Exemplo n.º 1
0
class puProfile:

    def __init__( self, source_sample, cacheDir=os.path.join(cache_directory,"puProfiles") ):

        if not os.path.isdir( cacheDir ): os.makedirs( cacheDir )

        self.source_sample = source_sample
        self.cacheDir = cacheDir
        self.initCache( cacheDir )
        self.binning        = [ 100, 0, 100 ]
        self.draw_string    = "Pileup_nTrueInt"

    def initCache(self, cacheDir):
        self.cache = DirDB( os.path.join( cacheDir, 'puProfilesDirDBCache' ))

    def uniqueKey( self, *arg ):
        '''No dressing required'''
        return arg

    def cachedTemplate( self, selection, weight = '(1)', save = True, overwrite = False):
        key = (selection, weight, self.source_sample.name)
        if (self.cache and self.cache.contains(key)) and not overwrite:
            result = self.cache.get(key)
            logger.info( "Loaded MC PU profile from %s"%(self.cacheDir) )
            logger.debug( "Key used: %s result: %r"%(key, result) )
        elif self.cache:
            logger.info( "Obtain PU profile for %s"%( key, ) )
            result = self.makeTemplate( selection = selection, weight = weight)
            if result:
                result = self.cache.add( key, result, overwrite=save )
                logger.info( "Adding PU profile to cache for %s : %r" %( key, result) )
            else:
                logger.warning( "Couldn't create PU profile to cache for %s : %r" %( key, result) )
        else:
            result = self.makeTemplate( selection = selection, weight = weight)
        return result

    def makeTemplate( self, selection, weight='(1)' ):
        logger.info( "Make PU profile for sample %s and selection %s and weight %s", self.source_sample.name, selection, weight )

        h_source = self.source_sample.get1DHistoFromDraw(self.draw_string, self.binning, selectionString = selection, weightString = weight )
        logger.info( "PU histogram contains %s weighted events", h_source.Integral() )
        h_source.Scale( 1./h_source.Integral() )
        return h_source
Exemplo n.º 2
0
        max_events = 30000

# Text on the plots
tex = ROOT.TLatex()
tex.SetNDC()
tex.SetTextSize(0.04)
tex.SetTextAlign(11)  # align right

# fire up the cache
cache_dir_ = os.path.join(cache_dir, 'fake_cache')
dirDB = DirDB(cache_dir_)

pu_key = (triggerSelection, leptonSelection, jetSelection, args.era,
          args.small, "pu")
if dirDB.contains(pu_key) and not args.overwrite:
    reweight_histo = dirDB.get(pu_key)
    logger.info("Found PU reweight in cache %s", cache_dir_)
else:
    logger.info("Didn't find PU reweight histo %r. Obtaining it now.", pu_key)

    data_nvtx_histo = data_sample.get1DHistoFromDraw(
        "PV_npvsGood", [100 / 5, 0, 100],
        selectionString=data_preselectionString,
        weightString="weight")
    data_nvtx_histo.Scale(1. / data_nvtx_histo.Integral())

    mc_histos = [
        s.get1DHistoFromDraw("PV_npvsGood", [100 / 5, 0, 100],
                             selectionString=mc_preselectionString,
                             weightString="weight*reweightBTag_SF") for s in mc
    ]
Exemplo n.º 3
0
        #sample.scale /= sample.normalization
        max_events = 30000

# Text on the plots
tex = ROOT.TLatex()
tex.SetNDC()
tex.SetTextSize(0.04)
tex.SetTextAlign(11) # align right

# fire up the cache
cache_dir_ = os.path.join(cache_dir, 'fake_pu_cache')
dirDB      = DirDB(cache_dir_)

pu_key = ( triggerSelection, leptonSelection, jetSelection, args.era, args.small)
if dirDB.contains( pu_key ) and not args.overwrite:
    reweight_histo = dirDB.get( pu_key )
    logger.info( "Found PU reweight in cache %s", cache_dir_ )
else:
    logger.info( "Didn't find PU reweight histo %r. Obtaining it now.", pu_key)

    data_selectionString = "&&".join([getFilterCut(isData=True, year=year), triggerSelection, leptonSelection, jetSelection])
    data_nvtx_histo = data_sample.get1DHistoFromDraw( "PV_npvsGood", [100, 0, 100], selectionString=data_selectionString, weightString = "weight" )
    data_nvtx_histo.Scale(1./data_nvtx_histo.Integral())

    mc_selectionString = "&&".join([getFilterCut(isData=False, year=year), triggerSelection, leptonSelection, jetSelection])
    mc_histos  = [ s.get1DHistoFromDraw( "PV_npvsGood", [100, 0, 100], selectionString=mc_selectionString, weightString = "weight*reweightBTag_SF") for s in mc]
    mc_histo     = mc_histos[0]
    for h in mc_histos[1:]:
        mc_histo.Add( h )

    mc_histo.Scale(1./mc_histo.Integral())
Exemplo n.º 4
0
        name        = "met_mc",
        texX        = 'p_{T}^{miss} (GeV)', texY = 'Number of Events / 20 GeV' if args.normalizeBinWidth else "Number of Events",
        binning     = [400/20,0,400],
        stack       = stack_mc,
        # attribute   = TreeVariable.fromString('met_pt/F'),
        attribute   = TreeVariable.fromString( "met_pt_%s/F" % args.variation ) if args.variation in jet_systematics else TreeVariable.fromString('met_pt/F'),
        selectionString = selectionModifier(cutInterpreter.cutString(args.selection)) if selectionModifier is not None else None,
        weight      = mc_weight )
    plots.append( met_mc )

    ############################################################################
    # Check DB for existing plots
    if args.variation is not None:
        key  = (args.era, mode, args.variation)
        if dirDB.contains(key) and not args.overwrite:
            normalisation_mc, normalisation_data, histos = dirDB.get( key )
            for i_p, h_s in enumerate(histos):
                plots[i_p].histos = h_s
            logger.info( "Loaded normalisations and histograms for %s in mode %s from cache.", args.era, mode)
        else:
            logger.info( "Obtain normalisations and histograms for %s in mode %s.", args.era, mode)
            normalization_selection_string = selectionModifier(cutInterpreter.cutString(args.selection))
            mc_normalization_weight_string    = MC_WEIGHT(variations[args.variation], returntype='string')
            normalisation_mc = {s.name :s.scale*s.getYieldFromDraw(selectionString = normalization_selection_string, weightString = mc_normalization_weight_string)['val'] for s in mc}

            for s in mc:
                print normalisation_mc[s.name]


            if args.variation == 'central':
                normalisation_data = data_sample.scale*data_sample.getYieldFromDraw( selectionString = normalization_selection_string, weightString = data_weight_string)['val']