardParameters = rewardParameters

    def endEpisode(self):
        self.customer.endEpisode()
        self.recommendation.endEpisode()

    #self.step to simulate new step of the environnement
    def step(
        self, agentRecommendation
    ):  #here agentRecommendation is the items recommended by the agent
        self.recommendation.recommend(
            agentRecommendation)  #We have set the new recommendations
        self.customer.choice()
        reward = self.computeReward()
        return reward

    def computeReward(
            self
    ):  #This function will be refined to get more realistic rewards
        if self.rewardType == 'Similarity':
            reward = -self.items.items[
                self.customer.choice_id].cost * self.rewardParameters[0]
            reward += self.items.similarities[
                self.customer.previous_choice_id][
                    self.customer.choice_id] * self.rewardParameters[1]
        elif self.rewardType == 'Trust':
            reward = -(self.items.items[self.customer.choice_id].cost
                       ) * self.rewardParameters[0]
            reward += self.customer.trust_recommendation * self.rewardParameters[
                1]
        else:
            print("Error : wrong reward type")
            return None

        return reward

    def display(self, print_item=False):
        print('---------ENVIRONNEMENT DISPLAY--------')
        self.items.display(print_item)
        self.recommendation.display()
        self.customer.display()
Exemplo n.º 4
0
 def WeekTweet(self):
     tempTweet = ""
     for x in range(1, 6):
         self.weatherObj = Weather(GPSLOCATION, AIRPORT, x)
         self.rec = Recommendation.Recommendation(self.weatherObj)
         tempTweet += self.weatherObj.dayofWeek["short"] + "- " + str(
             self.rec.rating) + "/"
         tempTweet += self.weatherObj.weatherStatus + "/Morn " + str(
             math.ceil(self.weatherObj.mornTemp)) + "°F/Eve " + str(
                 math.ceil(self.weatherObj.eveTemp)) + "°F"
         if (self.rec.weatherEmoji):
             tempTweet += self.rec.weatherEmoji + "\n"
     self.tweetContents = "THIS WEEK'S CONDITIONS:\n" + tempTweet
     self.addHashTag()
     TweetPublisher(self.tweetContents)
Exemplo n.º 5
0
def main():
    if request.method == 'GET':
        return render_template('index.html')
    if request.method == 'POST':
        movie_name = request.form['movie_name']
        movie_name = movie_name.title()
        print(movie_name)
        if movie_name not in data['original_title'].unique():
            return render_template('negative.html')
        else:
            res = Recommendation.results(movie_name)
            return render_template('positive.html',
                                   movie_names=res['Title'].tolist(),
                                   director=res['Director'].tolist(),
                                   search_name=movie_name)
Exemplo n.º 6
0
    def slider_response( self ):
        Property_dict[ "Melee" ] = self.Melee.value()
        Property_dict[ "Physical" ] = self.Physical.value()
        Property_dict[ "Damage" ] = self.Damage.value()
        Property_dict[ "Solo" ] = self.Solo.value()
        Property_dict[ "Team" ] = self.Team.value()
        Property_dict[ "Range" ] = self.Range.value()
        Property_dict[ "Magical" ] = self.Magical.value()
        Property_dict[ "Tank" ] = self.Tank.value()
        Property_dict[ "Support" ] = self.Support.value()

        #self.career_recommendation = []
        #self.friend_recommendation = []
        self.career_recommendation, self.friend_recommendation = Recommendation.getInput( Property_dict )

        self.comboBox.clear()
        self.comboBox.addItems( self.friend_recommendation )

        pic = QtGui.QPixmap(self.pic_path + self.career_recommendation[0]+'.png')
        pic = pic.scaled(self.graphicsView.size())
        self.QGraphicsScene.clear()
        self.QGraphicsScene.addPixmap(pic)
        self.commandLinkButton.setText(self.career_recommendation[0])
        
        pic = QtGui.QPixmap(self.pic_path + self.career_recommendation[1]+'.png')
        pic = pic.scaled(self.graphicsView_2.size())
        self.QGraphicsScene_2.clear()
        self.QGraphicsScene_2.addPixmap(pic)
        self.commandLinkButton_2.setText(self.career_recommendation[1])

        pic = QtGui.QPixmap(self.pic_path + self.career_recommendation[2]+'.png')
        pic = pic.scaled(self.graphicsView_3.size())
        self.QGraphicsScene_3.clear()
        self.QGraphicsScene_3.addPixmap(pic)
        self.commandLinkButton_3.setText(self.career_recommendation[2])

