Exemplo n.º 1
0
def test_bundles_to_tgram():

    affine = np.array([[2., 0., 0., -80.], [0., 2., 0., -120.],
                       [0., 0., 2., -60.], [0., 0., 0., 1.]])
    img = nib.Nifti1Image(np.ones((10, 10, 10, 30)), affine)

    bundles = {
        'b1':
        StatefulTractogram([
            np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
            np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
        ], img, Space.VOX),
        'b2':
        StatefulTractogram([
            np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 2], [0, 0, 2.5]]),
            np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 2, 2]])
        ], img, Space.VOX)
    }

    bundle_dict = {'b1': {'uid': 1}, 'b2': {'uid': 2}}
    tgram = aus.bundles_to_tgram(bundles, bundle_dict, img)
    new_bundles = aus.tgram_to_bundles(tgram, bundle_dict, img)
    for k1 in bundles.keys():
        for k2 in bundles[k1].__dict__.keys():
            for sl1, sl2 in zip(bundles[k1].streamlines,
                                new_bundles[k1].streamlines):
                npt.assert_equal(sl1, sl2)
Exemplo n.º 2
0
def _recobundles(row,
                 wm_labels,
                 bundle_dict,
                 reg_template,
                 odf_model="DTI",
                 directions="det",
                 n_seeds=2,
                 random_seeds=False,
                 force_recompute=False):

    bundles_file = _get_fname(row,
                              '%s_%s_bundles.trk' % (odf_model, directions))
    if not op.exists(bundles_file) or force_recompute:
        streamlines_file = _streamlines(row,
                                        wm_labels,
                                        odf_model=odf_model,
                                        directions=directions,
                                        n_seeds=n_seeds,
                                        random_seeds=random_seeds,
                                        force_recompute=force_recompute)
        tg = nib.streamlines.load(streamlines_file).tractogram
        sl = tg.apply_affine(np.linalg.inv(row['dwi_affine'])).streamlines
        bundles = seg.recobundles(sl, bundle_dict)
        tgram = aus.bundles_to_tgram(bundles, bundle_dict, row['dwi_affine'])
        nib.streamlines.save(tgram, bundles_file)
    return bundles_file
Exemplo n.º 3
0
    def _segment(self, row):
        # We pass `clean_params` here, but do not use it, so we have the
        # same signature as `_clean_bundles`.
        odf_model = self.tracking_params["odf_model"]
        directions = self.tracking_params["directions"]
        seg_algo = self.segmentation_params["seg_algo"]
        bundles_file = self._get_fname(
            row, f'_space-RASMM_model-{odf_model}_desc-{directions}-'
            f'{seg_algo}_tractography.trk')

        if self.force_recompute or not op.exists(bundles_file):
            streamlines_file = self._streamlines(row)

            img = nib.load(row['dwi_file'])
            tg = load_tractogram(streamlines_file, img, Space.VOX)
            if self.use_prealign:
                reg_prealign = np.load(self._reg_prealign(row))
            else:
                reg_prealign = None

            segmentation = seg.Segmentation(**self.segmentation_params)
            bundles = segmentation.segment(self.bundle_dict,
                                           tg,
                                           row['dwi_file'],
                                           row['bval_file'],
                                           row['bvec_file'],
                                           reg_template=self.reg_template,
                                           mapping=self._mapping(row),
                                           reg_prealign=reg_prealign)

            if self.segmentation_params['return_idx']:
                idx = {
                    bundle: bundles[bundle]['idx'].tolist()
                    for bundle in self.bundle_dict
                }
                afd.write_json(bundles_file.split('.')[0] + '_idx.json', idx)
                bundles = {
                    bundle: bundles[bundle]['sl']
                    for bundle in self.bundle_dict
                }

            tgram = aus.bundles_to_tgram(bundles, self.bundle_dict, img)
            save_tractogram(tgram, bundles_file)
            meta = dict(source=streamlines_file,
                        Parameters=self.segmentation_params)
            meta_fname = bundles_file.split('.')[0] + '.json'
            afd.write_json(meta_fname, meta)

        return bundles_file
Exemplo n.º 4
0
def test_bundles_to_tgram():
    bundles = {
        'b1': [
            np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
            np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
        ],
        'b2': [
            np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
            np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
        ]
    }

