def __init__(self, *args, **kwargs): super(Window, self).__init__(*args, **kwargs) # Whether or not the window exclusively captures the mouse. self.exclusive = False # When flying gravity has no effect and speed is increased. self.flying = False # Strafing is moving lateral to the direction you are facing, # e.g. moving to the left or right while continuing to face forward. # # First element is -1 when moving forward, 1 when moving back, and 0 # otherwise. The second element is -1 when moving left, 1 when moving # right, and 0 otherwise. self.strafe = [0, 0] # Current (x, y, z) position in the world, specified with floats. Note # that, perhaps unlike in math class, the y-axis is the vertical axis. self.position = (0, 0, 0) # First element is rotation of the player in the x-z plane (ground # plane) measured from the z-axis down. The second is the rotation # angle from the ground plane up. Rotation is in degrees. # # The vertical plane rotation ranges from -90 (looking straight down) to # 90 (looking straight up). The horizontal rotation range is unbounded. self.rotation = (0, 0) # Which sector the player is currently in. self.sector = None # The crosshairs at the center of the screen. self.reticle = None # Velocity in the y (upward) direction. self.dy = 0 # A list of blocks the player can place. Hit num keys to cycle. self.inventory = [BRICK, GRASS, SAND] # The current block the user can place. Hit num keys to cycle. self.block = self.inventory[0] # Convenience list of num keys. self.num_keys = [ key._1, key._2, key._3, key._4, key._5, key._6, key._7, key._8, key._9, key._0] # Instance of the model that handles the world. self.model = Model() # The label that is displayed in the top left of the canvas. self.label = pyglet.text.Label('', font_name='Arial', font_size=18, x=10, y=self.height - 10, anchor_x='left', anchor_y='top', color=(0, 0, 0, 255)) # This call schedules the `update()` method to be called # TICKS_PER_SEC. This is the main game event loop. pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC) # Changes self.agent = Agent(self) self.test_count = 0
class Window(pyglet.window.Window): def __init__(self, *args, **kwargs): super(Window, self).__init__(*args, **kwargs) # Whether or not the window exclusively captures the mouse. self.exclusive = False # When flying gravity has no effect and speed is increased. self.flying = False # Strafing is moving lateral to the direction you are facing, # e.g. moving to the left or right while continuing to face forward. # # First element is -1 when moving forward, 1 when moving back, and 0 # otherwise. The second element is -1 when moving left, 1 when moving # right, and 0 otherwise. self.strafe = [0, 0] # Current (x, y, z) position in the world, specified with floats. Note # that, perhaps unlike in math class, the y-axis is the vertical axis. self.position = (0, 0, 0) # First element is rotation of the player in the x-z plane (ground # plane) measured from the z-axis down. The second is the rotation # angle from the ground plane up. Rotation is in degrees. # # The vertical plane rotation ranges from -90 (looking straight down) to # 90 (looking straight up). The horizontal rotation range is unbounded. self.rotation = (0, 0) # Which sector the player is currently in. self.sector = None # The crosshairs at the center of the screen. self.reticle = None # Velocity in the y (upward) direction. self.dy = 0 # A list of blocks the player can place. Hit num keys to cycle. self.inventory = [BRICK, GRASS, SAND] # The current block the user can place. Hit num keys to cycle. self.block = self.inventory[0] # Convenience list of num keys. self.num_keys = [ key._1, key._2, key._3, key._4, key._5, key._6, key._7, key._8, key._9, key._0] # Instance of the model that handles the world. self.model = Model() # The label that is displayed in the top left of the canvas. self.label = pyglet.text.Label('', font_name='Arial', font_size=18, x=10, y=self.height - 10, anchor_x='left', anchor_y='top', color=(0, 0, 0, 255)) # This call schedules the `update()` method to be called # TICKS_PER_SEC. This is the main game event loop. pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC) # Changes self.agent = Agent(self) self.test_count = 0 def set_exclusive_mouse(self, exclusive): """ If `exclusive` is True, the game will capture the mouse, if False the game will ignore the mouse. """ super(Window, self).set_exclusive_mouse(exclusive) self.exclusive = exclusive def get_sight_vector(self): """ Returns the current line of sight vector indicating the direction the player is looking. """ x, y = self.rotation # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and # is 1 when looking ahead parallel to the ground and 0 when looking # straight up or down. m = math.cos(math.radians(y)) # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when # looking straight up. dy = math.sin(math.radians(y)) dx = math.cos(math.radians(x - 90)) * m dz = math.sin(math.radians(x - 90)) * m return (dx, dy, dz) def get_motion_vector(self): """ Returns the current motion vector indicating the velocity of the player. Returns ------- vector : tuple of len 3 Tuple containing the velocity in x, y, and z respectively. """ if any(self.strafe): x, y = self.rotation strafe = math.degrees(math.atan2(*self.strafe)) y_angle = math.radians(y) x_angle = math.radians(x + strafe) if self.flying: m = math.cos(y_angle) dy = math.sin(y_angle) if self.strafe[1]: # Moving left or right. dy = 0.0 m = 1 if self.strafe[0] > 0: # Moving backwards. dy *= -1 # When you are flying up or down, you have less left and right # motion. dx = math.cos(x_angle) * m dz = math.sin(x_angle) * m else: dy = 0.0 dx = math.cos(x_angle) dz = math.sin(x_angle) else: dy = 0.0 dx = 0.0 dz = 0.0 return (dx, dy, dz) def update(self, dt): """ This method is scheduled to be called repeatedly by the pyglet clock. Parameters ---------- dt : float The change in time since the last call. """ # Changes # agent.jump(JUMP_SPEED) # Stop all agent movements in current timestep self.agent.stop() # Make any agent movements necessary (if no move is made the agent stops) if self.test_count % 50 == 0: print("CALLING") self.agent.get_move() self.test_count+=1 # print(self.test_count) self.model.process_queue() sector = sectorize(self.position) if sector != self.sector: self.model.change_sectors(self.sector, sector) if self.sector is None: self.model.process_entire_queue() self.sector = sector m = 8 dt = min(dt, 0.2) for _ in xrange(m): self._update(dt / m) def _update(self, dt): """ Private implementation of the `update()` method. This is where most of the motion logic lives, along with gravity and collision detection. Parameters ---------- dt : float The change in time since the last call. """ # walking speed = FLYING_SPEED if self.flying else WALKING_SPEED d = dt * speed # distance covered this tick. dx, dy, dz = self.get_motion_vector() # New position in space, before accounting for gravity. dx, dy, dz = dx * d, dy * d, dz * d # gravity if not self.flying: # Update your vertical speed: if you are falling, speed up until you # hit terminal velocity; if you are jumping, slow down until you # start falling. self.dy -= dt * GRAVITY self.dy = max(self.dy, -TERMINAL_VELOCITY) dy += self.dy * dt # collisions x, y, z = self.position x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT) self.position = (x, y, z) def collide(self, position, height): """ Checks to see if the player at the given `position` and `height` is colliding with any blocks in the world. Parameters ---------- position : tuple of len 3 The (x, y, z) position to check for collisions at. height : int or float The height of the player. Returns ------- position : tuple of len 3 The new position of the player taking into account collisions. """ # How much overlap with a dimension of a surrounding block you need to # have to count as a collision. If 0, touching terrain at all counts as # a collision. If .49, you sink into the ground, as if walking through # tall grass. If >= .5, you'll fall through the ground. pad = 0.25 p = list(position) np = normalize(position) for face in FACES: # check all surrounding blocks for i in xrange(3): # check each dimension independently if not face[i]: continue # How much overlap you have with this dimension. d = (p[i] - np[i]) * face[i] if d < pad: continue for dy in xrange(height): # check each height op = list(np) op[1] -= dy op[i] += face[i] if tuple(op) not in self.model.world: continue p[i] -= (d - pad) * face[i] if face == (0, -1, 0) or face == (0, 1, 0): # You are colliding with the ground or ceiling, so stop # falling / rising. self.dy = 0 break return tuple(p) def on_mouse_press(self, x, y, button, modifiers): """ Called when a mouse button is pressed. See pyglet docs for button amd modifier mappings. Parameters ---------- x, y : int The coordinates of the mouse click. Always center of the screen if the mouse is captured. button : int Number representing mouse button that was clicked. 