        pic = QtGui.QPixmap(self.pic_path + self.career_recommendation[3]+'.png')
        pic = pic.scaled(self.graphicsView_4.size())
        self.QGraphicsScene_4.clear()
        self.QGraphicsScene_4.addPixmap(pic)
        self.commandLinkButton_4.setText(self.career_recommendation[3])

        pic = QtGui.QPixmap(self.pic_path + self.career_recommendation[4]+'.png')
        pic = pic.scaled(self.graphicsView_5.size())
        self.QGraphicsScene_5.clear()
        self.QGraphicsScene_5.addPixmap(pic)
        self.commandLinkButton_5.setText(self.career_recommendation[4])
Exemplo n.º 7
0
def note(request, heading=""):
    if heading:
        try:
            new_note = Ribbit.objects.get(heading=heading)
            form = RibbitForm(request.POST or None, instance=new_note)
            print 'line 142'
            global_heading = heading
        except Ribbit.DoesNotExist:
            redirect('/')
        return render(request, 'detailed_note.html', {
            'ribbit': new_note,
            'form': form
        })

    if request.POST.get('extract'):
        extractor = rake.Rake(
            '/Users/seda/Xtrify/ribbit/ribbit_app/SmartStoplist.txt')
        note = Ribbit.objects.get(heading=request.POST['heading'])
        keywords = extractor.run(note.content)
        keywords = [str(keywords[x][0]) for x in range(len(keywords))]
        keywords = str(keywords)[1:-1]
        note.keywords = keywords
        note.save()
        h = request.POST['heading']
        return redirect('/note/' + h)

    if request.POST.get('recommend'):
        rec = Recommendation.Recommendation()
        note = Ribbit.objects.get(heading=request.POST['heading'])
        keywords = note.keywords
        keywords = re.sub('[\']', '', keywords)
        keywords = keywords.split(',')
        results = rec.search(keywords)
        results.append('asdasd')
        results.append('adasda')
        print results
        return render(request, 'recommendation.html', {'results': results})
    if request.method == "POST":
        ribbit_form = RibbitForm(
            request.POST,
            instance=Ribbit.objects.get(heading=request.POST['heading']))
        #ribbit_form = RibbitForm(request.POST, instance=Ribbit.objects.get(heading=global_heading))

        if ribbit_form.is_valid():
            ribbit_form.save()
            return redirect('/')
Exemplo n.º 8
0
def validate(job_title, df_job_post, df_course, course_num=5):
    '''
    check the accuracy of first 5 recommended courses if the job title of the poster is in the suggested user for the courses
    '''
    related = 0
    irrelated = 0
    df_course2 = df_course[pd.notnull(df_course.checked_job)]
    for job_post in df_job_post.iterrows():
        df_recommed_course = rmd.recommendation(job_post, df_course2,
                                                course_num)
        df_recommed_course['relevancy'] = df_recommed_course.checked_job.apply(
            lambda x: True if job_title in x else False)
        a = df_recommed_course.relevancy.sum()
        related += a
        irrelated += course_num - a
    accuracy = related / (related + irrelated)
    return accuracy
Exemplo n.º 9
0
def note(request, heading=""):
    if heading:
        try:
            new_note = Note.objects.get(heading=heading)
            form = NoteForm(request.POST or None, instance=new_note)
            print 'line 142'
            global_heading = heading
        except Note.DoesNotExist:
            redirect('/')
        return render(request, 'detailed_note.html', {
            'note': new_note,
            'form': form
        })

    if request.POST.get('extract'):
        extractor = rake.Rake(os.getcwd() + '/note_app/SmartStoplist.txt')
        note = Note.objects.get(heading=request.POST['heading'])
        keywords = extractor.run(note.content)
        keywords = [str(keywords[x][0]) for x in range(len(keywords))]
        keywords = str(keywords)[1:-1]
        note.keywords = keywords
        note.save()
        h = request.POST['heading']
        return redirect('/note/' + h)

    if request.POST.get('recommend'):
        rec = Recommendation.Recommendation()
        note = Note.objects.get(heading=request.POST['heading'])
        keywords = note.keywords
        keywords = re.sub('[\']', '', keywords)
        keywords = keywords.split(',')
        results = rec.recommend(keywords)

        print keywords
        return render(request, 'recommendation.html', {'results': results})
    if request.method == "POST":
        note_form = NoteForm(
            request.POST,
            instance=Note.objects.get(heading=request.POST['heading']))
        #note_form = NoteForm(request.POST, instance=Note.objects.get(heading=global_heading))

