def test_arrowannotation(self): item = ArrowItem() self.scene.addItem(item) item.setLine(QLineF(100, 100, 100, 200)) item.setLineWidth(5) item = ArrowItem() item.setLine(QLineF(150, 100, 150, 200)) item.setLineWidth(10) item.setArrowStyle(ArrowItem.Concave) self.scene.addItem(item) item = ArrowAnnotation() item.setPos(10, 10) item.setLine(QLineF(10, 10, 200, 200)) self.scene.addItem(item) item.setLineWidth(5) def advance(): clock = time.process_time() * 10 item.setLineWidth(5 + math.sin(clock) * 5) item.setColor(QColor(Qt.red).lighter(100 + 30 * math.cos(clock))) timer = QTimer(item, interval=10) timer.timeout.connect(advance) timer.start() self.app.exec_()
def commit(self): self.cancel() self.clear_messages() # Some time may pass before the new scores are computed, so clear the # old scores to avoid potential confusion. Hiding the mainArea could # cause flickering when the clusters are computed quickly, so this is # the better alternative self.table_model.clear_scores() self.mainArea.setVisible(self.optimize_k and self.data is not None and self.has_attributes) if self.data is None: self.send_data() return if not self.has_attributes: self.Error.no_attributes() self.send_data() return if self.optimize_k: self.run_optimization() else: self.cluster() QTimer.singleShot(100, self.adjustSize)
def evalJS(self, code): """ Evaluate JavaScript code synchronously (or sequentially, at least). Parameters ---------- code : str The JavaScript code to evaluate in main page frame. The scope is not assured. Assign properties to window if you want to make them available elsewhere. Warnings -------- In the case of Qt WebEngine implementation, this function calls: QCoreApplication.processEvents(QEventLoop.ExcludeUserInputEvents) until the page is fully loaded, all the objects exposed via exposeObject() method are indeed exposed in JS, and the code `code` has finished evaluating. """ def _later(): if not self.__is_init and self.__js_queue: return QTimer.singleShot(1, _later) if self.__js_queue: # '/n' is required when the last line is a comment code = '\n;'.join(self.__js_queue) self.__js_queue.clear() self._evalJS(code) self.__js_queue.append(code) QTimer.singleShot(1, _later)
def _create_layout(self): box = gui.widgetBox(self.controlArea, orientation='horizontal') self.varmodel = VariableListModel(parent=self) self.attr_combo = gui.comboBox(box, self, 'selected_attr', orientation=Qt.Horizontal, label='Region attribute:', callback=self.on_attr_change, sendSelectedValue=True) self.attr_combo.setModel(self.varmodel) self.map_combo = gui.comboBox(box, self, 'selected_map', orientation=Qt.Horizontal, label='Map type:', callback=self.on_map_change, items=Map.all) hexpand = QSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed) self.attr_combo.setSizePolicy(hexpand) self.map_combo.setSizePolicy(hexpand) url = urljoin('file:', pathname2url(os.path.join( os.path.dirname(__file__), 'resources', 'owgeomap.html'))) self.webview = gui.WebviewWidget(self.controlArea, self, url=QUrl(url)) self.controlArea.layout().addWidget(self.webview) QTimer.singleShot( 0, lambda: self.webview.evalJS('REGIONS = {};'.format({Map.WORLD: CC_WORLD, Map.EUROPE: CC_EUROPE, Map.USA: CC_USA})))
class QCoreAppTestCase(unittest.TestCase): _AppClass = QCoreApplication @classmethod def setUpClass(cls): super(QCoreAppTestCase, cls).setUpClass() app = cls._AppClass.instance() if app is None: app = cls._AppClass([]) cls.app = app def setUp(self): super(QCoreAppTestCase, self).setUp() self._quittimer = QTimer(interval=1000) self._quittimer.timeout.connect(self.app.quit) self._quittimer.start() def tearDown(self): self._quittimer.stop() self._quittimer.timeout.disconnect(self.app.quit) self._quittimer = None super(QCoreAppTestCase, self).tearDown() @classmethod def tearDownClass(cls): gc.collect() cls.app = None super(QCoreAppTestCase, cls).tearDownClass()
def test_dynamic_link(self): link = LinkItem() anchor1 = AnchorPoint() anchor2 = AnchorPoint() self.scene.addItem(link) self.scene.addItem(anchor1) self.scene.addItem(anchor2) link.setSourceItem(None, anchor1) link.setSinkItem(None, anchor2) anchor2.setPos(100, 100) link.setSourceName("1") link.setSinkName("2") link.setDynamic(True) self.assertTrue(link.isDynamic()) link.setDynamicEnabled(True) self.assertTrue(link.isDynamicEnabled()) def advance(): clock = time.process_time() link.setDynamic(clock > 1) link.setDynamicEnabled(int(clock) % 2 == 0) timer = QTimer(link, interval=0) timer.timeout.connect(advance) timer.start() self.app.exec_()
def show_settings(self): self._hotkey.unregister(winid=self.winId()) dlg = SettingsDialog(self) dlg.show() dlg.exec_() # WORKAROUND: On windows calling register_hotkeys() directly often results in a crash. QTimer.singleShot(10, self.register_hotkeys)
def x11_event(self, event, data): if event.type == X.KeyPress: key = (event.detail, int(event.state) & (X.ShiftMask | X.ControlMask | X.Mod1Mask | X.Mod4Mask)) if key in self.shortcuts: # noinspection PyCallByClass,PyTypeChecker QTimer.singleShot(0, self.shortcuts[key]) return False
def test_outputview(self): output = OutputView() output.show() line1 = "A line \n" line2 = "A different line\n" output.write(line1) self.assertEqual(output.toPlainText(), line1) output.write(line2) self.assertEqual(output.toPlainText(), line1 + line2) output.clear() self.assertEqual(output.toPlainText(), "") output.writelines([line1, line2]) self.assertEqual(output.toPlainText(), line1 + line2) output.setMaximumLines(5) def advance(): now = datetime.now().strftime("%c\n") output.write(now) text = output.toPlainText() self.assertLessEqual(len(text.splitlines()), 5) timer = QTimer(output, interval=500) timer.timeout.connect(advance) timer.start() self.app.exec_()
def setUp(self): import logging from AnyQt.QtWidgets import \ QApplication, QGraphicsScene, QGraphicsView from AnyQt.QtGui import QPainter from AnyQt.QtCore import QTimer logging.basicConfig() self.app = QApplication([]) self.scene = QGraphicsScene() self.view = QGraphicsView(self.scene) self.view.setRenderHints( QPainter.Antialiasing | \ QPainter.SmoothPixmapTransform | \ QPainter.TextAntialiasing ) self.view.resize(500, 300) self.view.show() QTimer.singleShot(10000, self.app.exit) def my_excepthook(*args): sys.setrecursionlimit(1010) traceback.print_exc(limit=4) self._orig_excepthook = sys.excepthook sys.excepthook = my_excepthook self.singleShot = QTimer.singleShot
def test_drop_shadow_old(self): w = dropshadow._DropShadowWidget() w.setContentsMargins(20, 20, 20, 20) w.setLayout(QHBoxLayout()) w.layout().setContentsMargins(0, 0, 0, 0) w.layout().addWidget(QListView()) w.show() QTimer.singleShot(1500, lambda: w.setRadius(w.radius + 5)) self.app.exec_()
