Exemplo n.º 1
0
 def _stoimat_generate(self):
     stoimat = np.zeros([self.nrxn, self.nspe], dtype='int8')
     for i in range(self.nrxn):
         for react in self.reactionlist[i].reactant:
             k = get_index_species(str(react[0]), self.specieslist)
             stoimat[i, k] = -react[1]
         for prod in self.reactionlist[i].product:
             k = get_index_species(str(prod[0]), self.specieslist)
             stoimat[i, k] = prod[1]
     return stoimat
Exemplo n.º 2
0
 def init_condition(self, condition):
     x0 = [0] * (self.nspe - 1)
     for spe in condition.InitCoverage.keys():
         idx = get_index_species(spe, self.specieslist)
         x0[idx] = condition.InitCoverage[spe]
     x0.append(1 - sum(x0[self.ngas:]))
     return x0
Exemplo n.º 3
0
 def read_species_thermo(species_thermo_file, _dir_):
     '''
     Assign the species thermo calculation result to species list,
     :param species_thermo_string: json readable string for list of dictionary
     :param specieslist: list stored all species information
     '''
     with open(species_thermo_file, 'r') as f:
         datalist = json.load(f)
     for data in datalist:
         spe = data['name']
         idx = get_index_species(spe, _dir_['specieslist'])
         _dir_['specieslist'][idx].thermo = data['thermo']
Exemplo n.º 4
0
 def read_species_vib(species_vib_file, _dir_):
     '''
     Assign the vibrational frequency to species list,
     :param vib_string: json readable string for list of dictionary
     :param specieslist: specieslist stored all species information
     '''
     with open(species_vib_file, 'r') as f:
         datalist = json.load(f)
     for data in datalist:
         spe = data['name']
         idx = get_index_species(spe, _dir_['specieslist'])
         _dir_['specieslist'][idx].vibfreq = data['vib']
Exemplo n.º 5
0
 def read_reaction(reaction_file, _dir_):
     '''
     Read the reaction mechanism given list of reactions
     :param reaction_string: json readable string
     '''
     with open(reaction_file, 'r') as f:
         datalist = json.load(f)
     for data in datalist:
         rxn = Reaction()
         rxn.name = data['name']
         reactant = data['reactant']
         product = data['product']
         cons_react = []
         for react, stoi in reactant:
             idx = get_index_species(react, _dir_['specieslist'])
             cons_react.append((_dir_['specieslist'][idx], stoi))
         cons_prod = []
         for react, stoi in product:
             idx = get_index_species(react, _dir_['specieslist'])
             cons_prod.append((_dir_['specieslist'][idx], stoi))
         rxn.reactant = cons_react
         rxn.product = cons_prod
         _dir_['reactionlist'].append(rxn)
Exemplo n.º 6
0
    def eval_likeli(self, dE, conditionlist, evidence_info={}):
        reltol = evidence_info.get('reltol', 1e-12)
        abstol = evidence_info.get('abstol', 1e-12)

        err = evidence_info.get('peak_err', 10)

        opts = {}
        opts['abstol'] = abstol
        opts['reltol'] = reltol
        opts['disable_internal_warnings'] = True
        opts['max_num_steps'] = 1e5

        # Initialize simulator
        evidence = 0
        for condition in conditionlist:
            time = condition.TimeGrid
            T0 = condition.T0
            beta = condition.Beta
            x0 = self.init_condition(condition)

            P_dae = np.hstack([dE, T0, beta])

            Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
            Fsim = cas.Simulator('Fsim', Fint, time)
            Fsim.setInput(x0, 'x0')
            Fsim.setInput(P_dae, 'p')
            Fsim.evaluate()

            out = Fsim.getOutput().full()
            # Find the peak
            for spe, peak_exp in condition.PeakPosition.items():
                idx = get_index_species(spe, self.specieslist)
                des = out[idx, :]
                idx_peak = np.argmax(des)
                peak_sim = condition.TemGrid[idx_peak]
                dev = peak_sim - peak_exp
                evidence += (dev * dev) / err**2
        return -evidence
Exemplo n.º 7
0
Arquivo: cstr.py Projeto: thj2009/AbCD
    def evidence_construct(self,
                           conditionlist,
                           evidence_info,
                           sensitivity=True):
        # simulation option
        reltol = evidence_info.get('reltol', 1e-6)
        abstol = evidence_info.get('abstol', 1e-10)
        # error value
        err_type = evidence_info['type']
        err = evidence_info['err']
        lowSurf = evidence_info.get('lowSurf', 1e4)
        lowSurf_thres = evidence_info.get('lowSurf_thres', 1e-5)
        cov_err = evidence_info.get('cov_err', 0.05)

