Exemplo n.º 1
0
    def test_get_board(self):
        gs = simple_board()
        pp = Preprocess(["board"], size=7)
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        white_pos = np.asarray([
            [0, 0, 0, 0, 0, 0, 0],
            [1, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0, 1, 0],
            [0, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 0]])
        black_pos = np.asarray([
            [1, 1, 1, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 1, 0, 0, 0],
            [0, 0, 1, 0, 1, 0, 0],
            [0, 0, 0, 1, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0]])
        empty_pos = np.ones((gs.get_size(), gs.get_size())) - (white_pos + black_pos)

        # check number of planes
        self.assertEqual(feature.shape, (gs.get_size(), gs.get_size(), 3))
        # check return value against hand-coded expectation
        # (given that current_player is white)
        self.assertTrue(np.all(feature == np.dstack((white_pos, black_pos, empty_pos))))
	def test_get_board(self):
		gs = simple_board()
		pp = Preprocess(["board"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		white_pos = np.asarray([
			[0, 0, 0, 0, 0, 0, 0],
			[1, 1, 0, 0, 0, 0, 0],
			[0, 0, 0, 0, 0, 0, 0],
			[0, 0, 0, 0, 1, 0, 0],
			[0, 0, 0, 0, 0, 1, 0],
			[0, 0, 0, 0, 1, 0, 0],
			[0, 0, 0, 0, 0, 0, 0]])
		black_pos = np.asarray([
			[1, 1, 1, 0, 0, 0, 0],
			[0, 0, 0, 0, 0, 0, 0],
			[0, 0, 0, 0, 0, 0, 0],
			[0, 0, 0, 1, 0, 0, 0],
			[0, 0, 1, 0, 1, 0, 0],
			[0, 0, 0, 1, 0, 0, 0],
			[0, 0, 0, 0, 0, 0, 0]])
		empty_pos = np.ones((gs.size, gs.size)) - (white_pos + black_pos)

		# check number of planes
		self.assertEqual(feature.shape, (gs.size, gs.size, 3))
		# check return value against hand-coded expectation
		# (given that current_player is white)
		self.assertTrue(np.all(feature == np.dstack((white_pos, black_pos, empty_pos))))
Exemplo n.º 3
0
    def test_get_self_atari_size(self):
        # TODO - at the moment there is no imminent self-atari for white
        gs = simple_board()
        pp = Preprocess(["self_atari_size"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        self.assertTrue(np.all(feature == np.zeros((gs.size, gs.size, 8))))
	def test_get_liberties(self):
		gs = simple_board()
		pp = Preprocess(["liberties"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		# todo - test liberties when > 8

		one_hot_liberties = np.zeros((gs.size, gs.size, 8))
		# black piece at (4,4) has a single liberty: (4,3)
		one_hot_liberties[4, 4, 0] = 1

		# the black group in the top left corner has 2 liberties
		one_hot_liberties[0, 0:3, 1] = 1
		# 	.. as do the white pieces on the left and right of the eye
		one_hot_liberties[3, 4, 1] = 1
		one_hot_liberties[5, 4, 1] = 1

		# the white group in the top left corner has 3 liberties
		one_hot_liberties[1, 0:2, 2] = 1
		# 	...as does the white piece at (4,5)
		one_hot_liberties[4, 5, 2] = 1
		# 	...and the black pieces on the sides of the eye
		one_hot_liberties[3, 3, 2] = 1
		one_hot_liberties[5, 3, 2] = 1

		# the black piece at (4,2) has 4 liberties
		one_hot_liberties[4, 2, 3] = 1

		for i in range(8):
			self.assertTrue(
				np.all(feature[:, :, i] == one_hot_liberties[:, :, i]),
				"bad expectation: stones with %d liberties" % (i + 1))
Exemplo n.º 5
0
    def test_get_sensibleness(self):
        gs, moves = parseboard.parse("x B . . W . . . .|"
                                     "B B W . . W . . .|"
                                     ". W B B W W . . .|"
                                     ". B y B W W . . .|"
                                     ". B B z B W . . .|"
                                     ". . B B B W . . .|"
                                     ". . . . . . . . W|"
                                     ". . . . . . . . W|"
                                     ". . . . . . . W s|")
        gs.set_current_player(go.BLACK)

        pp = Preprocess(["sensibleness"], size=9)
        feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

        expectation = np.zeros((gs.get_size(), gs.get_size()), dtype=int)

        for (x, y) in gs.get_legal_moves():
            expectation[x, y] = 1

        # 'x', 'y', and 'z' are eyes - remove them from 'sensible' moves
        expectation[moves['x']] = 0
        expectation[moves['y']] = 0
        expectation[moves['z']] = 0