        if note_form.is_valid():
            note_form.save()
            h = request.POST['heading']
            return redirect('/note/' + h)
Exemplo n.º 10
0
 def WeekendTweet(self):
     tempTweet = ""
     for x in range(1, 3):
         self.weatherObj = Weather(GPSLOCATION, AIRPORT, x)
         self.rec = Recommendation.Recommendation(self.weatherObj)
         tempTweet += self.weatherObj.dayofWeek["long"] + "- " + str(
             self.rec.rating) + "/"
         tempTweet += self.weatherObj.weatherStatus + "/Morn " + str(
             math.ceil(self.weatherObj.mornTemp)) + "°F/Eve " + str(
                 math.ceil(self.weatherObj.eveTemp)) + "°F"
         if ((self.weatherObj.rainText)
                 and (self.weatherObj.weatherStatus != "trace rain")):
             tempTweet += "/" + self.weatherObj.rainText
         if (self.rec.weatherEmoji):
             tempTweet += self.rec.weatherEmoji + "\n"
         #Get the emoji here
     self.tweetContents = "THIS WEEKEND: \n" + tempTweet
     self.addHashTag()
     TweetPublisher(self.tweetContents)
Exemplo n.º 11
0
def main(argv):
    args = parser.parse_args(argv[1:])

    # train_set, test_set = split_test_set(get_ratings(), frac=0.3, random=True)
    # data = get_ratings('data/ratings_test.csv')
    data = get_ratings(args.train)

    # data = hide_rating(data, frac=0.3)
    k, pred_user, pred_item = 10, '140756691', ''
    
    if args.method == 'cf':
        item_based = model_recomm.ItemBased(data)
        recommend_list = item_based.top_k(user=pred_user, k=k, sim_fn=item_based.sim_cos)
    elif args.method == 'mf':
        model = train_mf(data, num_steps=args.num_steps)
        recommend_list = model.top_k(user=pred_user, k=k)
    else:
        raise Exception('Unsupport method %s' % args.method)

    # 140756691
    print(recommend_list)
Exemplo n.º 12
0
def train_mf(df, num_steps=10000):
    if 'real_rating' in df.columns:
        train_df = df[df['rating'] > 0]
    else:
        train_df = df

    def _set_index(df, keys):
        """
        Set index of given key (after drop duplicates)
        :param df:
        :param keys:
        :return:
        """
        for key in keys:
            unique_df = df.drop_duplicates([key]).reset_index()

            df.insert(len(df.columns), key + '_index', np.zeros(len(df), dtype=np.int32))

            for i, row in unique_df.iterrows():
                origin_index = list(df[df[key] == row[key]].index)
                df.loc[origin_index, key + '_index'] = i

    _set_index(train_df, ['item', 'user'])

    # code.interact(local=locals())

    total_item, total_user = len(train_df.drop_duplicates(['item'])), len(train_df.drop_duplicates(['user']))

    estimator = model_recomm.MatrixFactorizationEstimator(
        R_shape=(total_item, total_user),
        num_features=10,
        model_dir="models/mf/"
    )

    input_fn = tf.estimator.inputs.pandas_input_fn(
        x=train_df, y=train_df['rating'], batch_size=2, num_epochs=None, shuffle=True
    )
    estimator.train(input_fn=input_fn, steps=num_steps)

    return estimator
Exemplo n.º 13
0
def generateRecommdation(name, email, phoneno):
    data = Recommendation.RecommendationDataMap()

    data.name = name
    data.email = email
    data.phoneno = phoneno

    data.tier_city = tier_city_map[get_int_random(1, 3)]

    data.count_travel = get_int_random(1, 20)
    data.count_pol = get_int_random(1, 20)
    data.count_auto = get_int_random(1, 20)
    data.count_shop = get_int_random(1, 20)

    like = []
    random_no = get_int_random(5, 10)
    choosen_array = []
    while len(choosen_array) != random_no:
        y = get_int_random(0, len(likes_insight) - 1)
        if y not in choosen_array:
            choosen_array.append(y)
            like.append(likes_insight[y])
            x = get_int_random(2, 15)
            like.append(x)
    data.likes_insights = like

    genre = []
    random_no = get_int_random(2, 8)
    choosen_array = []
    while len(choosen_array) != random_no:
        y = get_int_random(0, len(movie_genre) - 1)
        if y not in choosen_array:
            choosen_array.append(y)
            genre.append(movie_genre[y])
            x = get_int_random(2, 15)
            genre.append(x)
    data.movie_genre = genre
    data.purchased_car = cars[get_int_random(0, len(cars) - 1)]
    return data
Exemplo n.º 14
0
def hide_rating(data, frac=0.3):
    """
    Hide some ratings for evaluate

