Exemplo n.º 1
0
def _generate_projections(net_id, gather_subprojections):
    txt = ""
    proj_tpl = """
    %(pre)s & %(post)s & %(target)s & %(synapse)s &
    %(description)s \\\\ \\hline
"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    for proj in projections:
        # Find a name for the synapse
        if proj.synapse_type.name in Synapse._default_names.values(): # name not set
            synapse_name = "Synapse " + str(proj.synapse_type._rk_synapses_type)
        else:
            synapse_name = proj.synapse_type.name

        txt += proj_tpl % { 'pre': LatexParser.pop_name(proj.pre.name), 
                            'post': LatexParser.pop_name(proj.post.name), 
                            'target': LatexParser._format_list(proj.target, ' / '),
                            'synapse': synapse_name,
                            'description': proj.connector_description}

    return connectivity_template % {'projections_description': txt}
Exemplo n.º 2
0
def _generate_projections(net_id, gather_subprojections):
    txt = ""
    proj_tpl = """
    %(pre)s & %(post)s & %(target)s & %(synapse)s &
    %(description)s \\\\ \\hline
"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    for proj in projections:
        # Find a name for the synapse
        if proj.synapse_type.name in Synapse._default_names.values(): # name not set
            synapse_name = "Synapse " + str(proj.synapse_type._rk_synapses_type)
        else:
            synapse_name = proj.synapse_type.name

        txt += proj_tpl % { 'pre': LatexParser.pop_name(proj.pre.name), 
                            'post': LatexParser.pop_name(proj.post.name), 
                            'target': LatexParser._format_list(proj.target, ' / '),
                            'synapse': synapse_name,
                            'description': proj.connector_description}

    return connectivity_template % {'projections_description': txt}
Exemplo n.º 3
0
def _generate_projection_parameters(net_id, gather_subprojections):
    txt = ""
    proj_tpl = """
    %(name)s & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name and proj.target == existing_proj.target:  # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    first = True
    for rk, proj in enumerate(projections):
        parameters = ""
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name),
                    'post': LatexParser.pop_name(proj.post.name),
                    'target': LatexParser._format_list(proj.target, ' / ')
                }
            else:
                proj_name = ""
            val = proj.init[param]

            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.min(val)) + ", " + str(np.max(val)) + "]$"
            parameters += proj_tpl % {
                'name': proj_name,
                'param': LatexParser._latexify_name(param, []),
                'value': val
            }

        if parameters != "":
            txt += projparameters_template % {
                'parameters':
                parameters,
                'firstprojection':
                "\hdr{3}{H}{Projection parameters}\\\\ \\hline"
                if first else ""
            }
            first = False

    return txt
Exemplo n.º 4
0
def _generate_populations(net_id):
    def format_size(pop):
        size = str(pop.size)
        if pop.dimension >1:
            size += ' ('
            for d in range(pop.dimension):
                size += str(pop.geometry[d]) + '*'
            size = size.rsplit('*', 1)[0] + ')'
        return size

    txt = ""
    pop_tpl = """
    %(pop_name)s             & %(neuron_type)s        & $N_{\\text{%(pop_name)s}}$ = %(size)s  \\\\ \\hline
"""
    for pop in Global._network[net_id]['populations']:
        # Find a name for the neuron
        if pop.neuron_type.name in Neuron._default_names.values(): # name not set
            neuron_name = "Neuron " + str(pop.neuron_type._rk_neurons_type)
        else:
            neuron_name = pop.neuron_type.name

        txt += pop_tpl % {
            'pop_name': LatexParser.pop_name(pop.name), 
            'neuron_type': neuron_name, 
            'size': format_size(pop)}

    return populations_template % {'populations_description': txt}
Exemplo n.º 5
0
def _generate_populations(net_id):
    def format_size(pop):
        size = str(pop.size)
        if pop.dimension >1:
            size += ' ('
            for d in range(pop.dimension):
                size += str(pop.geometry[d]) + '*'
            size = size.rsplit('*', 1)[0] + ')'
        return size

    txt = ""
    pop_tpl = """
    %(pop_name)s             & %(neuron_type)s        & $N_{\\text{%(pop_name)s}}$ = %(size)s  \\\\ \\hline
"""
    for pop in Global._network[net_id]['populations']:
        # Find a name for the neuron
        if pop.neuron_type.name in Neuron._default_names.values(): # name not set
            neuron_name = "Neuron " + str(pop.neuron_type._rk_neurons_type)
        else:
            neuron_name = pop.neuron_type.name

