def setup_algorithms(training_data, dist, delta):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_prior = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='gaussian')

    constraint_upper = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta,
                                  bound='upper')
    constraint_lower = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta,
                                  bound='lower')
    constraint_exact = TrueConstraint(
        dist, approximator=statistical_approximation_prior, delta=delta)

    algorithms = [
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data, constraint_upper, statistical_approximation_prior, name="Dynamic Programming Upper Bound", label="CDP_U"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data, constraint_lower, statistical_approximation_prior, name="Dynamic Programming Lower bound", label="CDP_L"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data, constraint_exact, statistical_approximation_prior, name="Dynamic Programming Exact Bound", label="CDP_E"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_upper,
                          statistical_approximation_prior,
                          name="Greedy Upper Bound",
                          label="CG_U"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_lower,
                          statistical_approximation_prior,
                          name="Greedy Lower Bound",
                          label="CG_L"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_exact,
                          statistical_approximation_prior,
                          name="Greedy Exact Bound",
                          label="CG_E"),
    ]

    print("Setting up algorithms took {:.3f} seconds".format(time.time() -
                                                             start))
    return algorithms
Exemplo n.º 2
0
def setup_algorithms(dist, training_data, n_x, n_a, n_y, delta):
    start = time.time()
    statistical_approximation = StatisticalApproximator(n_x, n_a, n_y, training_data, smoothing_mode='gaussian')
    function_approximation = FunctionApproximation(n_x, n_a, n_y, training_data)
    doctor_approximation = DoctorApproximator(n_x, n_a, n_y, training_data)

    print("Initializing Constraint")
    start = time.time()

    constraintStatUpper = Constraint(training_data, n_a, n_y, approximator=statistical_approximation, delta=delta, bound='upper')
    constraintFuncApprox = Constraint(training_data, n_a, n_y, approximator=function_approximation, delta=delta)
    constraint_exact_func = TrueConstraint(dist, approximator=function_approximation, delta=delta)

    print("Initializing the constraint took {:.3f} seconds".format(time.time() - start))
    print("Initializing algorithms")
    algorithms = [
        #ConstrainedGreedy(n_x, n_a, n_y, training_data, constraintStatUpper, statistical_approximation,
        #                  name='Constrained Greedy', label='CG'),
        # ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintStatLower, statistical_approximation,
        #                   name='Constrained Greedy Lower', label='CG_L'),
        ConstrainedGreedy(n_x, n_a, n_y, training_data, constraintFuncApprox, function_approximation,
                         name="Constrained Greedy FuncApprox", label="CG_F"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data, constraintStatUpper,
        #                              statistical_approximation),
        ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data, constraintFuncApprox,
                                      function_approximation, name="Constrained Dynamic Programming FuncApprox", label="CDP_F"),

        #NaiveGreedy(n_x, n_a, n_y, function_approximation, max_steps=n_a),
        #NaiveGreedy(n_x, n_a, n_y, function_approximation, max_steps=n_a),
        NaiveDynamicProgramming(n_x, n_a, n_y, training_data, constraintStatUpper, reward=-0.35),
        Doctor(),
        EmulatedDoctor(n_x, n_a, n_y, training_data, approximator=doctor_approximation)
    ]
    return algorithms
Exemplo n.º 3
0
def setup_algorithms(training_data, dist, delta, train=True):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_prior = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='gaussian')

    constraint_prior = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta)
    constraint_prior = TrueConstraint(
        dist, approximator=statistical_approximation_prior, delta=delta)

    algorithms = [
        ConstrainedDynamicProgramming(n_x,
                                      n_a,
                                      n_y,
                                      training_data,
                                      constraint_prior,
                                      statistical_approximation_prior,
                                      name="Constrained Dynamic Programming",
                                      label="CDP"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_prior,
                          statistical_approximation_prior,
                          name="Constrained Greedy",
                          label="CG"),
        NaiveGreedy(n_x,
                    n_a,
                    n_y,
                    statistical_approximation_prior,
                    round(delta * (n_a - 1)) + 1,
                    name='Naive Greedy',
                    label='NG'),
        NaiveDynamicProgramming(n_x,
                                n_a,
                                n_y,
                                training_data,
                                statistical_approximation_prior,
                                reward=-(delta + 0.0001),
                                name='Naive Dynamic Programming',
                                label='NDP'),
    ]