def add_points(): nonlocal cur, image_token if image_token != self._image_token: return batch = visible[cur:cur + self.N_POINTS_PER_ITER] batch_lat = lat[batch] batch_lon = lon[batch] x, y = self.Projection.latlon_to_easting_northing(batch_lat, batch_lon) x, y = self.Projection.easting_northing_to_pixel(x, y, zoom, origin, map_pane_pos) if self._jittering: dx, dy = self._jittering_offsets[batch].T x, y = x + dx, y + dy colors = (self._colorgen.getRGB(self._scaled_color_values[batch]).tolist() if self._color_attr else repeat((0xff, 0, 0))) sizes = self._size_coef * \ (self._sizes[batch] if self._size_attr else np.tile(10, len(batch))) for x, y, is_selected, size, color, _in_subset in \ zip(x, y, selected[batch], sizes, colors, in_subset[batch]): pensize2, selpensize2 = (.35, 1.5) if size >= 5 else (.15, .7) pensize2 *= self._size_coef selpensize2 *= self._size_coef size2 = size / 2 if is_selected: painter.setPen(QPen(QBrush(Qt.green), 2 * selpensize2)) painter.drawEllipse(x - size2 - selpensize2, y - size2 - selpensize2, size + selpensize2, size + selpensize2) color = QColor(*color) color.setAlpha(self._opacity) painter.setBrush(QBrush(color) if _in_subset else Qt.NoBrush) painter.setPen(QPen(QBrush(color.darker(180)), 2 * pensize2)) painter.drawEllipse(x - size2 - pensize2, y - size2 - pensize2, size + pensize2, size + pensize2) im.save(self._overlay_image_path, 'PNG') self.evalJS('markersImageLayer.setUrl("{}#{}"); 0;' .format(self.toFileURL(self._overlay_image_path), np.random.random())) cur += self.N_POINTS_PER_ITER if cur < len(visible): QTimer.singleShot(10, add_points) self._owwidget.progressBarAdvance(100 / n_iters, None) else: self._owwidget.progressBarFinished(None)
def __init__(self): super().__init__() self.name_lineedit = None self.data = None self.learner = None self.model = None self.preprocessors = None self.outdated_settings = False self.setup_layout() QTimer.singleShot(0, self.apply)
def _translate_message_hook(self, pmsg: MSG): msg = pmsg.contents if msg.message == WM_HOTKEY: keycode = (msg.lParam >> 16) & 0xFFFF modifiers = msg.lParam & 0xFFFF key = (keycode, modifiers) if key in self.shortcuts: QTimer.singleShot(0, self.shortcuts[key]) return False return self._TranslateMessageReal(pmsg)
def __init__(self): super().__init__() self.data = None self.valid_data = False self.learner = None self.model = None self.preprocessors = None self.outdated_settings = False self.setup_layout() QTimer.singleShot(0, getattr(self, "unconditional_apply", self.apply))
def on_data(self, data): if data and not isinstance(data, Corpus): data = Corpus.from_table(data.domain, data) self.data = data self._repopulate_attr_combo(data) if not data: self.region_selected('') QTimer.singleShot(0, lambda: self.webview.evalJS('DATA = {}; renderMap();')) else: QTimer.singleShot(0, self.on_attr_change)
def test_framelesswindow(self): window = FramelessWindow() window.show() def cycle(): window.setRadius((window.radius() + 3) % 30) timer = QTimer(window, interval=250) timer.timeout.connect(cycle) timer.start() self.app.exec_()
def __init__(self): super().__init__() self.embedders = sorted(list(EMBEDDERS_INFO), key=lambda k: EMBEDDERS_INFO[k]['order']) self._image_attributes = None self._input_data = None self._log = logging.getLogger(__name__) self._task = None self._setup_layout() self._image_embedder = None self._executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) self.setBlocking(True) QTimer.singleShot(0, self._init_server_connection)
def apply(self): self.clear_messages() if self.data is not None: if self.optimize_k and self.run_optimization(): self.mainArea.show() self.update_results() else: self.cluster() self.mainArea.hide() else: self.mainArea.hide() QTimer.singleShot(100, self.adjustSize) self.send_data()
def test_layout(self): one_desc, negate_desc, cons_desc = self.widget_desc() one_item = NodeItem() one_item.setWidgetDescription(one_desc) one_item.setPos(0, 150) self.scene.add_node_item(one_item) cons_item = NodeItem() cons_item.setWidgetDescription(cons_desc) cons_item.setPos(200, 0) self.scene.add_node_item(cons_item) negate_item = NodeItem() negate_item.setWidgetDescription(negate_desc) negate_item.setPos(200, 300) self.scene.add_node_item(negate_item) link = LinkItem() link.setSourceItem(one_item) link.setSinkItem(negate_item) self.scene.add_link_item(link) link = LinkItem() link.setSourceItem(one_item) link.setSinkItem(cons_item) self.scene.add_link_item(link) layout = AnchorLayout() self.scene.addItem(layout) self.scene.set_anchor_layout(layout) layout.invalidateNode(one_item) layout.activate() p1, p2 = one_item.outputAnchorItem.anchorPositions() self.assertTrue(p1 > p2) self.scene.node_item_position_changed.connect(layout.invalidateNode) path = QPainterPath() path.addEllipse(125, 0, 50, 300) def advance(): t = time.process_time() cons_item.setPos(path.pointAtPercent(t % 1.0)) negate_item.setPos(path.pointAtPercent((t + 0.5) % 1.0)) timer = QTimer(negate_item, interval=20) timer.start() timer.timeout.connect(advance) self.app.exec_()
def __init__(self, parent=None, items=None): QStandardItemModel.__init__(self, parent) if items is not None: self.insertColumn(0, items) self.__timer = QTimer(self)
def __init__(self): super().__init__() #: Input dissimilarity matrix self.matrix = None # type: Optional[DistMatrix] #: Data table from the `self.matrix.row_items` (if present) self.matrix_data = None # type: Optional[Table] #: Input data table self.signal_data = None self.__invalidated = True self.embedding = None self.effective_matrix = None self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=0) self.__timer.timeout.connect(self.__next_step) self.__state = OWMDS.Waiting self.__in_next_step = False self.graph.pause_drawing_pairs() self.size_model = self.gui.points_models[2] self.size_model.order = \ self.gui.points_models[2].order[:1] \ + ("Stress", ) + \ self.gui.points_models[2].order[1:]
def __init__(self, parent=None): QObject.__init__(self, parent) self.__scheme = None self.__signal_manager = None self.__widgets = [] self.__initstate_for_node = {} self.__creation_policy = WidgetManager.Normal #: a queue of all nodes whose widgets are scheduled for #: creation/initialization self.__init_queue = deque() # type: Deque[SchemeNode] #: Timer for scheduling widget initialization self.__init_timer = QTimer(self, interval=0, singleShot=True) self.__init_timer.timeout.connect(self.__create_delayed) #: A mapping of SchemeNode -> OWWidget (note: a mapping is only added #: after the widget is actually created) self.__widget_for_node = {} #: a mapping of OWWidget -> SchemeNode self.__node_for_widget = {} # Widgets that were 'removed' from the scheme but were at # the time in an input update loop and could not be deleted # immediately self.__delay_delete = set() #: Deleted/removed during creation/initialization. self.__delete_after_create = [] #: processing state flags for all widgets (including the ones #: in __delay_delete). #: Note: widgets which have not yet been created do not have an entry self.__widget_processing_state = {} # Tracks the widget in the update loop by the SignalManager self.__updating_widget = None