        txt += pop_tpl % {
            'pop_name': LatexParser.pop_name(pop.name), 
            'neuron_type': neuron_name, 
            'size': format_size(pop)}

    return populations_template % {'populations_description': txt}
Exemplo n.º 6
0
def _generate_population_parameters(net_id):
    txt = ""
    pop_tpl = """
    %(name)s             & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    for rk, pop in enumerate(Global._network[net_id]['populations']):
        parameters = ""
        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(
                    np.array(val).max()) + "]$"
            parameters += pop_tpl % {
                'name': LatexParser.pop_name(pop.name) if idx == 0 else "",
                'param': LatexParser._latexify_name(param, []),
                'value': val
            }

        txt += popparameters_template % {
            'parameters':
            parameters,
            'firstpopulation':
            "\hdr{3}{H}{Population parameters}\\\\ \\hline" if rk == 0 else ""
        }

    return txt
Exemplo n.º 7
0
def _generate_summary(net_id):
    "part A"

    population_names = str(len(Global._network[net_id]['populations'])) + ': '
    connectivity = ""
    neuron_models = ""
    synapse_models = ""

    # List the names of all populations
    for pop in Global._network[net_id]['populations']:
        # population name
        population_names += LatexParser.pop_name(pop.name) + ", "
    population_names = population_names[:-2] # suppress the last ,

    # List all BOLD recordings
    measurements = ""

    # List all neuron types
    neuron_model_names = []
    for neur in Global._objects['neurons']:
        # bold models sorted in measurements
        if isinstance(neur, BoldModel):
            if neur._model_instantiated:
                measurements += neur.name + ', '
        # neuron model
        else:
            neuron_model_names.append(neur.name)
    for neur in list(set(neuron_model_names)):
        neuron_models += neur + ', '
    # suppress the last ,
    measurements = measurements[:-2]
    neuron_models = neuron_models[:-2]

    list_connectivity = []
    list_synapse_models = []
    for proj in Global._network[net_id]['projections']:
        list_connectivity.append(proj.connector_name)
        if not proj.synapse_type.name in list(Synapse._default_names.values()) + ['-']:
            list_synapse_models.append(proj.synapse_type.name)
    for con in list(set(list_connectivity)):
        connectivity += con + ', '
    for syn in list(set(list_synapse_models)):
        synapse_models += syn + ', '
    connectivity = connectivity[:-2]
    synapse_models = synapse_models[:-2] # suppress the last ,

    # Write the summary
    txt = summary_template  % {
        'population_names' : population_names,
        'connectivity' : connectivity,
        'neuron_models' : neuron_models,
        'synapse_models' : synapse_models,
        'measurements': measurements
    }
    return txt
Exemplo n.º 8
0
def _generate_projection_parameters(net_id, gather_subprojections):
    txt = ""
    proj_tpl = """
    %(name)s & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    first = True
    for rk, proj in enumerate(projections):
        parameters = ""
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name), 
                    'post': LatexParser.pop_name(proj.post.name), 
                    'target': LatexParser._format_list(proj.target, ' / ')}
            else:
                proj_name = ""
            val = proj.init[param]
            
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.min(val)) + ", " + str(np.max(val)) + "]$"
            parameters += proj_tpl % {'name': proj_name, 'param': LatexParser._latexify_name(param, []), 'value': val}

        if parameters != "":
            txt += projparameters_template % {'parameters': parameters, 'firstprojection': "\hdr{3}{H}{Projection parameters}\\\\ \\hline" if first else ""}
            first = False

    return txt
Exemplo n.º 9
0
def _generate_population_parameters(net_id):
    txt = ""
    pop_tpl = """
    %(name)s             & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    for rk, pop in enumerate(Global._network[net_id]['populations']):
        parameters = ""
        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters += pop_tpl % {'name': LatexParser.pop_name(pop.name) if idx==0 else "", 'param': LatexParser._latexify_name(param, []), 'value': val}

        txt += popparameters_template % {'parameters': parameters, 'firstpopulation': "\hdr{3}{H}{Population parameters}\\\\ \\hline" if rk==0 else ""}

    return txt
Exemplo n.º 10
0
def _generate_summary(net_id):
    "part A"

    population_names = str(len(Global._network[net_id]['populations'])) + ': '
    connectivity = ""
    neuron_models = ""
    synapse_models = ""

    # List the names of all populations
    for pop in Global._network[net_id]['populations']:
        # population name
        population_names += LatexParser.pop_name(pop.name) + ", "
    population_names = population_names[:-2] # suppress the last ,