        # 's' is suicide - should not be legal
        expectation[moves['s']] = 0

        self.assertTrue(np.all(expectation == feature))
Exemplo n.º 6
0
	def test_get_self_atari_size(self):
		# TODO - at the moment there is no imminent self-atari for white
		gs = simple_board()
		pp = Preprocess(["self_atari_size"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		self.assertTrue(np.all(feature == np.zeros((gs.size, gs.size, 8))))
Exemplo n.º 7
0
    def test_get_liberties(self):
        gs = simple_board()
        pp = Preprocess(["liberties"], size=7)
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        # todo - test liberties when > 8

        one_hot_liberties = np.zeros((gs.get_size(), gs.get_size(), 8))
        # black piece at (4,4) has a single liberty: (4,3)
        one_hot_liberties[4, 4, 0] = 1

        # the black group in the top left corner has 2 liberties
        one_hot_liberties[0, 0:3, 1] = 1
        #     .. as do the white pieces on the left and right of the eye
        one_hot_liberties[3, 4, 1] = 1
        one_hot_liberties[5, 4, 1] = 1

        # the white group in the top left corner has 3 liberties
        one_hot_liberties[1, 0:2, 2] = 1
        #     ...as does the white piece at (4,5)
        one_hot_liberties[4, 5, 2] = 1
        #     ...and the black pieces on the sides of the eye
        one_hot_liberties[3, 3, 2] = 1
        one_hot_liberties[5, 3, 2] = 1

        # the black piece at (4,2) has 4 liberties
        one_hot_liberties[4, 2, 3] = 1

        for i in range(8):
            self.assertTrue(
                np.all(feature[:, :, i] == one_hot_liberties[:, :, i]),
                "bad expectation: stones with %d liberties" % (i + 1))
	def test_get_legal(self):
		gs = simple_board()
		pp = Preprocess(["legal"])
		feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

		expectation = np.zeros((gs.size, gs.size))
		for (x, y) in gs.get_legal_moves():
			expectation[x, y] = 1
		self.assertTrue(np.all(expectation == feature))
Exemplo n.º 9
0
    def test_get_legal(self):
        gs = simple_board()
        pp = Preprocess(["legal"], size=7)
        feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

        expectation = np.zeros((gs.get_size(), gs.get_size()))
        for (x, y) in gs.get_legal_moves():
            expectation[x, y] = 1
        self.assertTrue(np.all(expectation == feature))
Exemplo n.º 10
0
    def test_get_self_atari_size(self):
        gs = self_atari_board()
        pp = Preprocess(["self_atari_size"], size=7)
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        one_hot_self_atari = np.zeros((gs.get_size(), gs.get_size(), 8))
        # self atari of size 1 at position 0,0
        one_hot_self_atari[0, 0, 0] = 1
        # self atari of size 3 at position 3,4
        one_hot_self_atari[3, 4, 2] = 1

        self.assertTrue(np.all(feature == one_hot_self_atari))
	def test_get_self_atari_size(self):
		gs = self_atari_board()
		pp = Preprocess(["self_atari_size"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_self_atari = np.zeros((gs.size, gs.size, 8))
		# self atari of size 1 at position 0,0
		one_hot_self_atari[0, 0, 0] = 1
		# self atari of size 3 at position 3,4
		one_hot_self_atari[3, 4, 2] = 1

		self.assertTrue(np.all(feature == one_hot_self_atari))
	def test_get_sensibleness(self):
		# TODO - there are no legal eyes at the moment

		gs = simple_board()
		pp = Preprocess(["sensibleness"])
		feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

		expectation = np.zeros((gs.size, gs.size))
		for (x, y) in gs.get_legal_moves():
			if not (gs.is_eye((x, y), go.WHITE)):
				expectation[x, y] = 1
		self.assertTrue(np.all(expectation == feature))
	def test_get_self_atari_size_cap(self):
		gs = capture_board()
		pp = Preprocess(["self_atari_size"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_self_atari = np.zeros((gs.size, gs.size, 8))
		# self atari of size 1 at the ko position and just below it
		one_hot_self_atari[4, 5, 0] = 1
		one_hot_self_atari[3, 6, 0] = 1
		# self atari of size 3 at bottom corner
		one_hot_self_atari[6, 6, 2] = 1

