Exemplo n.º 1
0
def test_simpleAgent(agentType, expected_monitor_results):
    #start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=False)

    #init agents by adding into the agent network
    simple_agent = agentNetwork.add_agent(agentType=agentType)
    monitor_agent_1 = agentNetwork.add_agent(agentType=MonitorAgent)

    #shorten n wait loop time
    simple_agent.init_agent_loop(0.01)

    #connect agents
    agentNetwork.bind_agents(simple_agent, monitor_agent_1)

    # set all agents states to "Running"
    agentNetwork.set_running_state()
    time.sleep(test_timeout)

    # test to see if monitor agents have received the correct data
    assert str(
        monitor_agent_1.get_attr('memory')) == str(expected_monitor_results)

    # shutdown agent network
    agentNetwork.shutdown()
    time.sleep(3)
Exemplo n.º 2
0
def test_send_plot():
    # start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=False)

    # init agents
    gen_agent = agentNetwork.add_agent(agentType=GeneratorAgent)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)

    agentNetwork.bind_agents(gen_agent, monitor_agent)

    gen_agent.dummy_send_graph()
    time.sleep(3)

    assert monitor_agent.get_attr('plots')['GeneratorAgent_1']

    agentNetwork.shutdown()
Exemplo n.º 3
0
        num_accurate = [1 if y == True else 0 for y in res]
        accuracy = np.sum(num_accurate) / len(num_accurate) * 100
        return accuracy

    def on_received_message(self, message):
        if message['senderType'] == "Predictor":
            data = message['data']
            y_pred = data['y_pred']
            y_true = data['y_true']
            res = self.compute_accuracy(y_pred=y_pred, y_true=y_true)
            self.send_output(res)


if __name__ == '__main__':
    # start agent network server
    agentNetwork = AgentNetwork()

    # init agents
    gen_agent = agentNetwork.add_agent(agentType=DataStreamAgent)
    trainer_agent = agentNetwork.add_agent(agentType=Trainer)
    predictor_agent = agentNetwork.add_agent(agentType=Predictor)
    evaluator_agent = agentNetwork.add_agent(agentType=Evaluator)
    monitor_agent_1 = agentNetwork.add_agent(agentType=MonitorAgent)
    monitor_agent_2 = agentNetwork.add_agent(agentType=MonitorAgent)

    gen_agent.init_parameters(stream=SineGenerator(),
                              pretrain_size=1000,
                              batch_size=1)
    trainer_agent.init_parameters(ml_model=HoeffdingTree())
    # connect agents : We can connect multiple agents to any particular agent
    # However the agent needs to implement handling multiple input types
Exemplo n.º 4
0
            self.results.append(np.mean(res_temp))

        self.send_output(self.results[-1])

    # classifier accuracy - user defined
    def compute_accuracy(self, y_pred, y_true):
        res = y_pred == y_true
        num_accurate = [1 if y == True else 0 for y in res]
        accuracy = np.sum(num_accurate) / len(num_accurate) * 100
        return accuracy


if __name__ == '__main__':

    #start agent network
    agentNetwork = AgentNetwork()

    #add agents
    data_stream_agent_1 = agentNetwork.add_agent(agentType=DataStreamAgent)
    ml_agent_hoeffdingTree = agentNetwork.add_agent(agentType=ML_Model)
    ml_agent_neuralNets = agentNetwork.add_agent(agentType=ML_Model)
    monitor_agent_1 = agentNetwork.add_agent(agentType=MonitorAgent)

    #init parameters
    data_stream_agent_1.init_parameters(stream=WaveformGenerator(),
                                        pretrain_size=1000,
                                        batch_size=100)
    ml_agent_hoeffdingTree.init_parameters(ml_model=HoeffdingTree())
    ml_agent_neuralNets.init_parameters(ml_model=NaiveBayes())