def __init__(self, *args): super().__init__(*args) self.setAlignment(Qt.AlignTop | Qt.AlignLeft) self.__backgroundIcon = QIcon() self.__autoScroll = False self.__autoScrollMargin = 16 self.__autoScrollTimer = QTimer(self) self.__autoScrollTimer.timeout.connect(self.__autoScrollAdvance) # scale factor accumulating partial increments from wheel events self.__zoomLevel = 100 # effective scale level(rounded to whole integers) self.__effectiveZoomLevel = 100 self.__zoomInAction = QAction( self.tr("Zoom in"), self, objectName="action-zoom-in", shortcut=QKeySequence.ZoomIn, triggered=self.zoomIn, ) self.__zoomOutAction = QAction( self.tr("Zoom out"), self, objectName="action-zoom-out", shortcut=QKeySequence.ZoomOut, triggered=self.zoomOut ) self.__zoomResetAction = QAction( self.tr("Reset Zoom"), self, objectName="action-zoom-reset", triggered=self.zoomReset, shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0) )
def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self.__timeout) self._radius = 20.0 self._density = 4.0 self._pos = None
def __init__(self, parent=None, **kwargs): QWidget.__init__(self, parent, **kwargs) layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.setLayout(layout) self.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Expanding) self.__tabs = [] self.__currentIndex = -1 self.__changeOnHover = False self.__iconSize = QSize(26, 26) self.__group = QButtonGroup(self, exclusive=True) self.__group.buttonPressed[QAbstractButton].connect( self.__onButtonPressed ) self.setMouseTracking(True) self.__sloppyButton = None self.__sloppyRegion = QRegion() self.__sloppyTimer = QTimer(self, singleShot=True) self.__sloppyTimer.timeout.connect(self.__onSloppyTimeout)
def __init__(self, parent=None, items=None): super().__init__(parent) if items is not None: self.insertColumn(0, items) self.__timer = QTimer(self)
def _later(): if not self.__is_init and self.__js_queue: return QTimer.singleShot(1, _later) if self.__js_queue: code = ";".join(self.__js_queue) self.__js_queue.clear() self._evalJS(code)
def test_main(): from AnyQt.QtWidgets import QApplication from Orange.modelling import KNNLearner as Learner a = QApplication([]) ow = OWMap() ow.show() ow.raise_() data = Table('philadelphia-crime') ow.set_data(data) QTimer.singleShot(10, lambda: ow.set_learner(Learner())) ow.handleNewSignals() a.exec() ow.saveSettings()
def _later(): if not self.__is_init and self.__js_queue: return QTimer.singleShot(1, _later) if self.__js_queue: # '/n' is required when the last line is a comment code = '\n;'.join(self.__js_queue) self.__js_queue.clear() self._evalJS(code)
def update_edge(self): for edge in self.graph_edges(): if edge.node1 is self: QTimer.singleShot(0, edge.update_ends) elif edge.node2 is self: edge.setVisible(self.isVisible())
class VizRankDialog(QDialog, ProgressBarMixin, WidgetMessagesMixin): """ Base class for VizRank dialogs, providing a GUI with a table and a button, and the skeleton for managing the evaluation of visualizations. Derived classes must provide methods - `iterate_states` for generating combinations (e.g. pairs of attritutes), - `compute_score(state)` for computing the score of a combination, - `row_for_state(state)` that returns a list of items inserted into the table for the given state. and, optionally, - `state_count` that returns the number of combinations (used for progress bar) - `on_selection_changed` that handles event triggered when the user selects a table row. The method should emit signal `VizRankDialog.selectionChanged(object)`. - `bar_length` returns the length of the bar corresponding to the score. The class provides a table and a button. A widget constructs a single instance of this dialog in its `__init__`, like (in Sieve) by using a convenience method :obj:`add_vizrank`:: self.vizrank, self.vizrank_button = SieveRank.add_vizrank( box, self, "Score Combinations", self.set_attr) When the widget receives new data, it must call the VizRankDialog's method :obj:`VizRankDialog.initialize()` to clear the GUI and reset the state. Clicking the Start button calls method `run` (and renames the button to Pause). Run sets up a progress bar by getting the number of combinations from :obj:`VizRankDialog.state_count()`. It restores the paused state (if any) and calls generator :obj:`VizRankDialog.iterate_states()`. For each generated state, it calls :obj:`VizRankDialog.score(state)`, which must return the score (lower is better) for this state. If the returned state is not `None`, the data returned by `row_for_state` is inserted at the appropriate place in the table. Args: master (Orange.widget.OWWidget): widget to which the dialog belongs Attributes: master (Orange.widget.OWWidget): widget to which the dialog belongs captionTitle (str): the caption for the dialog. This can be a class attribute. `captionTitle` is used by the `ProgressBarMixin`. """ captionTitle = "" processingStateChanged = Signal(int) progressBarValueChanged = Signal(float) messageActivated = Signal(Msg) messageDeactivated = Signal(Msg) selectionChanged = Signal(object) class Information(WidgetMessagesMixin.Information): nothing_to_rank = Msg("There is nothing to rank.") def __init__(self, master): """Initialize the attributes and set up the interface""" QDialog.__init__(self, master, windowTitle=self.captionTitle) WidgetMessagesMixin.__init__(self) self.setLayout(QVBoxLayout()) self.insert_message_bar() self.layout().insertWidget(0, self.message_bar) self.master = master self.keep_running = False self.scheduled_call = None self.saved_state = None self.saved_progress = 0 self.scores = [] self.add_to_model = queue.Queue() self.update_timer = QTimer(self) self.update_timer.timeout.connect(self._update) self.update_timer.setInterval(200) self._thread = None self._worker = None self.filter = QLineEdit() self.filter.setPlaceholderText("Filter ...") self.filter.textChanged.connect(self.filter_changed) self.layout().addWidget(self.filter) # Remove focus from line edit self.setFocus(Qt.ActiveWindowFocusReason) self.rank_model = QStandardItemModel(self) self.model_proxy = QSortFilterProxyModel(self) self.model_proxy.setSourceModel(self.rank_model) self.rank_table = view = QTableView( selectionBehavior=QTableView.SelectRows, selectionMode=QTableView.SingleSelection, showGrid=False) if self._has_bars: view.setItemDelegate(TableBarItem()) else: view.setItemDelegate(HorizontalGridDelegate()) view.setModel(self.model_proxy) view.selectionModel().selectionChanged.connect( self.on_selection_changed) view.horizontalHeader().setStretchLastSection(True) view.horizontalHeader().hide() self.layout().addWidget(view) self.button = gui.button( self, self, "Start", callback=self.toggle, default=True) @property def _has_bars(self): return type(self).bar_length is not VizRankDialog.bar_length @classmethod def add_vizrank(cls, widget, master, button_label, set_attr_callback): """ Equip the widget with VizRank button and dialog, and monkey patch the widget's `closeEvent` and `hideEvent` to close/hide the vizrank, too. Args: widget (QWidget): the widget into whose layout to insert the button master (Orange.widgets.widget.OWWidget): the master widget button_label: the label for the button set_attr_callback: the callback for setting the projection chosen in the vizrank Returns: tuple with Vizrank dialog instance and push button """ # Monkey patching could be avoided by mixing-in the class (not # necessarily a good idea since we can make a mess of multiple # defined/derived closeEvent and hideEvent methods). Furthermore, # per-class patching would be better than per-instance, but we don't # want to mess with meta-classes either. vizrank = cls(master) button = gui.button( widget, master, button_label, callback=vizrank.reshow, enabled=False) vizrank.selectionChanged.connect(lambda args: set_attr_callback(*args)) master_close_event = master.closeEvent master_hide_event = master.hideEvent master_delete_event = master.onDeleteWidget def closeEvent(event): vizrank.close() master_close_event(event) def hideEvent(event): vizrank.hide() master_hide_event(event) def deleteEvent(): vizrank.keep_running = False if vizrank._thread is not None and vizrank._thread.isRunning(): vizrank._thread.quit() vizrank._thread.wait() master_delete_event() master.closeEvent = closeEvent master.hideEvent = hideEvent master.onDeleteWidget = deleteEvent return vizrank, button def reshow(self): """Put the widget on top of all windows """ self.show() self.raise_() self.activateWindow() def initialize(self): """ Clear and initialize the dialog. This method must be called by the widget when the data is reset, e.g. from `set_data` handler. """ if self._thread is not None and self._thread.isRunning(): self.keep_running = False self._thread.quit() self._thread.wait() self.keep_running = False self.scheduled_call = None self.saved_state = None self.saved_progress = 0 self.update_timer.stop() self.progressBarFinished() self.scores = [] self._update_model() # empty queue self.rank_model.clear() self.button.setText("Start") self.button.setEnabled(self.check_preconditions()) self._thread = QThread(self) self._worker = Worker(self) self._worker.moveToThread(self._thread) self._worker.stopped.connect(self._thread.quit) self._worker.stopped.connect(self._select_first_if_none) self._worker.stopped.connect(self._stopped) self._worker.done.connect(self._done) self._thread.started.connect(self._worker.do_work) def filter_changed(self, text): self.model_proxy.setFilterFixedString(text) def stop_and_reset(self, reset_method=None): if self.keep_running: self.scheduled_call = reset_method or self.initialize self.keep_running = False else: self.initialize() def check_preconditions(self): """Check whether there is sufficient data for ranking.""" return True def on_selection_changed(self, selected, deselected): """ Set the new visualization in the widget when the user select a row in the table. If derived class does not reimplement this, the table gives the information but the user can't click it to select the visualization. Args: selected: the index of the selected item deselected: the index of the previously selected item """ pass def iterate_states(self, initial_state): """ Generate all possible states (e.g. attribute combinations) for the given data. The content of the generated states is specific to the visualization. This method must be defined in the derived classes. Args: initial_state: initial state; None if this is the first call """ raise NotImplementedError def state_count(self): """ Return the number of states for the progress bar. Derived classes should implement this to ensure the proper behaviour of the progress bar""" return 0 def compute_score(self, state): """ Abstract method for computing the score for the given state. Smaller scores are better. Args: state: the state, e.g. the combination of attributes as generated by :obj:`state_count`. """ raise NotImplementedError def bar_length(self, score): """Compute the bar length (between 0 and 1) corresponding to the score. Return `None` if the score cannot be normalized. """ return None def row_for_state(self, score, state): """ Abstract method that return the items that are inserted into the table. Args: score: score, computed by :obj:`compute_score` state: the state, e.g. combination of attributes """ raise NotImplementedError def _select_first_if_none(self): if not self.rank_table.selectedIndexes(): self.rank_table.selectRow(0) def _done(self): self.button.setText("Finished") self.button.setEnabled(False) self.keep_running = False self.saved_state = None def _stopped(self): self.update_timer.stop() self.progressBarFinished() self._update_model() self.stopped() if self.scheduled_call: self.scheduled_call() def _update(self): self._update_model() self._update_progress() def _update_progress(self): self.progressBarSet(int(self.saved_progress * 100 / max(1, self.state_count()))) def _update_model(self): try: while True: pos, row_items = self.add_to_model.get_nowait() self.rank_model.insertRow(pos, row_items) except queue.Empty: pass def toggle(self): """Start or pause the computation.""" self.keep_running = not self.keep_running if self.keep_running: self.button.setText("Pause") self.progressBarInit() self.update_timer.start() self.before_running() self._thread.start() else: self.button.setText("Continue") self._thread.quit() # Need to sync state (the worker must read the keep_running # state and stop) for reliable restart. self._thread.wait() def before_running(self): """Code that is run before running vizrank in its own thread""" pass def stopped(self): """Code that is run after stopping the vizrank thread""" pass
class WidgetManager(QObject): """ WidgetManager class is responsible for creation, tracking and deletion of UI elements constituting an interactive workflow. It does so by reacting to changes in the underlying workflow model, creating and destroying the components when needed. This is an abstract class, subclassed MUST reimplement at least :func:`create_widget_for_node` and :func:`delete_widget_for_node`. The widgets created with :func:`create_widget_for_node` will automatically receive dispatched events: * :data:`WorkflowEvent.InputLinkAdded` - when a new input link is added to the workflow. * :data:`LinkEvent.InputLinkRemoved` - when a input link is removed * :data:`LinkEvent.OutputLinkAdded` - when a new output link is added to the workflow * :data:`LinkEvent.InputLinkRemoved` - when a output link is removed * :data:`WorkflowEnvEvent.WorkflowEnvironmentChanged` - when the workflow environment changes. .. seealso:: :func:`.Scheme.add_link()`, :func:`Scheme.remove_link`, :func:`.Scheme.runtime_env` """ #: A new QWidget was created and added by the manager. widget_for_node_added = Signal(SchemeNode, QWidget) #: A QWidget was removed, hidden and will be deleted when appropriate. widget_for_node_removed = Signal(SchemeNode, QWidget) class CreationPolicy(enum.Enum): """ Widget Creation Policy. """ #: Widgets are scheduled to be created from the event loop, or when #: first accessed with `widget_for_node` Normal = "Normal" #: Widgets are created immediately when a node is added to the #: workflow model. Immediate = "Immediate" #: Widgets are created only when first accessed with `widget_for_node` #: (e.g. when activated in the view). OnDemand = "OnDemand" Normal = CreationPolicy.Normal Immediate = CreationPolicy.Immediate OnDemand = CreationPolicy.OnDemand def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__workflow = None # type: Optional[Scheme] self.