1 = left button, 4 = right button. modifiers : int Number representing any modifying keys that were pressed when the mouse button was clicked. """ if self.exclusive: vector = self.get_sight_vector() block, previous = self.model.hit_test(self.position, vector) if (button == mouse.RIGHT) or \ ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)): # ON OSX, control + left click = right click. if previous: self.model.add_block(previous, self.block) elif button == pyglet.window.mouse.LEFT and block: texture = self.model.world[block] if texture != STONE: self.model.remove_block(block) else: self.set_exclusive_mouse(True) def on_mouse_motion(self, x, y, dx, dy): """ Called when the player moves the mouse. Parameters ---------- x, y : int The coordinates of the mouse click. Always center of the screen if the mouse is captured. dx, dy : float The movement of the mouse. """ if self.exclusive: m = 0.15 x, y = self.rotation x, y = x + dx * m, y + dy * m y = max(-90, min(90, y)) self.rotation = (x, y) def on_key_press(self, symbol, modifiers): """ Called when the player presses a key. See pyglet docs for key mappings. Parameters ---------- symbol : int Number representing the key that was pressed. modifiers : int Number representing any modifying keys that were pressed. """ if symbol == key.W: self.strafe[0] -= 1 elif symbol == key.S: self.strafe[0] += 1 elif symbol == key.A: self.strafe[1] -= 1 elif symbol == key.D: self.strafe[1] += 1 elif symbol == key.SPACE: if self.dy == 0: self.dy = JUMP_SPEED elif symbol == key.ESCAPE: self.set_exclusive_mouse(False) elif symbol == key.TAB: self.flying = not self.flying elif symbol in self.num_keys: index = (symbol - self.num_keys[0]) % len(self.inventory) self.block = self.inventory[index] def on_key_release(self, symbol, modifiers): """ Called when the player releases a key. See pyglet docs for key mappings. Parameters ---------- symbol : int Number representing the key that was pressed. modifiers : int Number representing any modifying keys that were pressed. """ if symbol == key.W: self.strafe[0] += 1 elif symbol == key.S: self.strafe[0] -= 1 elif symbol == key.A: self.strafe[1] += 1 elif symbol == key.D: self.strafe[1] -= 1 def on_resize(self, width, height): """ Called when the window is resized to a new `width` and `height`. """ # label self.label.y = height - 10 # reticle if self.reticle: self.reticle.delete() x, y = self.width / 2, self.height / 2 n = 10 self.reticle = pyglet.graphics.vertex_list(4, ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n)) ) def set_2d(self): """ Configure OpenGL to draw in 2d. """ width, height = self.get_size() glDisable(GL_DEPTH_TEST) glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0, width, 0, height, -1, 1) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def set_3d(self): """ Configure OpenGL to draw in 3d. """ width, height = self.get_size() glEnable(GL_DEPTH_TEST) glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(65.0, width / float(height), 0.1, 60.0) glMatrixMode(GL_MODELVIEW) glLoadIdentity() x, y = self.rotation glRotatef(x, 0, 1, 0) glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x))) x, y, z = self.position glTranslatef(-x, -y, -z) def on_draw(self): """ Called by pyglet to draw the canvas. """ self.clear() self.set_3d() glColor3d(1, 1, 1) self.model.batch.draw() self.draw_focused_block() self.set_2d() self.draw_label() self.draw_reticle() def draw_focused_block(self): """ Draw black edges around the block that is currently under the crosshairs. """ vector = self.get_sight_vector() block = self.model.hit_test(self.position, vector)[0] if block: x, y, z = block vertex_data = cube_vertices(x, y, z, 0.51) glColor3d(0, 0, 0) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data)) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) def draw_label(self): """ Draw the label in the top left of the screen. """ x, y, z = self.position self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % ( pyglet.clock.get_fps(), x, y, z, len(self.model._shown), len(self.model.world)) self.label.draw() def draw_reticle(self): """ Draw the crosshairs in the center of the screen. """ glColor3d(0, 0, 0) self.reticle.draw(GL_LINES)