    :param data:
    :param frac: how many ratings should be hidden
    :return:
        DataFrame with additional column `real_rating` for origin ratings,
        and some `rating` assigned by 0
    """
    df = data
    if 'rating' not in df:
        raise model_recomm.ColumnNotFoundError('rating')

    if 'real_rating' in df:
        df['real_rating'] = np.array(df['rating'])
    else:
        df.insert(len(df.columns), 'real_rating', np.array(df['rating']))

    if frac > 0:
        # hide top `frac` ratings for every user
        def _hide(df, frac):
            for i, user in df['user'].drop_duplicates().items():
                user_ratings = df[df['user'] == user]
                hide_len = int(len(user_ratings) * 0.3)
                if hide_len == 0:
                    continue
                index = user_ratings.index[:hide_len]
                df.loc[index, 'rating'] = 0
            return df

        df = _hide(df, frac)

    df = df.sample(frac=1).reset_index(drop=True)

    return df
Exemplo n.º 15
0
count = 5
distancia = 5

Desenha().desenhar(movies)

for f in movies:
    if f == src:
        print(f)
        for similar in f.similar:
            print('\t', similar)

print('*' * 100)
print('A partir do filme:')
print('\t', src)
print('Foram achados os seguintes filmes recomendados: ')
r = Recommendation.recommend(src, count)
for movie in r:
    print('\t', movie)
Desenha().recomendados(src, r)

print('*' * 100)
print('A partir do filme:')
print('\t', src)
print('Com o gênero: ', genero)
print('Foram achados os seguintes filmes recomendados: ')
r2 = Recommendation.recommendInGenre(src, genero, count)
for movie in r2:
    print('\t', movie)
Desenha().recomendados(src, r2)

print('*' * 100)
    def __init__(self, user):
        super(MainWindow, self).__init__() # 使用super函数可以实现子类使用父类的方法
        self.setWindowTitle("豆瓣电影推荐系统")
        self.setWindowIcon(QIcon('../douban.jpg')) # 设置窗口图标
        self.resize(1400,800)
        
        self.user_df = pd.read_csv('../data/douban_users.csv')
        self.user_df = self.user_df.iloc[:,[1,2,3]]
        self.movies_df = pd.read_csv('../data/doubanMovies.csv', encoding='utf-8')
        self.movies_df = self.movies_df.iloc[:,[0,1,6,15,16]]
        self.movies_df = self.movies_df.drop_duplicates(subset='url')
        self.movies_df = self.movies_df.rename(columns={'Unnamed: 0': 'Movie_ID'})
        self.user = user
        self.user_movie_num = len(list(self.user_df[self.user_df['user_id'] == user].movie_id))
        self.user_movie_num_show = str(self.user_movie_num)

        self.USER_PWD = dict()
        self.USER_Label = dict()
        f = open('../data/users_info.csv', 'a+', encoding='utf-8')
        f.seek(0) # 文件指针指向开头
        for line in f:
            self.USER_PWD[line.split(',')[0]] = line.split(',')[1].strip() # 存入用户名密码
            try:
                self.USER_Label[line.split(',')[0]] = line.split(',')[2].strip() # 存入用户标签
            except:
                self.USER_Label[line.split(',')[0]] = None
        f.close()
        
        self.user_label = self.USER_Label[user]
        self.welcome_label = QLabel(self)

        self.welcome_label.setText("<h1>欢迎您! " + self.user + "</h1>")
        self.recommend_label = QLabel("<h1>根据您的喜好为您推荐以下电影:</h1>", self)

        self.recommend_table = QTableWidget(self)
        self.hot_movies_label = QLabel("<h1>热门电影:</h1>", self)
        self.hot_movies_table = QTableWidget(self)

        self.user_center = QPushButton("个人主页", self)
        self.user_center.clicked.connect(lambda: self.show_user_center(user, self.user_movie_num_show, self.user_label))
        self.movie_detailed_button = QPushButton("电影详细页面", self)
        self.movie_detailed_button.clicked.connect(self.movie_detailed)
        self.search_button = QPushButton("电影搜索", self)        
        self.search_button.clicked.connect(self.search)
        self.hot_rec_movies = Recommendation.rec_hot_movies() # 热门电影
        self.rec_movies = Recommendation.find_user_like(self.user) # 推荐电影