__creation_policy = WidgetManager.Normal self.__float_widgets_on_top = False self.__item_for_node = {} # type: Dict[SchemeNode, Item] self.__item_for_widget = {} # type: Dict[QWidget, Item] self.__init_queue = deque() # type: Deque[SchemeNode] self.__init_timer = QTimer(self, singleShot=True) self.__init_timer.timeout.connect(self.__process_init_queue) self.__activation_monitor = ActivationMonitor(self) self.__activation_counter = itertools.count() self.__activation_monitor.activated.connect(self.__mark_activated) def set_workflow(self, workflow): # type: (Scheme) -> None """ Set the workflow. """ if workflow is self.__workflow: return if self.__workflow is not None: # cleanup for node in self.__workflow.nodes: self.__remove_node(node) self.__workflow.node_added.disconnect(self.__on_node_added) self.__workflow.node_removed.disconnect(self.__on_node_removed) self.__workflow.link_added.disconnect(self.__on_link_added) self.__workflow.link_removed.disconnect(self.__on_link_removed) self.__workflow.runtime_env_changed.disconnect( self.__on_env_changed) self.__workflow.removeEventFilter(self) self.__workflow = workflow workflow.node_added.connect(self.__on_node_added, Qt.UniqueConnection) workflow.node_removed.connect(self.__on_node_removed, Qt.UniqueConnection) workflow.link_added.connect(self.__on_link_added, Qt.UniqueConnection) workflow.link_removed.connect(self.__on_link_removed, Qt.UniqueConnection) workflow.runtime_env_changed.connect(self.__on_env_changed, Qt.UniqueConnection) workflow.installEventFilter(self) for node in workflow.nodes: self.__add_node(node) def workflow(self): # type: () -> Optional[Workflow] return self.__workflow scheme = workflow set_scheme = set_workflow def set_creation_policy(self, policy): # type: (CreationPolicy) -> None """ Set the widget creation policy. """ if self.__creation_policy != policy: self.__creation_policy = policy if self.__creation_policy == WidgetManager.Immediate: self.__init_timer.stop() # create all if self.__workflow is not None: for node in self.__workflow.nodes: self.ensure_created(node) elif self.__creation_policy == WidgetManager.Normal: if not self.__init_timer.isActive() and self.__init_queue: self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_timer.stop() else: assert False def creation_policy(self): """ Return the current widget creation policy. """ return self.__creation_policy def create_widget_for_node(self, node): # type: (SchemeNode) -> QWidget """ Create and initialize a widget for node. This is an abstract method. Subclasses must reimplemented it. """ raise NotImplementedError() def delete_widget_for_node(self, node, widget): # type: (SchemeNode, QWidget) -> None """ Remove and delete widget for node. This is an abstract method. Subclasses must reimplemented it. """ raise NotImplementedError() def node_for_widget(self, widget): # type: (QWidget) -> Optional[SchemeNode] """ Return the node for widget. """ item = self.__item_for_widget.get(widget) if item is not None: return item.node else: return None def widget_for_node(self, node): # type: (SchemeNode) -> Optional[QWidget] """ Return the widget for node. """ self.ensure_created(node) item = self.__item_for_node.get(node) return item.widget if item is not None else None def __add_widget_for_node(self, node): # type: (SchemeNode) -> None item = self.__item_for_node.get(node) if item is not None: return if self.__workflow is None: return if node not in self.__workflow.nodes: return if node in self.__init_queue: self.__init_queue.remove(node) item = Item(node, None, -1) # Insert on the node -> item mapping. self.__item_for_node[node] = item log.debug("Creating widget for node %s", node) try: w = self.create_widget_for_node(node) except Exception: # pylint: disable=broad-except log.critical("", exc_info=True) lines = traceback.format_exception(*sys.exc_info()) text = "".join(lines) errorwidget = QLabel(textInteractionFlags=Qt.TextSelectableByMouse, wordWrap=True, objectName="widgetmanager-error-placeholder", text="<pre>" + escape(text) + "</pre>") item.errorwidget = errorwidget node.set_state_message(UserMessage(text, UserMessage.Error, "")) raise else: item.widget = w self.__item_for_widget[w] = item self.__set_float_on_top_flag(w) if w.windowIcon().isNull(): desc = node.description w.setWindowIcon(icon_loader.from_description(desc).get(desc.icon)) if not w.windowTitle(): w.setWindowTitle(node.title) w.installEventFilter(self.__activation_monitor) raise_canvas = QAction( self.tr("Raise Canvas to Front"), w, objectName="action-canvas-raise-canvas", toolTip=self.tr("Raise containing canvas workflow window"), shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_Up)) raise_canvas.triggered.connect(self.__on_activate_parent) raise_descendants = QAction( self.tr("Raise Descendants"), w, objectName="action-canvas-raise-descendants", toolTip=self.tr("Raise all immediate descendants of this node"), shortcut=QKeySequence(Qt.ControlModifier | Qt.ShiftModifier | Qt.Key_Right)) raise_descendants.triggered.connect( partial(self.__on_raise_descendants, node)) raise_ancestors = QAction( self.tr("Raise Ancestors"), w, objectName="action-canvas-raise-ancestors", toolTip=self.tr("Raise all immediate ancestors of this node"), shortcut=QKeySequence(Qt.ControlModifier | Qt.ShiftModifier | Qt.Key_Left)) raise_ancestors.triggered.connect( partial(self.__on_raise_ancestors, node)) w.addActions([raise_canvas, raise_descendants, raise_ancestors]) # send all the post creation notification events workflow = self.__workflow assert workflow is not None inputs = workflow.find_links(sink_node=node) for link in inputs: ev = LinkEvent(LinkEvent.InputLinkAdded, link) QCoreApplication.sendEvent(w, ev) outputs = workflow.find_links(source_node=node) for link in outputs: ev = LinkEvent(LinkEvent.OutputLinkAdded, link) QCoreApplication.sendEvent(w, ev) self.widget_for_node_added.emit(node, w) def ensure_created(self, node): # type: (SchemeNode) -> None """ Ensure that the widget for node is created. """ if self.__workflow is None: return if node not in self.__workflow.nodes: return item = self.__item_for_node.get(node) if item is None: self.__add_widget_for_node(node) def __on_node_added(self, node): # type: (SchemeNode) -> None assert self.__workflow is not None assert node in self.__workflow.nodes assert node not in self.__item_for_node self.__add_node(node) def __add_node(self, node): # type: (SchemeNode) -> None # add node for tracking node.installEventFilter(self) if self.__creation_policy == WidgetManager.Immediate: self.ensure_created(node) elif self.__creation_policy == WidgetManager.Normal: self.__init_queue.append(node) self.__init_timer.start() def __on_node_removed(self, node): # type: (SchemeNode) -> None assert self.