		self.assertTrue(np.all(feature == one_hot_self_atari))
Exemplo n.º 14
0
    def test_get_self_atari_size_cap(self):
        gs = capture_board()
        pp = Preprocess(["self_atari_size"], size=7)
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        one_hot_self_atari = np.zeros((gs.get_size(), gs.get_size(), 8))
        # self atari of size 1 at the ko position and just below it
        one_hot_self_atari[4, 5, 0] = 1
        one_hot_self_atari[3, 6, 0] = 1
        # self atari of size 3 at bottom corner
        one_hot_self_atari[6, 6, 2] = 1

        self.assertTrue(np.all(feature == one_hot_self_atari))
    def test_get_sensibleness(self):
        # TODO - there are no legal eyes at the moment

        gs = simple_board()
        pp = Preprocess(["sensibleness"])
        feature = pp.state_to_tensor(gs)[0,
                                         0]  # 1D tensor; no need to transpose

        expectation = np.zeros((gs.size, gs.size))
        for (x, y) in gs.get_legal_moves():
            if not (gs.is_eye((x, y), go.WHITE)):
                expectation[x, y] = 1
        self.assertTrue(np.all(expectation == feature))
Exemplo n.º 16
0
    def test_get_ladder_capture(self):
        gs, moves = parseboard.parse(". . . . . . .|"
                                     "B W a . . . .|"
                                     ". B . . . . .|"
                                     ". . . . . . .|"
                                     ". . . . . . .|"
                                     ". . . . . W .|")
        pp = Preprocess(["ladder_capture"], size=7)
        feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

        expectation = np.zeros((gs.get_size(), gs.get_size()))
        expectation[moves['a']] = 1

        self.assertTrue(np.all(expectation == feature))
Exemplo n.º 17
0
	def test_get_capture_size(self):
		# TODO - at the moment there is no imminent capture
		gs = simple_board()
		pp = Preprocess(["capture_size"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_capture = np.zeros((gs.size, gs.size, 8))
		# there is no capture available; all legal moves are zero-capture
		for (x, y) in gs.get_legal_moves():
			one_hot_capture[x, y, 0] = 1

		for i in range(8):
			self.assertTrue(
				np.all(feature[:, :, i] == one_hot_capture[:, :, i]),
				"bad expectation: capturing %d stones" % i)
Exemplo n.º 18
0
    def test_get_capture_size(self):
        # TODO - at the moment there is no imminent capture
        gs = simple_board()
        pp = Preprocess(["capture_size"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        one_hot_capture = np.zeros((gs.size, gs.size, 8))
        # there is no capture available; all legal moves are zero-capture
        for (x, y) in gs.get_legal_moves():
            one_hot_capture[x, y, 0] = 1

        for i in range(8):
            self.assertTrue(
                np.all(feature[:, :, i] == one_hot_capture[:, :, i]),
                "bad expectation: capturing %d stones" % i)
Exemplo n.º 19
0
	def test_get_turns_since(self):
		gs = simple_board()
		pp = Preprocess(["turns_since"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_turns = np.zeros((gs.size, gs.size, 8))
		rev_history = gs.history[::-1]
		# one plane per move for the last 7
		for i in range(7):
			move = rev_history[i]
			one_hot_turns[move[0], move[1], i] = 1
		# far back plane gets all other moves
		for move in rev_history[7:]:
			one_hot_turns[move[0], move[1], 7] = 1

		self.assertTrue(np.all(feature == one_hot_turns))
Exemplo n.º 20
0
    def test_get_ladder_escape(self):
        # On this board, playing at 'a' is ladder escape because there is a breaker on the right.
        gs, moves = parseboard.parse(". B B . . . .|"
                                     "B W a . . . .|"
                                     ". B . . . . .|"
                                     ". . . . . W .|"
                                     ". . . . . . .|"
                                     ". . . . . . .|")
        pp = Preprocess(["ladder_escape"], size=7)
        gs.set_current_player(go.WHITE)
        feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

        expectation = np.zeros((gs.get_size(), gs.get_size()))
        expectation[moves['a']] = 1

        self.assertTrue(np.all(expectation == feature))
	def test_get_turns_since(self):
		gs = simple_board()
		pp = Preprocess(["turns_since"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_turns = np.zeros((gs.size, gs.size, 8))

		rev_moves = gs.history[::-1]

		for x in range(gs.size):
			for y in range(gs.size):
				if gs.board[x, y] != go.EMPTY:
					# find most recent move at x, y
					age = rev_moves.index((x, y))
					one_hot_turns[x, y, min(age, 7)] = 1

		self.assertTrue(np.all(feature == one_hot_turns))
    def test_get_turns_since(self):
        gs = simple_board()
        pp = Preprocess(["turns_since"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        one_hot_turns = np.zeros((gs.size, gs.size, 8))