        # Initialize simulator
        Pnlp = self._Pnlp
        if sensitivity:
            # opts = fwd_sensitivity_option(reltol=reltol, adjtol=adjtol, fwdtol=fwdtol)
            opts = fwd_sensitivity_option()
        else:
            opts = fwd_NoSensitivity_option(reltol=reltol, abstol=abstol)
        print(opts)
        Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        evidence = 0
        for condition in conditionlist:
            TotalPressure = condition.TotalPressure
            TotalFlow = condition.TotalFlow
            Tem = condition.Temperature

            if condition.InitCoverage == {}:
                x0 = [0] * (self.nspe - 1) + [1]
            else:
                # Construct Coverage
                x0 = [0] * (self.nspe - 1) + [1]
                for spe, cov in condition.InitCoverage.items():
                    idx = get_index_species(spe, self.specieslist)
                    x0[idx - self.ngas] = cov
                    x0[-1] -= cov
            # construct initial partial pressure
            Pinlet = np.zeros(self.ngas)
            for idx, spe in enumerate(self.specieslist):
                if spe.phase == 'gaseous':
                    Pinlet[idx] = condition.PartialPressure[str(spe)] if str(
                        spe) in condition.PartialPressure.keys() else 0
            # run simulation
            P_dae = cas.vertcat([Pnlp, Pinlet, Tem, TotalFlow])
            F_sim = Fint(x0=x0, p=P_dae)
            for idx, spe in enumerate(self.specieslist):
                if spe.phase == 'gaseous':
                    # construct evidence with turnover frequency
                    tor = F_sim['xf'][
                        idx] - Pinlet[idx] / TotalPressure * TotalFlow
                    if str(spe) in condition.TurnOverFrequency.keys():
                        exp_tor = condition.TurnOverFrequency[str(spe)]
                        if err_type == 'abs' or abs(exp_tor) <= lowSurf_thres:
                            dev = tor - exp_tor
                        elif err_type == 'rel':
                            dev = 1 - tor / exp_tor
                        elif err_type == 'log':
                            dev = cas.log(tor / exp_tor)
                        else:
                            pass
                        # if abs(exp_tor) <= lowSurf_thres:
                        # evidence += (dev * dev) * lowSurf
                        # else:
                        evidence += (dev * dev) / err**2
                # if spe.phase == 'surface':
                # cov = F_sim['xf'][idx]
                # if str(spe) in condition.Coverage.keys():
                # exp_cov = condition.Coverage[str(spe)]
                # dev = cas.log(cov / exp_cov)
                # evidence += (dev * dev) / cov_err**2
        self._evidence_ = evidence
        return evidence
Exemplo n.º 8
0
Arquivo: cstr.py Projeto: thj2009/AbCD
    def fwd_simulation(self,
                       dE_start,
                       condition,
                       detail=True,
                       reltol=1e-8,
                       abstol=1e-10,
                       DRX=False,
                       drc_opt={}):

        TotalPressure = condition.TotalPressure
        TotalFlow = condition.TotalFlow
        Tem = condition.Temperature
        tf = condition.SimulationTime

        opts = {}
        opts['tf'] = tf  # Simulation time
        opts['abstol'] = abstol
        opts['reltol'] = reltol
        opts['disable_internal_warnings'] = True
        opts['max_num_steps'] = 1e8

        if py == 2:
            Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        elif py == 3:
            Fint = cas.integrator('Fint', 'cvodes', self._dae_, opts)

        if condition.InitCoverage == {}:
            x0 = [0] * (self.nspe - 1) + [1]
        else:
            # Construct Coverage
            x0 = [0] * (self.nspe - 1) + [1]
            for spe, cov in condition.InitCoverage.items():
                idx = get_index_species(spe, self.specieslist)
                x0[idx - self.ngas] = cov
                x0[-1] -= cov
        # Partial Pressure
        Pinlet = np.zeros(self.ngas)
        for idx, spe in enumerate(self.specieslist):
            if spe.phase == 'gaseous':
                Pinlet[idx] = condition.PartialPressure[str(spe)] if str(
                    spe) in condition.PartialPressure.keys() else 0
        P_dae = np.hstack([dE_start, Pinlet, Tem, TotalFlow])
        F_sim = Fint(x0=x0, p=P_dae)
        tor = {}
        for idx, spe in enumerate(self.specieslist):
            if spe.phase == 'gaseous':
                tor[str(spe)] = float(F_sim['xf'][idx] -
                                      Pinlet[idx] / TotalPressure * TotalFlow)