__workflow is not None assert node not in self.__workflow.nodes self.__remove_node(node) def __remove_node(self, node): # type: (SchemeNode) -> None # remove the node and its widget from tracking. node.removeEventFilter(self) if node in self.__init_queue: self.__init_queue.remove(node) item = self.__item_for_node.get(node) if item is not None and item.widget is not None: widget = item.widget assert widget in self.__item_for_widget del self.__item_for_widget[widget] widget.removeEventFilter(self.__activation_monitor) item.widget = None self.widget_for_node_removed.emit(node, widget) self.delete_widget_for_node(node, widget) if item is not None: del self.__item_for_node[node] @Slot() def __process_init_queue(self): if self.__init_queue: node = self.__init_queue.popleft() assert self.__workflow is not None assert node in self.__workflow.nodes log.debug("__process_init_queue: '%s'", node.title) try: self.ensure_created(node) finally: if self.__init_queue: self.__init_timer.start() def __on_link_added(self, link): # type: (SchemeLink) -> None assert self.__workflow is not None assert link.source_node in self.__workflow.nodes assert link.sink_node in self.__workflow.nodes source = self.__item_for_node.get(link.source_node) sink = self.__item_for_node.get(link.sink_node) # notify the node gui of an added link if source is not None and source.widget is not None: ev = LinkEvent(LinkEvent.OutputLinkAdded, link) QCoreApplication.sendEvent(source.widget, ev) if sink is not None and sink.widget is not None: ev = LinkEvent(LinkEvent.InputLinkAdded, link) QCoreApplication.sendEvent(sink.widget, ev) def __on_link_removed(self, link): # type: (SchemeLink) -> None assert self.__workflow is not None assert link.source_node in self.__workflow.nodes assert link.sink_node in self.__workflow.nodes source = self.__item_for_node.get(link.source_node) sink = self.__item_for_node.get(link.sink_node) # notify the node gui of an removed link if source is not None and source.widget is not None: ev = LinkEvent(LinkEvent.OutputLinkRemoved, link) QCoreApplication.sendEvent(source.widget, ev) if sink is not None and sink.widget is not None: ev = LinkEvent(LinkEvent.InputLinkRemoved, link) QCoreApplication.sendEvent(sink.widget, ev) def __mark_activated(self, widget): # type: (QWidget) -> None # Update the tracked stacking order for `widget` item = self.__item_for_widget.get(widget) if item is not None: item.activation_order = next(self.__activation_counter) def activate_widget_for_node(self, node, widget): # type: (SchemeNode, QWidget) -> None """ Activate the widget for node (show and raise above other) """ if widget.windowState() == Qt.WindowMinimized: widget.showNormal() widget.setVisible(True) widget.raise_() widget.activateWindow() def activate_window_group(self, group): # type: (Scheme.WindowGroup) -> None self.restore_window_state(group.state) def raise_widgets_to_front(self): """ Raise all current visible widgets to the front. The widgets will be stacked by activation order. """ workflow = self.__workflow if workflow is None: return items = filter( lambda item: (item.widget.isVisible() if item is not None and item.widget is not None else False), map(self.__item_for_node.get, workflow.nodes)) self.__raise_and_activate(items) def set_float_widgets_on_top(self, float_on_top): """ Set `Float Widgets on Top` flag on all widgets. """ self.__float_widgets_on_top = float_on_top for item in self.__item_for_node.values(): if item.widget is not None: self.__set_float_on_top_flag(item.widget) def save_window_state(self): # type: () -> List[Tuple[SchemeNode, bytes]] """ Save current open window arrangement. """ if self.__workflow is None: return [] workflow = self.__workflow # type: Scheme state = [] for node in workflow.nodes: # type: SchemeNode item = self.__item_for_node.get(node, None) if item is None: continue stackorder = item.activation_order if item.widget is not None and not item.widget.isHidden(): data = self.save_widget_geometry(node, item.widget) state.append((stackorder, node, data)) return [(node, data) for _, node, data in sorted(state, key=lambda t: t[0])] def restore_window_state(self, state): # type: (List[Tuple[Node, bytes]]) -> None """ Restore the window state. """ assert self.__workflow is not None workflow = self.__workflow # type: Scheme visible = {node for node, _ in state} # first hide all other widgets for node in workflow.nodes: if node not in visible: # avoid creating widgets if not needed item = self.__item_for_node.get(node, None) if item is not None and item.widget is not None: item.widget.hide() allnodes = set(workflow.nodes) # restore state for visible group; windows are stacked as they appear # in the state list. w = None for node, node_state in filter(lambda t: t[0] in allnodes, state): w = self.widget_for_node(node) # also create it if needed if w is not None: w.show() self.restore_widget_geometry(node, w, node_state) w.raise_() self.__mark_activated(w) # activate (give focus to) the last window if w is not None: w.activateWindow() def save_widget_geometry(self, node, widget): # type: (SchemeNode, QWidget) -> bytes """ Save and return the current geometry and state for node. """ return b'' def restore_widget_geometry(self, node, widget, state): # type: (SchemeNode, QWidget, bytes) -> bool """ Restore the widget geometry and state for node. Return True if the geometry was restored successfully. The default implementation does nothing. """ return False @Slot(SchemeNode) def __on_raise_ancestors(self, node): # type: (SchemeNode) -> None """ Raise all the ancestor widgets of `widget`. """ item = self.__item_for_node.get(node) if item is not None: scheme = self.scheme() assert scheme is not None ancestors = [ self.__item_for_node.get(p) for p in scheme.parents(item.node) ] self.__raise_and_activate(filter(None, reversed(ancestors))) @Slot(SchemeNode) def __on_raise_descendants(self, node): # type: (SchemeNode) -> None """ Raise all the descendants widgets of `widget`. """ item = self.__item_for_node.get(node) if item is not None: scheme = self.scheme() assert scheme is not None descendants = [ self.__item_for_node.get(p) for p in scheme.children(item.node) ] self.__raise_and_activate(filter(None, reversed(descendants))) def __raise_and_activate(self, items): # type: (Iterable[Item]) -> None """Show and raise a set of widgets.""" # preserve the tracked stacking order items = sorted(items, key=lambda item: item.activation_order) w = None for item in items: if item.widget is not None: w = item.widget elif item.errorwidget is not None: w = item.errorwidget else: continue w.show() w.raise_() if w is not None: # give focus to the last activated top window w.activateWindow() def __activate_widget_for_node(self, node): # type: (SchemeNode) -> None # activate the widget for the node. self.ensure_created(node) item = self.