        rev_moves = gs.history[::-1]

        for x in range(gs.size):
            for y in range(gs.size):
                if gs.board[x, y] != go.EMPTY:
                    # find most recent move at x, y
                    age = rev_moves.index((x, y))
                    one_hot_turns[x, y, min(age, 7)] = 1

        self.assertTrue(np.all(feature == one_hot_turns))
    def test_get_capture_size(self):
        gs = capture_board()
        pp = Preprocess(["capture_size"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        score_before = gs.num_white_prisoners
        one_hot_capture = np.zeros((gs.size, gs.size, 8))
        # there is no capture available; all legal moves are zero-capture
        for (x, y) in gs.get_legal_moves():
            copy = gs.copy()
            copy.do_move((x, y))
            num_captured = copy.num_white_prisoners - score_before
            one_hot_capture[x, y, min(7, num_captured)] = 1

        for i in range(8):
            self.assertTrue(
                np.all(feature[:, :, i] == one_hot_capture[:, :, i]),
                "bad expectation: capturing %d stones" % i)
	def test_get_capture_size(self):
		gs = capture_board()
		pp = Preprocess(["capture_size"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		score_before = gs.num_white_prisoners
		one_hot_capture = np.zeros((gs.size, gs.size, 8))
		# there is no capture available; all legal moves are zero-capture
		for (x, y) in gs.get_legal_moves():
			copy = gs.copy()
			copy.do_move((x, y))
			num_captured = copy.num_white_prisoners - score_before
			one_hot_capture[x, y, min(7, num_captured)] = 1

		for i in range(8):
			self.assertTrue(
				np.all(feature[:, :, i] == one_hot_capture[:, :, i]),
				"bad expectation: capturing %d stones" % i)
	def test_get_liberties_after_cap(self):
		"""A copy of test_get_liberties_after but where captures are imminent
		"""
		gs = capture_board()
		pp = Preprocess(["liberties_after"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_liberties = np.zeros((gs.size, gs.size, 8))

		for (x, y) in gs.get_legal_moves():
			copy = gs.copy()
			copy.do_move((x, y))
			libs = copy.liberty_counts[x, y]
			one_hot_liberties[x, y, min(libs - 1, 7)] = 1

		for i in range(8):
			self.assertTrue(
				np.all(feature[:, :, i] == one_hot_liberties[:, :, i]),
				"bad expectation: stones with %d liberties after move" % (i + 1))
    def test_get_liberties_after_cap(self):
        """A copy of test_get_liberties_after but where captures are imminent
        """
        gs = capture_board()
        pp = Preprocess(["liberties_after"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        one_hot_liberties = np.zeros((gs.size, gs.size, 8))

        for (x, y) in gs.get_legal_moves():
            copy = gs.copy()
            copy.do_move((x, y))
            libs = copy.liberty_counts[x, y]
            one_hot_liberties[x, y, min(libs - 1, 7)] = 1

        for i in range(8):
            self.assertTrue(
                np.all(feature[:, :, i] == one_hot_liberties[:, :, i]),
                "bad expectation: stones with %d liberties after move" %
                (i + 1))
	def test_get_liberties_after(self):
		gs = simple_board()
		pp = Preprocess(["liberties_after"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		one_hot_liberties = np.zeros((gs.size, gs.size, 8))

		# TODO (?) hand-code?
		for (x, y) in gs.get_legal_moves():
			copy = gs.copy()
			copy.do_move((x, y))
			libs = copy.liberty_counts[x, y]
			if libs < 7:
				one_hot_liberties[x, y, libs - 1] = 1
			else:
				one_hot_liberties[x, y, 7] = 1

		for i in range(8):
			self.assertTrue(
				np.all(feature[:, :, i] == one_hot_liberties[:, :, i]),
				"bad expectation: stones with %d liberties after move" % (i + 1))
    def test_feature_concatenation(self):
        gs = simple_board()
        pp = Preprocess(["board", "sensibleness", "capture_size"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        expectation = np.zeros((gs.size, gs.size, 3 + 1 + 8))

        # first three planes: board
        expectation[:, :, 0] = (gs.board == go.WHITE) * 1
        expectation[:, :, 1] = (gs.board == go.BLACK) * 1
        expectation[:, :, 2] = (gs.board == go.EMPTY) * 1

        # 4th plane: sensibleness (as in test_get_sensibleness)
        for (x, y) in gs.get_legal_moves():
            if not (gs.is_eye((x, y), go.WHITE)):
                expectation[x, y, 3] = 1