    print("Setting up algorithms took {:.3f} seconds".format(time.time() -
                                                             start))
    return algorithms
def setup_algorithms(training_data, dist, delta, train=True):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_prior = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='gaussian')
    true_approximation = ExactApproximator(dist)

    constraint_prior = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta)
    constraint_true = Constraint(training_data,
                                 n_a,
                                 n_y,
                                 approximator=true_approximation,
                                 delta=delta)

    algorithms = [
        ConstrainedDynamicProgramming(
            n_x,
            n_a,
            n_y,
            training_data,
            constraint_prior,
            statistical_approximation_prior,
            name="Dynamic Programming Historical Prior",
            label="CDP_H"),
        ConstrainedDynamicProgramming(n_x,
                                      n_a,
                                      n_y,
                                      training_data,
                                      constraint_true,
                                      true_approximation,
                                      name="Dynamic Programming True",
                                      label="CDP_T"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_prior,
                          statistical_approximation_prior,
                          name="Greedy Historical Prior",
                          label="CG_H"),
    ]

    print("Setting up algorithms took {:.3f} seconds".format(time.time() -
                                                             start))
    return algorithms
Exemplo n.º 5
0
def setup_algorithms(training_data, dist, delta):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_none = StatisticalApproximator(n_x, n_a, n_y, training_data, smoothing_mode='none')
    statistical_approximation_prior = StatisticalApproximator(n_x, n_a, n_y, training_data, smoothing_mode='gaussian')
    function_approximation = FunctionApproximation(n_x, n_a, n_y, training_data)
    true_approximation = ExactApproximator(dist)

    constraint_none = Constraint(training_data, n_a, n_y, approximator=statistical_approximation_none, delta=delta)
    constraint_prior = Constraint(training_data, n_a, n_y, approximator=statistical_approximation_prior, delta=delta)
    constraint_func = Constraint(training_data, n_a, n_y, approximator=function_approximation, delta=delta)
    constraint_true = Constraint(training_data, n_a, n_y, approximator=true_approximation, delta=delta)

    algorithms = [
        ConstrainedGreedy(n_x, n_a, n_y, training_data, constraint_none, statistical_approximation_none, name="Greedy Uniform Prior", label="CG_U"),
        ConstrainedGreedy(n_x, n_a, n_y, training_data, constraint_prior, statistical_approximation_prior, name="Greedy Historical Prior", label="CG_H"),
        ConstrainedGreedy(n_x, n_a, n_y, training_data, constraint_func, function_approximation, name="Greedy Function Approximation", label="CG_F"),
        ConstrainedGreedy(n_x, n_a, n_y, training_data, constraint_true, true_approximation, name="Greedy True Approximation", label="CG_T"),
    ]