__item_for_node.get(node) if item is None: return if item.widget is not None: self.activate_widget_for_node(node, item.widget) elif item.errorwidget is not None: item.errorwidget.show() item.errorwidget.raise_() item.errorwidget.activateWindow() def __on_activate_parent(self): event = WorkflowEvent(WorkflowEvent.ActivateParentRequest) QCoreApplication.sendEvent(self.scheme(), event) def eventFilter(self, recv, event): # type: (QObject, QEvent) -> bool if event.type() == NodeEvent.NodeActivateRequest \ and isinstance(recv, SchemeNode): self.__activate_widget_for_node(recv) return False def __set_float_on_top_flag(self, widget): # type: (QWidget) -> None """Set or unset widget's float on top flag""" should_float_on_top = self.__float_widgets_on_top float_on_top = bool(widget.windowFlags() & Qt.WindowStaysOnTopHint) if float_on_top == should_float_on_top: return widget_was_visible = widget.isVisible() if should_float_on_top: widget.setWindowFlags(widget.windowFlags() | Qt.WindowStaysOnTopHint) else: widget.setWindowFlags(widget.windowFlags() & ~Qt.WindowStaysOnTopHint) # Changing window flags hid the widget if widget_was_visible: widget.show() def __on_env_changed(self, key, newvalue, oldvalue): # Notify widgets of a runtime environment change for item in self.__item_for_node.values(): if item.widget is not None: ev = WorkflowEnvChanged(key, newvalue, oldvalue) QCoreApplication.sendEvent(item.widget, ev) def actions_for_context_menu(self, node): # type: (SchemeNode) -> List[QAction] """ Return a list of extra actions that can be inserted into context menu in the workflow editor. Subclasses can reimplement this method to extend the default context menu. Parameters ---------- node: SchemeNode The node for which the context menu is requested. Return ------ actions: List[QAction] Actions that are appended to the default menu. """ return []
def __schedule_next(self): if not self.__next_pending: self.__next_pending = True QTimer.singleShot(10, self.__on_timeout)
class OWScatterPlot(OWWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 class Inputs: data = Input("Data", Table, default=True) data_subset = Input("Data Subset", Table) features = Input("Features", AttributeList) class Outputs: selected_data = Output("Selected Data", Table, default=True) annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table) features = Output("Features", AttributeList, dynamic=False) settings_version = 2 settingsHandler = DomainContextHandler() auto_send_selection = Setting(True) auto_sample = Setting(True) toolbar_selection = Setting(0) attr_x = ContextSetting(None) attr_y = ContextSetting(None) #: Serialized selection state to be restored selection_group = Setting(None, schema_only=True) graph = SettingProvider(OWScatterPlotGraph) jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10] graph_name = "graph.plot_widget.plotItem" class Information(OWWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") def __init__(self): super().__init__() box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWScatterPlotGraph(self, box, "ScatterPlot") box.layout().addWidget(self.graph.plot_widget) plot = self.graph.plot_widget axispen = QPen(self.palette().color(QPalette.Text)) axis = plot.getAxis("bottom") axis.setPen(axispen) axis = plot.getAxis("left") axis.setPen(axispen) self.data = None # Orange.data.Table self.subset_data = None # Orange.data.Table self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) #: Remember the saved state to restore self.__pending_selection_restore = self.selection_group self.selection_group = None common_options = dict(labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str) box = gui.vBox(self.controlArea, "Axis Data") dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) self.cb_attr_x = gui.comboBox(box, self, "attr_x", label="Axis x:", callback=self.update_attr, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox(box, self, "attr_y", label="Axis y:", callback=self.update_attr, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) gui.separator(vizrank_box, width=common_options["labelWidth"]) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) gui.separator(box) g = self.graph.gui g.add_widgets([g.JitterSizeSlider, g.JitterNumericValues], box) self.sampling = gui.auto_commit(self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) g.point_properties_box(self.controlArea) self.models = [self.xy_model] + g.points_models box_plot_prop = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([ g.ShowLegend, g.ShowGridLines, g.ToolTipShowsAll, g.ClassDensity, g.RegressionLine, g.LabelOnlySelected ], box_plot_prop) self.graph.box_zoom_select(self.controlArea) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict p = self.graph.plot_widget.palette() self.graph.set_palette(p) gui.auto_commit(self.controlArea, self, "auto_send_selection", "Send Selection", "Send Automatically") self.graph.zoom_actions(self) def keyPressEvent(self, event): super().keyPressEvent(event) self.graph.update_tooltip(event.modifiers()) def keyReleaseEvent(self, event): super().keyReleaseEvent(event) self.graph.update_tooltip(event.modifiers()) def reset_graph_data(self, *_): if self.data is not None: self.graph.rescale_data() self.update_graph() @Inputs.data def set_data(self, data): self.clear_messages() self.Information.sampled_sql.clear() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(data, SqlTable): if data.approx_len() < 4000: data = Table(data) else: self.Information.sampled_sql() self.sql_data = data data_sample = data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if data is not None and (len(data) == 0 or len(data.domain) == 0): data = None if self.data and data and self.data.checksum() == data.checksum(): return self.closeContext() same_domain = (self.data and data and data.domain.checksum() == self.data.domain.checksum()) self.data = data if not same_domain: self.init_attr_values() self.vizrank.initialize() self.vizrank.attrs = self.data.domain.attributes if self.data is not None else [] self.vizrank_button.setEnabled( self.data is not None and not self.data.is_sparse() and self.data.domain.class_var is not None and not np.isnan(self.data.Y).all() and len(self.data.domain.attributes) > 1 and len(self.data) > 1) if self.data is not None and self.data.domain.class_var is None \ and len(self.data.domain.attributes) > 1 and len(self.data) > 1: self.vizrank_button.setToolTip( "Data with a class variable is required.") else: self.vizrank_button.setToolTip("") self.openContext(self.data) def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Orange.data.Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.graph.attr_label, str): self.graph.attr_label = findvar(self.graph.attr_label, self.graph.gui.label_model) if isinstance(self.graph.attr_color, str): self.graph.attr_color = findvar(self.graph.attr_color, self.graph.gui.color_model) if isinstance(self.graph.attr_shape, str): self.graph.attr_shape = findvar(self.graph.attr_shape, self.graph.gui.shape_model) if isinstance(self.graph.attr_size, str): self.graph.attr_size = findvar(self.graph.attr_size, self.graph.gui.size_model) def add_data(self, time=0.4): if self.data and len(self.data) > 2000: return self.