        # 5th through 12th plane: capture size (all zero-capture)
        for (x, y) in gs.get_legal_moves():
            expectation[x, y, 4] = 1

        self.assertTrue(np.all(expectation == feature))
	def test_feature_concatenation(self):
		gs = simple_board()
		pp = Preprocess(["board", "sensibleness", "capture_size"])
		feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

		expectation = np.zeros((gs.size, gs.size, 3 + 1 + 8))

		# first three planes: board
		expectation[:, :, 0] = (gs.board == go.WHITE) * 1
		expectation[:, :, 1] = (gs.board == go.BLACK) * 1
		expectation[:, :, 2] = (gs.board == go.EMPTY) * 1

		# 4th plane: sensibleness (as in test_get_sensibleness)
		for (x, y) in gs.get_legal_moves():
			if not (gs.is_eye((x, y), go.WHITE)):
				expectation[x, y, 3] = 1

		# 5th through 12th plane: capture size (all zero-capture)
		for (x, y) in gs.get_legal_moves():
			expectation[x, y, 4] = 1

		self.assertTrue(np.all(expectation == feature))
    def test_get_liberties_after(self):
        gs = simple_board()
        pp = Preprocess(["liberties_after"])
        feature = pp.state_to_tensor(gs)[0].transpose((1, 2, 0))

        one_hot_liberties = np.zeros((gs.size, gs.size, 8))

        # TODO (?) hand-code?
        for (x, y) in gs.get_legal_moves():
            copy = gs.copy()
            copy.do_move((x, y))
            libs = copy.liberty_counts[x, y]
            if libs < 7:
                one_hot_liberties[x, y, libs - 1] = 1
            else:
                one_hot_liberties[x, y, 7] = 1

        for i in range(8):
            self.assertTrue(
                np.all(feature[:, :, i] == one_hot_liberties[:, :, i]),
                "bad expectation: stones with %d liberties after move" %
                (i + 1))
Exemplo n.º 31
0
    def test_two_escapes(self):
        gs, moves = parseboard.parse(". . X . . .|"
                                     ". X O a . .|"
                                     ". X c X . .|"
                                     ". O X b . .|"
                                     ". . O . . .|"
                                     ". . . . . .|")

        # place a white stone at c, and reset player to white
        gs.do_move(moves['c'], color=go.WHITE)
        gs.set_current_player(go.WHITE)

        pp = Preprocess(["ladder_escape"], size=6)
        gs.set_current_player(go.WHITE)
        feature = pp.state_to_tensor(gs)[0, 0]  # 1D tensor; no need to transpose

        # both 'a' and 'b' should be considered escape moves for white after 'O' at c

        expectation = np.zeros((gs.get_size(), gs.get_size()))
        expectation[moves['a']] = 1
        expectation[moves['b']] = 1

        self.assertTrue(np.all(expectation == feature))
Exemplo n.º 32
0
def is_ladder_capture(state, move):
    pp = Preprocess(["ladder_capture"], size=state.get_size())
    feature = pp.state_to_tensor(state).squeeze()
    return feature[move] == 1
Exemplo n.º 33
0
class CNNPolicy(object):
	"""uses a convolutional neural network to evaluate the state of the game
	and compute a probability distribution over the next action
	"""

	def __init__(self, feature_list, **kwargs):
		"""create a policy object that preprocesses according to feature_list and uses
		a neural network specified by keyword arguments (see create_network())
		"""
		self.preprocessor = Preprocess(feature_list)
		kwargs["input_dim"] = self.preprocessor.output_dim
		self.model = CNNPolicy.create_network(**kwargs)
		self.forward = self._model_forward()

	def _model_forward(self):
		"""Construct a function using the current keras backend that, when given a batch
		of inputs, simply processes them forward and returns the output

		This is as opposed to model.compile(), which takes a loss function
		and training method.

		c.f. https://github.com/fchollet/keras/issues/1426
		"""
		model_input = self.model.get_input(train=False)
		model_output = self.model.get_output(train=False)
		forward_function = K.function([model_input], [model_output])

		# the forward_function returns a list of tensors
		# the first [0] gets the front tensor.
		# this tensor, however, has dimensions (1, width, height)
		# and we just want (width,height) hence the second [0]
		return lambda inpt: forward_function(inpt)[0][0]

	def batch_eval_state(self, state_gen, batch=16):
		"""Given a stream of states in state_gen, evaluates them in batches
		to make best use of GPU resources.