        self.v1_layout = QVBoxLayout()
        self.v2_layout = QVBoxLayout()
        self.h1_layout = QHBoxLayout()
        self.h2_layout = QHBoxLayout()
        self.h_layout = QHBoxLayout()

        self.h1_layout.addWidget(self.welcome_label)
        self.h1_layout.addWidget(self.user_center)
        self.v1_layout.addLayout(self.h1_layout)
        self.v1_layout.addWidget(self.recommend_label)
        self.v1_layout.addWidget(self.recommend_table)
        
        self.h2_layout.addWidget(self.hot_movies_label)
        self.h2_layout.addWidget(self.movie_detailed_button)
        self.h2_layout.addWidget(self.search_button)
        self.v2_layout.addLayout(self.h2_layout)
        self.v2_layout.addWidget(self.hot_movies_table)
        
        self.h_layout.addLayout(self.v1_layout)
        self.h_layout.addLayout(self.v2_layout)
        
        self.setLayout(self.h_layout)
        
        self.rec_movies_table_init()
        self.hot_movies_table_init()
        self.set_hot_movie_table(self.hot_rec_movies)
        self.set_rec_movies_table(self.rec_movies)
def getUserRecommendation():
    global currentUser
    trackObjs = Recommendation.getUserReccomendation(currentUser,
                                                     currentSentimentScore)
    return trackObjs
Exemplo n.º 18
0
1) Created Iterative Version of the Kosaraju Algoritihim

"""

kso = Kosaraju(tEdge)
kso.adjancency_list()
kso.dfsiLoop()
kso.transpose_graph()
print(kso.dfsiRev())
"""
Task 4: Recommendation Engine

1) Using tiny directed graph, due to memory constraints for repl.it
 
"""
Karan = Recommendation(E, 3)
Karan.adjacency_matrix()
Karan.matrix_multiplication()
print(Karan.length_k_chains(0, 3))
"""
Bonus Material: Detect Cycles in directed Graphs

"""

cycles_in_graph = cycle_DFS_wrapper(tEdge)

nocyc = 0
cyc = 0
for key in cycles_in_graph:
    if cycles_in_graph[key] == 'Cycles Exist at the specified Node':
        cyc = cyc + 1
Exemplo n.º 19
0
print('Number of users who have rated 20 or more items =', len(df_final))
print('Number of unique USERS in final data = ', df_final['UserId'].nunique())
print('Number of unique ITEMS in final data = ', df_final['ProductId'].nunique())
stream = df_final.Score.to_list()

L, counter = MisraGries.misra_gries(stream)
print('Final Counter for Stream is :', counter)
print('Final location/label for Stream is :', L)

train_data, test_data = train_test_split(df_final, test_size = 0.3, random_state=0)
print("Test data shape: ", test_data.shape)
print("Train data shape: ", train_data.shape)


print("The top 5 popular recommendations:")
print(Recommendation.recommend(df_final))

df_CF = pd.concat([train_data, test_data]).reset_index()

p_df = pd.pivot_table(df_CF, index=['UserId'], columns='ProductId', values="Score")
p_df.fillna(0, inplace=True)
p_df['user_index'] = np.arange(0, p_df.shape[0], 1)
p_df.set_index(['user_index'], inplace=True)

# SVD
U, sigma, Vt = svds(p_df, k=20)
sigma = np.diag(sigma)

all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt)
# Predicted ratings
preds_df = pd.DataFrame(all_user_predicted_ratings, columns = p_df.columns)
Exemplo n.º 20
0
from elasticsearch import Elasticsearch


#TODO: Configuration
host = "http://*****:*****@fantasticsearch.route('/')
def index():
	term = "*"

	results = performQuery(term, "", 0)
	
	return render_template('index.html', results=results, term=term, aggregationFields = aggregationFields, page=1, listSelection = listSelection)


@fantasticsearch.route('/search')
def search():
Exemplo n.º 21
0
def train( train_data_dir, labels, labels_num ):
    Recommendation.train( train_data_dir, labels, labels_num )
Exemplo n.º 22
0
 def recommendation(self):
     self.rec = Recommendation.Recommendation(self.weatherObj)
Exemplo n.º 23
0
 def PMTweet(self):
     self.weatherObj = Weather(GPSLOCATION, AIRPORT, 1)
     self.rec = Recommendation.Recommendation(self.weatherObj)
     self.formTweet()
     TweetPublisher(self.tweetContents)