        # Detailed Reaction network data
        # Evaluate partial pressure and surface coverage
        self.pressure_value = list(
            (F_sim['xf'][:self.ngas] / TotalFlow * TotalPressure).full().T[0])
        self.coverage_value = list(F_sim['xf'][self.ngas:].full().T[0])

        # Evaluate Reaction Rate automatically save to Rate attribute
        x = self._x
        p = self._p
        if py == 2:
            rate_fxn = cas.SXFunction('rate_fxn', [x, p],
                                      [self._rate, self._rfor, self._rrev])
            rate_fxn.setInput(F_sim['xf'], 'i0')
            rate_fxn.setInput(P_dae, 'i1')
            rate_fxn.evaluate()

            self.rate_value = {}
            self.rate_value['rnet'] = rate_fxn.getOutput(
                'o0').full().T[0].tolist()
            self.rate_value['rfor'] = rate_fxn.getOutput(
                'o1').full().T[0].tolist()
            self.rate_value['rrev'] = rate_fxn.getOutput(
                'o2').full().T[0].tolist()

            # Evaluate Reaction Energy
            ene_fxn = cas.SXFunction('ene_fxn', [x, p], [
                self._reaction_energy_expression['activation'],
                self._reaction_energy_expression['enthalpy']
            ])
            ene_fxn.setInput(F_sim['xf'], 'i0')
            ene_fxn.setInput(P_dae, 'i1')
            ene_fxn.evaluate()
            self.energy_value = {}
            self.energy_value['activation'] = list(
                ene_fxn.getOutput('o0').full().T[0])
            self.energy_value['enthalpy'] = list(
                ene_fxn.getOutput('o1').full().T[0])

            # Evaluate Equilibrium Constant and Rate Constant
            k_fxn = cas.SXFunction('k_fxn', [x, p],
                                   [self._Keq, self._Qeq, self._kf, self._kr])
            k_fxn.setInput(F_sim['xf'], 'i0')
            k_fxn.setInput(P_dae, 'i1')
            k_fxn.evaluate()
            self.equil_rate_const_value = {}
            self.equil_rate_const_value['Keq'] = list(
                k_fxn.getOutput('o0').full().T[0])
            self.equil_rate_const_value['Qeq'] = list(
                k_fxn.getOutput('o1').full().T[0])
            self.equil_rate_const_value['kf'] = list(
                k_fxn.getOutput('o2').full().T[0])
            self.equil_rate_const_value['kr'] = list(
                k_fxn.getOutput('o3').full().T[0])

        elif py == 3:
            rate_fxn = cas.Function('rate_fxn', [x, p],
                                    [self._rate, self._rfor, self._rrev])
            outs = rate_fxn(F_sim['xf'], P_dae)
            self.rate_value = {}
            self.rate_value['rnet'] = outs[0].full().T[0].tolist()
            self.rate_value['rfor'] = outs[1].full().T[0].tolist()
            self.rate_value['rrev'] = outs[2].full().T[0].tolist()
            # Evaluate Reaction Energy
            ene_fxn = cas.Function('ene_fxn', [x, p], [
                self._reaction_energy_expression['activation'],
                self._reaction_energy_expression['enthalpy']
            ])
            outs = ene_fxn(F_sim['xf'], P_dae)
            self.energy_value = {}
            self.energy_value['activation'] = list(outs[0].full().T[0])
            self.energy_value['enthalpy'] = list(outs[1].full().T[0])
            # Evaluate Equilibrium Constant and Rate Constant
            k_fxn = cas.Function('k_fxn', [x, p],
                                 [self._Keq, self._Qeq, self._kf, self._kr])
            outs = k_fxn(F_sim['xf'], P_dae)
            self.equil_rate_const_value = {}
            self.equil_rate_const_value['Keq'] = list(outs[0].full().T[0])
            self.equil_rate_const_value['Qeq'] = list(outs[1].full().T[0])
            self.equil_rate_const_value['kf'] = list(outs[2].full().T[0])
            self.equil_rate_const_value['kr'] = list(outs[3].full().T[0])

        xrc, xtrc = [], []
        # TODO: degree of rate control
        if DRX:
            delG = drc_opt.get('delG', 1)
            ref_species = drc_opt.get('ref', 'H2(g)')
            numer = drc_opt.get('numer', 'fwd')
            tor0 = tor[ref_species]
            if numer == 'ad':
                opts = fwd_sensitivity_option(tf=tf, reltol=1e-8, abstol=1e-16)
                Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
                Pnlp = self._Pnlp
                P_dae = cas.vertcat([Pnlp, Pinlet, Tem, TotalFlow])
                F_sim = Fint(x0=x0, p=P_dae)

                ii = [
                    ii for ii, spe in enumerate(self.specieslist)
                    if str(spe) == ref_species
                ][0]
                tor_ad = F_sim['xf'][
                    ii] - Pinlet[ii] / TotalPressure * TotalFlow