    #connect agents
        plus_data = plus(message['data'], self.plus_param)

        self.send_output({'minus':minus_data,'plus':plus_data})

class SineGeneratorAgent(AgentMET4FOF):
    def init_parameters(self):
        self.stream = SineGenerator()

    def agent_loop(self):
        if self.current_state == "Running":
            sine_data = self.stream.next_sample() #dictionary
            self.send_output(sine_data['x'])

if __name__ == '__main__':
    # start agent network server
    agentNetwork = AgentNetwork()

    # init agents
    gen_agent = agentNetwork.add_agent(agentType=SineGeneratorAgent)
    math_agent = agentNetwork.add_agent(agentType=MathAgent)
    multi_math_agent = agentNetwork.add_agent(agentType=MultiMathAgent)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)

    # connect agents : We can connect multiple agents to any particular agent
    agentNetwork.bind_agents(gen_agent, math_agent)
    agentNetwork.bind_agents(gen_agent, multi_math_agent)

    # connect
    agentNetwork.bind_agents(gen_agent, monitor_agent)
    agentNetwork.bind_agents(math_agent, monitor_agent)
    agentNetwork.bind_agents(multi_math_agent, monitor_agent)
Exemplo n.º 6
0
            raise Exception


class SineGeneratorAgent(AgentMET4FOF):
    def init_parameters(self):
        self.stream = SineGenerator()

    def agent_loop(self):
        if self.current_state == "Running":
            sine_data = self.stream.next_sample()  #dictionary
            self.send_output(sine_data['x'])


if __name__ == '__main__':
    #start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=False)

    #init agents by adding into the agent network
    gen_agent = agentNetwork.add_agent(agentType=SineGeneratorAgent)
    _logger_agent = agentNetwork.add_agent(agentType=_Logger)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)

    gen_agent.set_logger(_logger_agent)

    #connect agents by either way:
    # 1) by agent network.bind_agents(source,target)
    agentNetwork.bind_agents(gen_agent, monitor_agent)

    # 2) by the agent.bind_output()
    gen_agent.bind_output(monitor_agent)
#Each agent has internal current_state which can be used as a switch by the AgentNetwork


class SineGeneratorAgent(AgentMET4FOF):
    def init_parameters(self):
        self.stream = SineGenerator()

    def agent_loop(self):
        if self.current_state == "Running":
            sine_data = self.stream.next_sample()  #dictionary
            self.send_output(sine_data['x'])


if __name__ == '__main__':
    #start agent network server
    agentNetwork = AgentNetwork()

    #init agents by adding into the agent network
    gen_agent = agentNetwork.add_agent(agentType=SineGeneratorAgent)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)

    #connect agents by either way:
    # 1) by agent network.bind_agents(source,target)
    agentNetwork.bind_agents(gen_agent, monitor_agent)

    # 2) by the agent.bind_output()
    gen_agent.bind_output(monitor_agent)

    # set all agents states to "Running"
    agentNetwork.set_running_state()
Exemplo n.º 8
0
from AgentMET4FOF import AgentNetwork

#Agent modules
import examples.ZEMA_EMC.zema_agents as zema_agents
import examples.ZEMA_EMC.zema_datastream as zema_datastream

dashboard_modules = [zema_agents, zema_datastream]

if __name__ == '__main__':

    #start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=dashboard_modules)
Exemplo n.º 9
0
def test_zema_emc_lda_agents():
    np.random.seed(100)
    #start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=False)

    #init agents by adding into the agent network
    datastream_agent = agentNetwork.add_agent(agentType=DataStreamAgent)
    train_test_split_agent = agentNetwork.add_agent(
        agentType=TrainTestSplitAgent)
    fft_bfc_agent = agentNetwork.add_agent(agentType=FFT_BFCAgent)
    pearson_fs_agent = agentNetwork.add_agent(
        agentType=Pearson_FeatureSelectionAgent)
    lda_agent = agentNetwork.add_agent(agentType=LDA_Agent)
    evaluator_agent = agentNetwork.add_agent(agentType=EvaluatorAgent)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)

    #init parameters
    datastream_agent.init_parameters(ZEMA_DataStream())
    train_test_split_agent.init_parameters(train_ratio=0.8)