    # List all neuron types
    neuron_model_names = []
    for neur in Global._objects['neurons']:
        neuron_model_names.append(neur.name)
    for neur in list(set(neuron_model_names)):
        neuron_models += neur + ', '
    neuron_models = neuron_models[:-2] # suppress the last ,

    list_connectivity = []
    list_synapse_models = []
    for proj in Global._network[net_id]['projections']:
        list_connectivity.append(proj.connector_name)
        if not proj.synapse_type.name in list(Synapse._default_names.values()) + ['-']:
            list_synapse_models.append(proj.synapse_type.name)
    for con in list(set(list_connectivity)):
        connectivity += con + ', '
    for syn in list(set(list_synapse_models)):
        synapse_models += syn + ', '
    connectivity = connectivity[:-2]
    synapse_models = synapse_models[:-2] # suppress the last ,


    # Write the summary
    txt = summary_template  % {
        'population_names' : population_names,
        'connectivity' : connectivity,
        'neuron_models' : neuron_models,
        'synapse_models' : synapse_models
    }
    return txt
Exemplo n.º 11
0
def _generate_parameters(net_id, gather_subprojections):
    txt = """
# Parameters
"""

    # Constants
    if len(Global._objects['constants']) > 0:
        txt += """
## Constants

"""
        constants_list = [
            ["$" + LatexParser._latexify_name(constant.name, []) + "$",  constant.value]
                for constant in Global._objects['constants']]

        constants_headers = ["Name", "Value"]
        txt += _make_table(constants_headers, constants_list)

    # Population parameters
    txt += """
## Population parameters

"""
    parameters_list = []
    for rk, pop in enumerate(Global._network[net_id]['populations']):    
        neuron_name = "Neuron " + str(pop.neuron_type._rk_neurons_type) if pop.neuron_type.name in Neuron._default_names.values() \
            else pop.neuron_type.name

        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   LatexParser.pop_name(pop.name) if idx==0 else "", 
                    neuron_name if idx==0 else "", 
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    population_headers = ["Population", "Neuron type", "Name", "Value"]
    txt += _make_table(population_headers, parameters_list)

    # Projection parameters
    txt += """
## Projection parameters

"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name \
                    and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    parameters_list = []
    for rk, proj in enumerate(projections):
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name), 
                    'post': LatexParser.pop_name(proj.post.name), 
                    'target': LatexParser._format_list(proj.target, ' / ')}
            else:
                proj_name = ""
            
            synapse_name = "Synapse " + str(proj.synapse_type._rk_synapses_type) if proj.synapse_type.name in Synapse._default_names.values() \
                else proj.synapse_type.name
            
            val = proj.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   proj_name, 
                    synapse_name if idx == 0 else "",
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    projection_headers = ["Projection", "Synapse type", "Name", "Value"]
    txt += _make_table(projection_headers, parameters_list)

    return txt
Exemplo n.º 12
0
def _generate_parameters(net_id, gather_subprojections):
    txt = """
# Parameters
"""

    # Constants
    if len(Global._objects['constants']) > 0:
        txt += """
## Constants

"""
        constants_list = [
            ["$" + LatexParser._latexify_name(constant.name, []) + "$",  constant.value]
                for constant in Global._objects['constants']]

        constants_headers = ["Name", "Value"]
        txt += _make_table(constants_headers, constants_list)

    # Population parameters
    txt += """
## Population parameters

"""
    parameters_list = []
    for rk, pop in enumerate(Global._network[net_id]['populations']):    
        neuron_name = "Neuron " + str(pop.neuron_type._rk_neurons_type) if pop.neuron_type.name in Neuron._default_names.values() \
            else pop.neuron_type.name

        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   LatexParser.pop_name(pop.name) if idx==0 else "", 
                    neuron_name if idx==0 else "", 
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    population_headers = ["Population", "Neuron type", "Name", "Value"]
    txt += _make_table(population_headers, parameters_list)

    # Projection parameters
    txt += """
## Projection parameters

"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name \
                    and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    parameters_list = []
    for rk, proj in enumerate(projections):
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name), 
                    'post': LatexParser.pop_name(proj.post.name), 
                    'target': LatexParser._format_list(proj.target, ' / ')}
            else:
                proj_name = ""
            
            synapse_name = "Synapse " + str(proj.synapse_type._rk_synapses_type) if proj.synapse_type.name in Synapse._default_names.values() \
                else proj.synapse_type.name
            
            val = proj.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   proj_name, 
                    synapse_name if idx == 0 else "",
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    projection_headers = ["Projection", "Synapse type", "Name", "Value"]
    txt += _make_table(projection_headers, parameters_list)

    return txt