                # define the jacobian and MX function
                jac = cas.jacobian(tor_ad, Pnlp)
                # evaluate the jacobian
                fjac = cas.MXFunction('fjac', [Pnlp], [jac])
                xrc = fjac([np.copy(dE_start)])[0]
                xrc = xrc / tor0 * (_const.Rg * Tem) / (-1000)
                xrc = xrc.full()[0].tolist()[:len(self.dEa_index)]

            for idx, j in enumerate(self.dEa_index):
                dP = np.copy(dE_start)
                dP[idx] += delG
                # Partial Pressure
                P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                F_sim = Fint(x0=x0, p=P_dae)

                for ii, spe in enumerate(self.specieslist):
                    if str(spe) == ref_species:
                        tor_p = float(F_sim['xf'][ii] -
                                      Pinlet[ii] / TotalPressure * TotalFlow)

                if numer == 'cent':
                    dP = np.copy(dE_start)
                    dP[idx] -= delG
                    # Partial Pressure
                    P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                    F_sim = Fint(x0=x0, p=P_dae)

                    for ii, spe in enumerate(self.specieslist):
                        if str(spe) == ref_species:
                            tor_n = float(F_sim['xf'][ii] - Pinlet[ii] /
                                          TotalPressure * TotalFlow)

                if numer == 'fwd':
                    xrc.append((tor_p - tor0) / tor0 / (-delG * 1000 /
                                                        (_const.Rg * Tem)))
                    # xrc.append((np.log(np.abs(tor_p)) - np.log(np.abs(tor0)))/(-delG * 1000 /(_const.Rg * Tem)))
                if numer == 'cent':
                    xrc.append((tor_p - tor_n) / tor0 / (-2 * delG * 1000 /
                                                         (_const.Rg * Tem)))
                    # xrc.append((np.log(np.abs(tor_p)) - np.log(np.abs(tor_n)))/(-2 * delG * 1000 /(_const.Rg * Tem)))

            # XTRC
            for idx, j in enumerate(self.dBE_index):
                spe = self.reactionlist[idx]
                dP = np.copy(dE_start)
                deltaE = np.zeros(self.nspe)
                deltaE[j] += delG
                # propagate through stoichiomatric
                deltaEa = self.stoimat.dot(deltaE)

                # dP[:len(self.dEa_index)] -= deltaEa
                dP[len(self.dEa_index):] += deltaE[self.dBE_index]

                # Partial Pressure
                P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                F_sim = Fint(x0=x0, p=P_dae)
                for ii, spe in enumerate(self.specieslist):
                    if str(spe) == ref_species:
                        tor_p = float(F_sim['xf'][ii] -
                                      Pinlet[ii] / TotalPressure * TotalFlow)

                if numer == 'fwd':
                    xtrc.append((tor_p - tor0) / tor0 / (-delG * 1000 /
                                                         (_const.Rg * Tem)))
                    # xrc.append((np.log(np.abs(tor_p)) - np.log(np.abs(tor0)))/(-delG * 1000 /(_const.Rg * Tem)))

                if numer == 'cent':
                    dP = np.copy(dE_start)
                    deltaE = np.zeros(self.nspe)
                    deltaE[j] -= delG
                    # propagate through stoichiomatric
                    deltaEa = self.stoimat.dot(deltaE)

                    # dP[:len(self.dEa_index)] -= deltaEa
                    dP[len(self.dEa_index):] += deltaE[self.dBE_index]

                    # Partial Pressure
                    P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                    F_sim = Fint(x0=x0, p=P_dae)
                    for ii, spe in enumerate(self.specieslist):
                        if str(spe) == ref_species:
                            tor_n = float(F_sim['xf'][ii] - Pinlet[ii] /
                                          TotalPressure * TotalFlow)
                    xtrc.append((tor_p - tor_n) / tor0 / (-2 * delG * 1000 /
                                                          (_const.Rg * Tem)))

        # RESULT
        result = {}
        result['pressure'] = self.pressure_value
        result['coverage'] = self.coverage_value
        result['rate'] = self.rate_value
        result['energy'] = self.energy_value
        result['equil_rate'] = self.equil_rate_const_value
        result['xrc'] = xrc
        result['xtrc'] = xtrc

        self.xrc = xrc
        return tor, result