    #bind agents
    agentNetwork.bind_agents(datastream_agent, train_test_split_agent)
    agentNetwork.bind_agents(train_test_split_agent, fft_bfc_agent)
    agentNetwork.bind_agents(fft_bfc_agent, pearson_fs_agent)
    agentNetwork.bind_agents(pearson_fs_agent, lda_agent)
    agentNetwork.bind_agents(lda_agent, evaluator_agent)

    #bind to monitor agents
    agentNetwork.bind_agents(fft_bfc_agent, monitor_agent)
    agentNetwork.bind_agents(pearson_fs_agent, monitor_agent)
    agentNetwork.bind_agents(lda_agent, monitor_agent)
    agentNetwork.bind_agents(evaluator_agent, monitor_agent)

    #trigger datastream to send all at once
    datastream_agent.send_all_sample()

    time.sleep(timeout_wait)

    assert lda_agent.get_attr('lda_test_score') == 0.8204924543288324

    agentNetwork.shutdown()
Exemplo n.º 10
0
def test_remove_agent():
    #start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=False)

    #init agents by adding into the agent network
    dummy_agent1 = agentNetwork.add_agent(agentType=AgentMET4FOF)
    dummy_agent2 = agentNetwork.add_agent(agentType=AgentMET4FOF)
    dummy_agent3 = agentNetwork.add_agent(agentType=AgentMET4FOF)
    dummy_agent4 = agentNetwork.add_agent(agentType=AgentMET4FOF)

    agentNetwork.bind_agents(dummy_agent1, dummy_agent2)
    agentNetwork.bind_agents(dummy_agent1, dummy_agent3)
    agentNetwork.bind_agents(dummy_agent1, dummy_agent4)

    agentNetwork.bind_agents(dummy_agent4, dummy_agent2)
    agentNetwork.bind_agents(dummy_agent3, dummy_agent4)
    agentNetwork.bind_agents(dummy_agent2, dummy_agent4)

    agentNetwork.remove_agent(dummy_agent1)
    agentNetwork.remove_agent(dummy_agent2)
    agentNetwork.remove_agent(dummy_agent3)
    agentNetwork.remove_agent(dummy_agent4)
    time.sleep(2)
    assert len(agentNetwork.agents()) == 0
    agentNetwork.shutdown()
Exemplo n.º 11
0
from AgentMET4FOF import AgentNetwork, MonitorAgent, DataStreamAgent

from examples.ZEMA_EMC.zema_datastream import ZEMA_DataStream
from examples.ZEMA_EMC.zema_agents import TrainTestSplitAgent, FFT_BFCAgent, Pearson_FeatureSelectionAgent, LDA_Agent, Regression_Agent, EvaluatorAgent
import examples.ZEMA_EMC.zema_agents

import numpy as np
np.random.seed(100)

if __name__ == '__main__':

    #start agent network server
    agentNetwork = AgentNetwork(dashboard_modules=[
        examples.ZEMA_EMC.zema_datastream, examples.ZEMA_EMC.zema_agents
    ],
                                log_filename=False)

    #init agents by adding into the agent network
    datastream_agent = agentNetwork.add_agent(agentType=DataStreamAgent)

    train_test_split_agent = agentNetwork.add_agent(
        agentType=TrainTestSplitAgent)
    fft_bfc_agent = agentNetwork.add_agent(agentType=FFT_BFCAgent)
    pearson_fs_agent = agentNetwork.add_agent(
        agentType=Pearson_FeatureSelectionAgent)
    lda_agent = agentNetwork.add_agent(agentType=LDA_Agent)
    bayesianRidge_agent = agentNetwork.add_agent(agentType=Regression_Agent,
                                                 name="BayesianRidge_Agent")
    randomForest_agent = agentNetwork.add_agent(agentType=Regression_Agent,
                                                name="RandomForest_Agent")
    evaluator_agent = agentNetwork.add_agent(agentType=EvaluatorAgent)