		Returns: TBD (stream of results? that would break zip().
			streaming pairs of pre-zipped (state, result)?)
		"""
		raise NotImplementedError()

	def eval_state(self, state):
		"""Given a GameState object, returns a list of (action, probability) pairs
		according to the network outputs
		"""
		tensor = self.preprocessor.state_to_tensor(state)

		# run the tensor through the network
		network_output = self.forward([tensor])

		# get network activations at legal move locations
		# note: may not be a proper distribution by ignoring illegal moves
		return [((x, y), network_output[x, y]) for (x, y) in state.get_legal_moves()]

	@staticmethod
	def create_network(**kwargs):
		"""construct a convolutional neural network.

		Keword Arguments:
		- input_dim:         	depth of features to be processed by first layer (no default)
		- board:             	width of the go board to be processed (default 19)
		- filters_per_layer: 	number of filters used on every layer (default 128)
		- layers:            	number of convolutional steps (default 12)
		- filter_width_K:    	(where K is between 1 and <layers>) width of filter on
								layer K (default 3 except 1st layer which defaults to 5).
								Must be odd.
		"""
		defaults = {
			"board": 19,
			"filters_per_layer": 128,
			"layers": 12,
			"filter_width_1": 5
		}
		# copy defaults, but override with anything in kwargs
		params = defaults
		params.update(kwargs)

		# create the network:
		# a series of zero-paddings followed by convolutions
		# such that the output dimensions are also board x board
		network = Sequential()

		# create first layer
		network.add(convolutional.Convolution2D(
			input_shape=(params["input_dim"], params["board"], params["board"]),
			nb_filter=params["filters_per_layer"],
			nb_row=params["filter_width_1"],
			nb_col=params["filter_width_1"],
			init='uniform',
			activation='relu',
			border_mode='same'))

		# create all other layers
		for i in range(2, params["layers"] + 1):
			# use filter_width_K if it is there, otherwise use 3
			filter_key = "filter_width_%d" % i
			filter_width = params.get(filter_key, 3)
			network.add(convolutional.Convolution2D(
				nb_filter=params["filters_per_layer"],
				nb_row=filter_width,
				nb_col=filter_width,
				init='uniform',
				activation='relu',
				border_mode='same'))

		# the last layer maps each <filters_per_layer> featuer to a number
		network.add(convolutional.Convolution2D(
			nb_filter=1,
			nb_row=1,
			nb_col=1,
			init='uniform',
			border_mode='same'))
		# reshape output to be board x board
		network.add(Reshape((params["board"], params["board"])))
		# softmax makes it into a probability distribution
		network.add(Activation('softmax'))

		return network

	@staticmethod
	def load_model(json_file):
		"""create a new CNNPolicy object from the architecture specified in json_file
		"""
		with open(json_file, 'r') as f:
			object_specs = json.load(f)
		new_policy = CNNPolicy(object_specs['feature_list'])
		new_policy.model = model_from_json(object_specs['keras_model'])
		new_policy.forward = new_policy._model_forward()
		return new_policy

	def save_model(self, json_file):
		"""write the network model and preprocessing features to the specified file
		"""
		# this looks odd because we are serializing a model with json as a string
		# then making that the value of an object which is then serialized as
		# json again.
		# It's not as crazy as it looks. A CNNPolicy has 2 moving parts - the
		# feature preprocessing and the neural net, each of which gets a top-level
		# entry in the saved file. Keras just happens to serialize models with JSON
		# as well. Note how this format makes load_model fairly clean as well.
		object_specs = {
			'keras_model': self.model.to_json(),
			'feature_list': self.preprocessor.feature_list
		}
		# use the json module to write object_specs to file
		with open(json_file, 'w') as f:
			json.dump(object_specs, f)
Exemplo n.º 34
0
class game_converter:

	def __init__(self, features):
		self.feature_processor = Preprocess(features)
		self.n_features = self.feature_processor.output_dim

	def convert_game(self, file_name, bd_size):
		"""Read the given SGF file into an iterable of (input,output) pairs
		for neural network training

		Each input is a GameState converted into one-hot neural net features
		Each output is an action as an (x,y) pair (passes are skipped)

		If this game's size does not match bd_size, a SizeMismatchError is raised
		"""

		with open(file_name, 'r') as file_object:
			state_action_iterator = sgf_iter_states(file_object.read(), include_end=False)

		for (state, move, player) in state_action_iterator:
			if state.size != bd_size:
				raise SizeMismatchError()
			if move != go.PASS_MOVE:
				nn_input = self.feature_processor.state_to_tensor(state)
				yield (nn_input, move)

	def sgfs_to_hdf5(self, sgf_files, hdf5_file, bd_size=19, ignore_errors=True, verbose=False):
		"""Convert all files in the iterable sgf_files into an hdf5 group to be stored in hdf5_file