    bundle_dict = {'b1': {'uid': 1}, 'b2': {'uid': 2}}
    affine = np.array([[2., 0., 0., -80.], [0., 2., 0., -120.],
                       [0., 0., 2., -60.], [0., 0., 0., 1.]])
    tgram = aus.bundles_to_tgram(bundles, bundle_dict, affine)
    new_bundles = aus.tgram_to_bundles(tgram, bundle_dict)
    npt.assert_equal(new_bundles, bundles)
Exemplo n.º 5
0
def segment(subses_dict, bundle_dict, data_imap, reg_template, mapping_imap,
            tractography_imap, tracking_params, segmentation_params):
    streamlines_file = tractography_imap["streamlines_file"]
    # We pass `clean_params` here, but do not use it, so we have the
    # same signature as `_clean_bundles`.
    img = nib.load(subses_dict['dwi_file'])
    tg = load_tractogram(streamlines_file,
                         img,
                         Space.VOX,
                         bbox_valid_check=False)
    tg.remove_invalid_streamlines()

    start_time = time()
    segmentation = seg.Segmentation(**segmentation_params)
    bundles = segmentation.segment(bundle_dict,
                                   tg,
                                   subses_dict['dwi_file'],
                                   data_imap["bval_file"],
                                   data_imap["bvec_file"],
                                   reg_template=reg_template,
                                   mapping=mapping_imap["mapping"])

    if segmentation_params['return_idx']:
        idx = {
            bundle: bundles[bundle]['idx'].tolist()
            for bundle in bundle_dict
        }
        bundles = {bundle: bundles[bundle]['sl'] for bundle in bundle_dict}

    tgram = aus.bundles_to_tgram(bundles, bundle_dict, img)

    segmentation_params_out = {}
    for arg_name, value in segmentation_params.items():
        if isinstance(value, (int, float, bool, str))\
                or (value is None):
            segmentation_params_out[arg_name] = value
        else:
            segmentation_params_out[arg_name] = str(value)
    meta = dict(source=streamlines_file, Parameters=segmentation_params_out)
    if segmentation_params['return_idx']:
        meta["idx"] = idx
    meta["Timing"] = time() - start_time
    return tgram, meta
Exemplo n.º 6
0
def _bundles(row,
             wm_labels,
             bundle_dict,
             reg_template,
             odf_model="DTI",
             directions="det",
             n_seeds=2,
             random_seeds=False,
             force_recompute=False):
    bundles_file = _get_fname(row,
                              '%s_%s_bundles.trk' % (odf_model, directions))
    if not op.exists(bundles_file) or force_recompute:
        streamlines_file = _streamlines(row,
                                        wm_labels,
                                        odf_model=odf_model,
                                        directions=directions,
                                        n_seeds=n_seeds,
                                        random_seeds=random_seeds,
                                        force_recompute=force_recompute)
        tg = nib.streamlines.load(streamlines_file).tractogram
        sl = tg.apply_affine(np.linalg.inv(row['dwi_affine'])).streamlines

        reg_prealign = np.load(
            _reg_prealign(row, force_recompute=force_recompute))

        mapping = reg.read_mapping(_mapping(row, reg_template),
                                   row['dwi_file'],
                                   reg_template,
                                   prealign=np.linalg.inv(reg_prealign))

        bundles = seg.segment(row['dwi_file'],
                              row['bval_file'],
                              row['bvec_file'],
                              sl,
                              bundle_dict,
                              reg_template=reg_template,
                              mapping=mapping)

        tgram = aus.bundles_to_tgram(bundles, bundle_dict, row['dwi_affine'])
        nib.streamlines.save(tgram, bundles_file)
    return bundles_file
Exemplo n.º 7
0
def test_bundles_to_tgram():
    bundles = {
        'b1':
        dts.Streamlines([
            np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
            np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
        ]),
        'b2':
        dts.Streamlines([
            np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 2], [0, 0, 2.5]]),
            np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 2, 2]])
        ])
    }

    bundle_dict = {'b1': {'uid': 1}, 'b2': {'uid': 2}}
    affine = np.array([[2., 0., 0., -80.], [0., 2., 0., -120.],
                       [0., 0., 2., -60.], [0., 0., 0., 1.]])
    tgram = aus.bundles_to_tgram(bundles, bundle_dict, affine)
    new_bundles = aus.tgram_to_bundles(tgram, bundle_dict)
    for k1 in bundles.keys():
        for k2 in bundles[k1].__dict__.keys():
            npt.assert_equal(new_bundles[k1].__dict__[k2],
                             bundles[k1].__dict__[k2])