    print("Setting up algorithms took {:.3f} seconds".format(time.time() - start))
    return algorithms
Exemplo n.º 6
0
def setup_algorithms(training_data, dist, delta):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_prior = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='gaussian')
    statistical_approximation_none = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='none')
    true_approximation = ExactApproximator(dist)
    constraint_prior = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta)
    constraint_none = Constraint(training_data,
                                 n_a,
                                 n_y,
                                 approximator=statistical_approximation_none,
                                 delta=delta)
    constraint_true = Constraint(training_data,
                                 n_a,
                                 n_y,
                                 approximator=true_approximation,
                                 delta=delta)
    algorithms = [
        ConstrainedDynamicProgramming(n_x,
                                      n_a,
                                      n_y,
                                      training_data,
                                      constraint_true,
                                      true_approximation,
                                      name="Dynamic Programming True",
                                      label="CDP_T"),
        ConstrainedDynamicProgramming(n_x,
                                      n_a,
                                      n_y,
                                      training_data,
                                      constraint_prior,
                                      statistical_approximation_prior,
                                      name="Constrained Dynamic Programming",
                                      label="CDP_H"),
        ConstrainedDynamicProgramming(
            n_x,
            n_a,
            n_y,
            training_data,
            constraint_none,
            statistical_approximation_none,
            name="Constrained Dynamic Programming Uninformed",
            label="CDP_U"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_prior,
                          statistical_approximation_prior,
                          name="Constrained Greedy",
                          label="CG"),
        #NaiveGreedy(n_x, n_a, n_y, statistical_approximation_prior, round(delta * (n_a-1))+1, name='Naive Greedy', label='NG'),
        #NaiveDynamicProgramming(n_x, n_a, n_y, training_data, statistical_approximation_prior, reward=-(delta+0.0001), name='Naive Dynamic Programming', label='NDP'),
    ]

    print("Setting up algosrithms took {:.3f} seconds".format(time.time() -
                                                              start))
    return algorithms
Exemplo n.º 7
0
def setup_algorithms(training_data, dist, delta, train=True):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_prior = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='gaussian')
    function_approximation = FunctionApproximation(n_x, n_a, n_y,
                                                   training_data)
    constraint_prior = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta)

    constraintFuncApprox = Constraint(training_data,
                                      n_a,
                                      n_y,
                                      approximator=function_approximation,
                                      delta=delta)

    algorithms = [
        ConstrainedDynamicProgramming(n_x,
                                      n_a,
                                      n_y,
                                      training_data,
                                      constraint_prior,
                                      statistical_approximation_prior,
                                      name="Constrained Dynamic Programming",
                                      label="CDP"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_prior,
                          statistical_approximation_prior,
                          name="Constrained Greedy",
                          label="CG"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraintFuncApprox,
                          function_approximation,
                          name="Constrained Greedy FuncApprox",
                          label="CG_F"),
        # ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data, constraintStatUpper,
        #                              statistical_approximation),
        ConstrainedDynamicProgramming(
            n_x,
            n_a,
            n_y,
            training_data,
            constraintFuncApprox,
            function_approximation,
            name="Constrained Dynamic Programming FuncApprox",
            label="CDP_F"),
        NaiveDynamicProgramming(n_x,
                                n_a,
                                n_y,
                                training_data,
                                statistical_approximation_prior,
                                reward=-(delta / 2 + 0.0001),
                                name='Naive Dynamic Programming',
                                label='NDP'),
    ]

    print("Setting up algorithms took {:.3f} seconds".format(time.time() -
                                                             start))
    return algorithms
Exemplo n.º 8
0
                                      n_y,
                                      approximator=function_approximation,
                                      delta=delta,
                                      epsilon=epsilon)

    print(
        "Initializing the constraint took {:.3f} seconds".format(time.time() -
                                                                 start))
    print("Initializing algorithms")
    algorithms = [
        # GreedyShuffled(n_x, n_a, n_y, split_training_data, delta, epsilon),
        # ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintTrue, true_approximation, name="Constrained Greedy True", label="CGT"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          split_training_data,
                          constraintStatUpper,
                          statistical_approximation,
                          name='Constrained Greedy Upper',
                          label='CGU'),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          split_training_data,
                          constraintStatLower,
                          statistical_approximation,
                          name='Constrained Greedy Lower',
                          label='CGL'),
        # ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintFuncApprox, function_approximation,
        #                  name="Constrained Greedy FuncApprox"),
        # ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintTrue, true_approximation, name="Dynamic Programming True", label="CDPT"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintStatUpper, statistical_approximation,
Exemplo n.º 9
0
                                  delta=delta,
                                  epsilon=epsilon)
    constraintFuncApprox = Constraint(split_training_data,
                                      n_a,
                                      n_y,
                                      approximator=function_approximation,
                                      delta=delta,
                                      epsilon=epsilon)

