Exemplo n.º 1
0
def computeNormal(L):
    if vecAB(L) is None or vecAC(L) is None:
        return None

    vecNormal = np.cross(vecAB(L), vecAC(L))
    norm = euclidienNorm(vecNormal)

    return vecNormal / norm
Exemplo n.º 2
0
def computeAngles(L):
    if vecAB(L) is None or vecAC(L) is None:
        return None

    vecNormal = np.cross(vecAB(L), vecAC(L))
    norm = euclidienNorm(vecNormal)

    return [-90 + np.arccos(np.dot([1, 0, 0], vecNormal) / norm) * 180 / np.pi,
            -90 + np.arccos(np.dot([0, 1, 0], vecNormal) / norm) * 180 / np.pi,
            np.arccos(np.dot([0, 0, 1], vecNormal) / norm) * 180 / np.pi]
Exemplo n.º 3
0
def computeTheta(L):
    if vecAB(L) is None or vecAC(L) is None:
        return None

    vecNormal = np.cross(vecAB(L), vecAC(L))
    normal = vecNormal / euclidienNorm(vecNormal)

    nz = np.dot([0, 0, 1], normal)

    return np.arccos(nz) * 180 / np.pi
Exemplo n.º 4
0
def calculatePrecision3(x, y, z):
    vectorFunction = VectorFunction([L1_, L2_, L3_])

    x0 = [x, y, z]
    matrix = np.linalg.inv(vectorFunction.jacobienMatrix(x0))

    arrPrecision = []

    for dl in gen_dL():
        precision = euclidienNorm(np.dot(matrix, dl))

        arrPrecision.append(precision)

    return max(arrPrecision)
Exemplo n.º 5
0
def computePhi(L):
    if vecAB(L) is None or vecAC(L) is None:
        return None

    vecNormal = np.cross(vecAB(L), vecAC(L))
    normal = vecNormal / euclidienNorm(vecNormal)

    nx = np.dot([1, 0, 0], normal)
    ny = np.dot([0, 1, 0], normal)

    if nx == 0 and ny == 0:
        return None

    sign = np.sign(ny) if ny != 0 else 1

    return np.arccos(nx / np.sqrt(nx ** 2 + ny ** 2)) * sign * 180 / np.pi
def findDistanceTranslation(vec, angles):

    # params = [RA, RB, RC, LA, LB, LC]
    # index =   0   1   2   3   4   5
    def A(params):
        return np.array([-params[0] * sinPi3, -params[0] * cosPi3, params[3]],
                        dtype=float)

    def B(params):
        return np.array([params[1] * sinPi3, -params[1] * cosPi3, params[4]],
                        dtype=float)

    def C(params):
        return np.array([0, params[2], params[5]], dtype=float)

    n = normal(angles)
    vec = np.array(vec, dtype=float)

    arrCoordinateFunctions = [
        lambda params: n.dot(A(params) - vec),
        lambda params: n.dot(B(params) - vec),
        lambda params: n.dot(C(params) - vec),
        lambda params: euclidienNorm(B(params) - A(params)) - a,
        lambda params: euclidienNorm(C(params) - A(params)) - a,
        lambda params: euclidienNorm(C(params) - B(params)) - a
    ]

    systemFunction = VectorFunction(coordinateFunctions=arrCoordinateFunctions)
    startingPoint = np.array(
        [R, R, R, L1(vec, angles),
         L2(vec, angles),
         L3(vec, angles)],
        dtype=float)

    solution = algorithmNewtonRaphson(systemFunction,
                                      starting=startingPoint,
                                      precision=10**-4)

    return euclidienNorm(A(solution) - np.array([xA, yA, L1(vec, angles)], dtype=float)) * np.sign(R - d - solution[0]), \
           euclidienNorm(B(solution) - np.array([xB, yB, L2(vec, angles)], dtype=float)) * np.sign(R - d - solution[1]), \
           euclidienNorm(C(solution) - np.array([xC, yC, L3(vec, angles)], dtype=float)) * np.sign(R - d - solution[2])
Exemplo n.º 7
0
def gamma(L):
    vecNormal = np.cross(vecAB(L), vecAC(L))
    norm = euclidienNorm(vecNormal)

    return np.arccos(np.dot([0, 0, 1], vecNormal) / norm) * 180 / np.pi
Exemplo n.º 8
0
def beta(L):
    vecNormal = np.cross(vecAB(L), vecAC(L))
    norm = euclidienNorm(vecNormal)

    return -90 + np.arccos(np.dot([0, 1, 0], vecNormal) / norm) * 180 / np.pi
arrError = []

z = Z
for y in Y:
    row = []

    for x in X:
        if not inWorkspace(x, y, z):
            row.append(None)
        else:
            print([x, y])
            desiredPoint = np.array([x, y, z], dtype=float)
            arrLength = perfectDelta.inverseKinetic(x, y, z)
            reachedPoint = imperfectDelta.forwardKinetic(*arrLength)

            row.append(euclidienNorm(desiredPoint - reachedPoint))
            #row.append(abs(desiredPoint[2] - reachedPoint[2]))

    arrError.append(row)

fig = go.Figure(data=go.Contour(z=arrError, x=X, y=Y),
                layout=(dict(height=600, width=600)))

fig.update_layout(title="Erreur quadratique en mm (pour z={0:.2f})".format(Z),
                  xaxis_title="X in mm",
                  yaxis_title="Y in mm",
                  font=dict(family="Courier New, monospace"))

fig.show()

# print(imperfectDelta.inverseKinetic(0, 0, 950))