		Arguments:
		- sgf_files : an iterable of relative or absolute paths to SGF files
		- hdf5_file : the name of the HDF5 where features will be saved
		- bd_size : side length of board of games that are loaded
		- ignore_errors : if True, issues a Warning when there is an unknown exception rather than halting. Note
			that sgf.ParseException and go.IllegalMove exceptions are always skipped

		The resulting file has the following properties:
			states  : dataset with shape (n_data, n_features, board width, board height)
			actions : dataset with shape (n_data, 2) (actions are stored as x,y tuples of where the move was played)
			file_offsets : group mapping from filenames to tuples of (index, length)

		For example, to find what positions in the dataset come from 'test.sgf':
			index, length = file_offsets['test.sgf']
			test_states = states[index:index+length]
			test_actions = actions[index:index+length]
		"""
		# TODO - also save feature list

		# make a hidden temporary file in case of a crash.
		# on success, this is renamed to hdf5_file
		tmp_file = os.path.join(os.path.dirname(hdf5_file), ".tmp." + os.path.basename(hdf5_file))
		h5f = h5.File(tmp_file, 'w')

		try:
			# see http://docs.h5py.org/en/latest/high/group.html#Group.create_dataset
			states = h5f.require_dataset(
				'states',
				dtype=np.uint8,
				shape=(1, self.n_features, bd_size, bd_size),
				maxshape=(None, self.n_features, bd_size, bd_size),  # 'None' dimension allows it to grow arbitrarily
				exact=False,                                         # allow non-uint8 datasets to be loaded, coerced to uint8
				chunks=(64, self.n_features, bd_size, bd_size),      # approximately 1MB chunks
				compression="lzf")
			actions = h5f.require_dataset(
				'actions',
				dtype=np.uint8,
				shape=(1, 2),
				maxshape=(None, 2),
				exact=False,
				chunks=(1024, 2),
				compression="lzf")
			# 'file_offsets' is an HDF5 group so that 'file_name in file_offsets' is fast
			file_offsets = h5f.require_group('file_offsets')

			if verbose:
				print("created HDF5 dataset in {}".format(tmp_file))

			next_idx = 0
			for file_name in sgf_files:
				if verbose:
					print(file_name)
				# count number of state/action pairs yielded by this game
				n_pairs = 0
				file_start_idx = next_idx
				try:
					for state, move in self.convert_game(file_name, bd_size):
						if next_idx >= len(states):
							states.resize((next_idx + 1, self.n_features, bd_size, bd_size))
							actions.resize((next_idx + 1, 2))
						states[next_idx] = state
						actions[next_idx] = move
						n_pairs += 1
						next_idx += 1
				except go.IllegalMove:
					warnings.warn("Illegal Move encountered in %s\n\tdropping the remainder of the game" % file_name)
				except sgf.ParseException:
					warnings.warn("Could not parse %s\n\tdropping game" % file_name)
				except SizeMismatchError:
					warnings.warn("Skipping %s; wrong board size" % file_name)
				except Exception as e:
					# catch everything else
					if ignore_errors:
						warnings.warn("Unkown exception with file %s\n\t%s" % (file_name, e), stacklevel=2)
					else:
						raise e
				finally:
					if n_pairs > 0:
						# '/' has special meaning in HDF5 key names, so they are replaced with ':' here
						file_name_key = file_name.replace('/', ':')
						file_offsets[file_name_key] = [file_start_idx, n_pairs]
						if verbose:
							print("\t%d state/action pairs extracted" % n_pairs)
					elif verbose:
						print("\t-no usable data-")
		except Exception as e:
			print("sgfs_to_hdf5 failed")
			os.remove(tmp_file)
			raise e

		if verbose:
			print("finished. renaming %s to %s" % (tmp_file, hdf5_file))

		# processing complete; rename tmp_file to hdf5_file
		h5f.close()
		os.rename(tmp_file, hdf5_file)
Exemplo n.º 35
0
class CNNPolicy(object):
    """uses a convolutional neural network to evaluate the state of the game
	and compute a probability distribution over the next action
	"""
    def __init__(self, feature_list, **kwargs):
        """create a policy object that preprocesses according to feature_list and uses
		a neural network specified by keyword arguments (see create_network())
		"""
        self.preprocessor = Preprocess(feature_list)
        kwargs["input_dim"] = self.preprocessor.output_dim
        self.model = CNNPolicy.create_network(**kwargs)
        self.forward = self._model_forward()

    def _model_forward(self):
        """Construct a function using the current keras backend that, when given a batch
		of inputs, simply processes them forward and returns the output

		The output has size (batch x 361) for 19x19 boards (i.e. the output is a batch
		of distributions over flattened boards. See AlphaGo.util#flatten_idx)

		This is as opposed to model.compile(), which takes a loss function
		and training method.

		c.f. https://github.com/fchollet/keras/issues/1426
		"""
        forward_function = K.function([self.model.input], [self.model.output])

        # the forward_function returns a list of tensors
        # the first [0] gets the front tensor.
        return lambda inpt: forward_function([inpt])[0]

    def batch_eval_state(self, state_gen, batch=16):
        """Given a stream of states in state_gen, evaluates them in batches
		to make best use of GPU resources.