    print(
        "Initializing the constraint took {:.3f} seconds".format(time.time() -
                                                                 start))
    print("Initializing algorithms")
    algorithms = [
        #ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintTrue, true_approximation, name="Constrained Greedy True", label="CGT"),
        ConstrainedGreedy(n_x, n_a, n_y, split_training_data,
                          constraintFuncApprox, function_approximation),
        #ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintFuncApprox, function_approximation, name="Constrained Greedy FuncApprox"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintTT, true_approximation, name="Dynamic Programming Exact", label="CDP_E"),

        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintCT, statistical_approximation, name="Dynamic Programming True Stat", label="CDP_TS"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintStat, statistical_approximation),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintStatL, statistical_approximation, name="CDP_L", label='CDP_L'),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintCT, statistical_approximation, name="CDP_E", label='CDP_E'),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintStat, function_approximation, name="Dynamic Programming Func", label="CDPF"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintFuncApprox, function_approximation,name="Constrained Dynamic Programming FuncApprox"),
        #NaiveGreedy(n_x, n_a, n_y, statistical_approximation, n_a-1),
        #DistAlgWrapper(dist, name="Distribution", label="dist"),
        #NaiveDynamicProgramming(n_x, n_a, n_y, split_training_data, statistical_approximation, reward=reward)
        #QLearner(n_x, n_a, n_y, split_training_data, reward=reward, learning_time=training_episodes, learning_rate=0.01, discount_factor=1),
        #QLearnerConstrained(n_x, n_a, n_y, split_training_data, constraint, learning_time=training_episodes, learning_rate=0.01, discount_factor=1),
        #OnlineQLearner(n_x, n_a, n_y, dist, constraint, learning_time=training_episodes),
Exemplo n.º 10
0
        statistical_approximationNone = StatisticalApproximator(n_x, n_a, n_y, training_data_set, smoothing_mode='none')
        function_approximation = FunctionApproximation(n_x, n_a, n_y, training_data_set)

        print("Initializing Constraint")
        start = time.time()
        constraintNone = Constraint(training_data_set, n_a, n_y, approximator=statistical_approximationNone, delta=delta, epsilon=epsilon)
        constraintPrior = Constraint(training_data_set, n_a, n_y, approximator=statistical_approximationPrior, delta=delta, epsilon=epsilon)
        constraintFunc = Constraint(training_data_set, n_a, n_y, approximator=function_approximation, delta=delta, epsilon=epsilon)
        constraintTrue = Constraint(training_data_set, n_a, n_y, approximator=true_approximation, delta=delta, epsilon=epsilon)

        print("Initializing the constraint took {:.3f} seconds".format(time.time()-start))
        print("Initializing algorithms")
        algorithms = [
            ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data_set, constraintNone, statistical_approximationNone, name="CDP_U", label="CDP_U"),
            ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data_set, constraintPrior, statistical_approximationPrior, name="CDP_H", label="CDP_H"),
            ConstrainedGreedy(n_x, n_a, n_y, training_data_set, constraintPrior, statistical_approximationPrior, name="CG_H"),
            ConstrainedDynamicProgramming(n_x, n_a, n_y, training_data_set, constraintTrue, true_approximation, name="CDP_T", label="CDP_T"),
        ]

        n_algorithms = len(algorithms)

        for alg in algorithms:
            start = time.time()
            print("Training {}".format(alg.name))
            alg.learn()
            if alg.name not in evaluations_data_amount:
                evaluations_data_amount[alg.name] = {outcome_name: [], time_name: []}
            total_outcome = 0
            total_time = 0
            for i in range(n_test_samples):
                interventions = alg.evaluate(test_data[i])
Exemplo n.º 11
0
    constraintNone = Constraint(split_training_data, n_a, n_y, approximator=statistical_approximationNone, delta=delta, epsilon=epsilon)
    constraintPrior = Constraint(split_training_data, n_a, n_y, approximator=statistical_approximationPrior, delta=delta, epsilon=epsilon)
    constraintFunc = Constraint(split_training_data, n_a, n_y, approximator=function_approximation, delta=delta, epsilon=epsilon)
    constraintATrue = Constraint(split_training_data, n_a, n_y, approximator=true_approximation, delta=delta, epsilon=epsilon)
    constraintTrue = TrueConstraint(dist, approximator=true_approximation, delta=delta, epsilon=epsilon)