		Returns: TBD (stream of results? that would break zip().
			streaming pairs of pre-zipped (state, result)?)
		"""
        raise NotImplementedError()

    def eval_state(self, state, moves=None):
        """Given a GameState object, returns a list of (action, probability) pairs
		according to the network outputs

		If a list of moves is specified, only those moves are kept in the distribution
		"""
        tensor = self.preprocessor.state_to_tensor(state)

        # run the tensor through the network
        network_output = self.forward(tensor)

        moves = moves or state.get_legal_moves()
        move_indices = [flatten_idx(m, state.size) for m in moves]

        # get network activations at legal move locations
        # note: may not be a proper distribution by ignoring illegal moves
        distribution = network_output[0][move_indices]
        distribution = distribution / distribution.sum()
        return zip(moves, distribution)

    @staticmethod
    def create_network(**kwargs):
        """construct a convolutional neural network.

		Keword Arguments:
		- input_dim:         	depth of features to be processed by first layer (no default)
		- board:             	width of the go board to be processed (default 19)
		- filters_per_layer: 	number of filters used on every layer (default 128)
		- layers:            	number of convolutional steps (default 12)
		- filter_width_K:    	(where K is between 1 and <layers>) width of filter on
								layer K (default 3 except 1st layer which defaults to 5).
								Must be odd.
		"""
        defaults = {
            "board": 19,
            "filters_per_layer": 128,
            "layers": 12,
            "filter_width_1": 5
        }
        # copy defaults, but override with anything in kwargs
        params = defaults
        params.update(kwargs)

        # create the network:
        # a series of zero-paddings followed by convolutions
        # such that the output dimensions are also board x board
        network = Sequential()

        # create first layer
        network.add(
            convolutional.Convolution2D(input_shape=(params["input_dim"],
                                                     params["board"],
                                                     params["board"]),
                                        nb_filter=params["filters_per_layer"],
                                        nb_row=params["filter_width_1"],
                                        nb_col=params["filter_width_1"],
                                        init='uniform',
                                        activation='relu',
                                        border_mode='same'))

        # create all other layers
        for i in range(2, params["layers"] + 1):
            # use filter_width_K if it is there, otherwise use 3
            filter_key = "filter_width_%d" % i
            filter_width = params.get(filter_key, 3)
            network.add(
                convolutional.Convolution2D(
                    nb_filter=params["filters_per_layer"],
                    nb_row=filter_width,
                    nb_col=filter_width,
                    init='uniform',
                    activation='relu',
                    border_mode='same'))

        # the last layer maps each <filters_per_layer> featuer to a number
        network.add(
            convolutional.Convolution2D(nb_filter=1,
                                        nb_row=1,
                                        nb_col=1,
                                        init='uniform',
                                        border_mode='same'))
        # reshape output to be board x board
        network.add(Flatten())
        # softmax makes it into a probability distribution
        network.add(Activation('softmax'))

        return network

    @staticmethod
    def load_model(json_file):
        """create a new CNNPolicy object from the architecture specified in json_file
		"""
        with open(json_file, 'r') as f:
            object_specs = json.load(f)
        new_policy = CNNPolicy(object_specs['feature_list'])
        new_policy.model = model_from_json(object_specs['keras_model'])
        new_policy.forward = new_policy._model_forward()
        return new_policy

    def save_model(self, json_file):
        """write the network model and preprocessing features to the specified file
		"""
        # this looks odd because we are serializing a model with json as a string
        # then making that the value of an object which is then serialized as
        # json again.
        # It's not as crazy as it looks. A CNNPolicy has 2 moving parts - the
        # feature preprocessing and the neural net, each of which gets a top-level
        # entry in the saved file. Keras just happens to serialize models with JSON
        # as well. Note how this format makes load_model fairly clean as well.
        object_specs = {
            'keras_model': self.model.to_json(),
            'feature_list': self.preprocessor.feature_list
        }
        # use the json module to write object_specs to file
        with open(json_file, 'w') as f:
            json.dump(object_specs, f)