    print("Initializing the constraint took {:.3f} seconds".format(time.time()-start))
    print("Initializing algorithms")
    algorithms = [
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintNone, statistical_approximationNone, name="Dynamic Programming Uniform Prior", label="CDP_U"),
        ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintPrior, statistical_approximationPrior, name="Dynamic Programming Historical Prior", label="CDP_H"),
        #ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintFunc, function_approximation, name="Dynamic Programming Function Approximation", label="CDP_F"),
        ConstrainedDynamicProgramming(n_x, n_a, n_y, split_training_data, constraintATrue, true_approximation, name="Dynamic Programming True", label="CDP_T"),
        #ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintNone, statistical_approximationNone, name="Greedy Uniform Prior", label="CG_U"),
        ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintPrior, statistical_approximationPrior, name="Greedy Historical Prior", label="CG_H"),
        #ConstrainedGreedy(n_x, n_a, n_y, split_training_data, constraintFunc, function_approximation, name="Greedy Function Approximation", label="CG_F"),
    ]

    assert len(algorithms) == n_algorithms

    time_name = 'time'
    outcome_name = 'outcome'
    evaluations_delta = {}
    for delta in deltas:
        for alg in algorithms:
            if alg.name not in evaluations_delta:
                evaluations_delta[alg.name] = {outcome_name: [], time_name: []}
            try:
                alg.constraint.delta = delta
                alg.constraint.better_treatment_constraint_dict = {}
def setup_algorithms(training_data, dist, delta):
    start = time.time()
    n_x = dist.n_x
    n_a = dist.n_a
    n_y = dist.n_y
    statistical_approximation_none = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='none')
    statistical_approximation_prior = StatisticalApproximator(
        n_x, n_a, n_y, training_data, smoothing_mode='gaussian')
    function_approximation = FunctionApproximation(n_x, n_a, n_y,
                                                   training_data)
    true_approximation = ExactApproximator(dist)

    constraint_none = Constraint(training_data,
                                 n_a,
                                 n_y,
                                 approximator=statistical_approximation_none,
                                 delta=delta)
    constraint_prior = Constraint(training_data,
                                  n_a,
                                  n_y,
                                  approximator=statistical_approximation_prior,
                                  delta=delta)
    constraint_func = Constraint(training_data,
                                 n_a,
                                 n_y,
                                 approximator=function_approximation,
                                 delta=delta)
    constraint_true = Constraint(training_data,
                                 n_a,
                                 n_y,
                                 approximator=true_approximation,
                                 delta=delta)

    algorithms = [
        ConstrainedDynamicProgramming(
            n_x,
            n_a,
            n_y,
            training_data,
            constraint_prior,
            statistical_approximation_prior,
            name="Dynamic Programming Historical Prior",
            label="CDP_H"),
        ConstrainedGreedy(n_x,
                          n_a,
                          n_y,
                          training_data,
                          constraint_func,
                          function_approximation,
                          name="Constrained Greedy Historical Prior",
                          label="CG_H"),
        NaiveDynamicProgramming(
            n_x,
            n_a,
            n_y,
            training_data,
            statistical_approximation_prior,
            reward=-(delta + 0.0001),
            name='Naive Dynamic Programming Historical Prior',
            label='NDP_H'),
        NaiveGreedy(n_x,
                    n_a,
                    n_y,
                    approximator=statistical_approximation_prior,
                    max_steps=4),
    ]

    print("Setting up algorithms took {:.3f} seconds".format(time.time() -
                                                             start))
    return algorithms