__timer.stop() data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.handleNewSignals() def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() @Inputs.data_subset def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None self.subset_data = subset_data self.controls.graph.alpha_value.setEnabled(subset_data is None) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): self.graph.new_data(self.data, self.subset_data) if self.attribute_selection_list and self.graph.domain and \ all(attr in self.graph.domain for attr in self.attribute_selection_list): self.attr_x = self.attribute_selection_list[0] self.attr_y = self.attribute_selection_list[1] self.attribute_selection_list = None self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line()) if self.data is not None and self.__pending_selection_restore is not None: self.apply_selection(self.__pending_selection_restore) self.__pending_selection_restore = None self.unconditional_commit() def apply_selection(self, selection): """Apply `selection` to the current plot.""" if self.data is not None: self.graph.selection = np.zeros(len(self.data), dtype=np.uint8) self.selection_group = [ x for x in selection if x[0] < len(self.data) ] selection_array = np.array(self.selection_group).T self.graph.selection[selection_array[0]] = selection_array[1] self.graph.update_colors(keep_colors=True) @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] else: self.attribute_selection_list = None def init_attr_values(self): domain = self.data and self.data.domain for model in self.models: model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x self.graph.attr_color = self.data.domain.class_var if domain else None self.graph.attr_shape = None self.graph.attr_size = None self.graph.attr_label = None def set_attr(self, attr_x, attr_y): self.attr_x, self.attr_y = attr_x, attr_y self.update_attr() def update_attr(self): self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.cb_reg_line.setEnabled(self.graph.can_draw_regresssion_line()) self.send_features() def update_colors(self): self.cb_class_density.setEnabled(self.graph.can_draw_density()) def update_density(self): self.update_graph(reset_view=False) def update_regression_line(self): self.update_graph(reset_view=False) def update_graph(self, reset_view=True, **_): self.graph.zoomStack = [] if self.graph.data is None: return self.graph.update_data(self.attr_x, self.attr_y, reset_view) def selection_changed(self): # Store current selection in a setting that is stored in workflow if isinstance(self.data, SqlTable): selection = None elif self.data is not None: selection = self.graph.get_selection() else: selection = None if selection is not None and len(selection): self.selection_group = list( zip(selection, self.graph.selection[selection])) else: self.selection_group = None self.commit() def send_data(self): # TODO: Implement selection for sql data def _get_selected(): if not len(selection): return None return create_groups_table(data, graph.selection, False, "Group") def _get_annotated(): if graph.selection is not None and np.max(graph.selection) > 1: return create_groups_table(data, graph.selection) else: return create_annotated_table(data, selection) graph = self.graph data = self.data selection = graph.get_selection() self.Outputs.annotated_data.send(_get_annotated()) self.Outputs.selected_data.send(_get_selected()) def send_features(self): features = [attr for attr in [self.attr_x, self.attr_y] if attr] self.Outputs.features.send(features or None) def commit(self): self.send_data() self.send_features() def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) def send_report(self): if self.data is None: return def name(var): return var and var.name caption = report.render_items_vert( (("Color", name(self.graph.attr_color)), ("Label", name(self.graph.attr_label)), ("Shape", name(self.graph.attr_shape)), ("Size", name(self.graph.attr_size)), ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete or self.graph.jitter_continuous) and self.graph.jitter_size))) self.report_plot() if caption: self.report_caption(caption) def onDeleteWidget(self): super().onDeleteWidget() self.graph.plot_widget.getViewBox().deleteLater() self.graph.plot_widget.clear() @classmethod def migrate_settings(cls, settings, version): if version < 2 and "selection" in settings and settings["selection"]: settings["selection_group"] = [(a, 1) for a in settings["selection"]]
def runJavaScript(self, javascript, resultCallback=None): result = self.page().mainFrame().evaluateJavaScript(javascript) if resultCallback is not None: # Emulate the QtWebEngine's interface and return the result # in a event queue invoked callback QTimer.singleShot(0, lambda: resultCallback(result))
def showEvent(self, event): super().showEvent(event) if not self._f_pypi_addons.done() and self.__progress is not None: QTimer.singleShot(0, self.__progress.show)
def showEvent(self, event): super().showEvent(event) if self._should_fit_bounds: QTimer.singleShot(500, self.fit_to_bounds) self._should_fit_bounds = False
def focusInEvent(self, event): super().focusInEvent(event) # If selectAll is called directly, placing the cursor unselects the text QTimer.singleShot(0, self.selectAll)
def redraw_markers_overlay_image(self, *args, new_image=False): if not args and not self._drawing_args or self.data is None: return if args: self._drawing_args = args north, east, south, west, width, height, zoom, origin, map_pane_pos = self._drawing_args lat, lon = self._latlon_data.T visible = ((lat <= north) & (lat >= south) & (lon <= east) & (lon >= west)).nonzero()[0] in_subset = (np.in1d(self.data.ids, self._subset_ids) if self._subset_ids.size else np.tile(True, len(lon))) is_js_path = self.is_js_path = len(visible) < self.N_POINTS_PER_ITER self._update_legend(is_js_path) np.random.shuffle(visible) # Sort points in subset to be painted last visible = visible[np.lexsort((in_subset[visible], ))] if is_js_path: self.evalJS('clear_markers_overlay_image()') self._update_js_markers(visible, in_subset[visible]) self._owwidget.disable_some_controls(False) return self.evalJS('clear_markers_js();') self._owwidget.disable_some_controls(True) selected = (self._selected_indices if self._selected_indices is not None else np.zeros(len(lat), dtype=bool)) cur = 0 im = QImage(self._overlay_image_path) if im.isNull() or self._prev_origin != origin or new_image: im = QImage(width, height, QImage.Format_ARGB32) im.fill(Qt.transparent) else: dx, dy = self._prev_map_pane_pos - map_pane_pos im = im.copy(dx, dy, width, height) self._prev_map_pane_pos = np.array(map_pane_pos) self._prev_origin = origin painter = QPainter(im) painter.setRenderHint(QPainter.Antialiasing, True) self.evalJS( 'clear_markers_overlay_image(); markersImageLayer.setBounds(map.getBounds());0' ) self._image_token = image_token = np.random.random() n_iters = np.ceil(len(visible) / self.N_POINTS_PER_ITER) def add_points(): nonlocal cur, image_token if image_token != self._image_token: return batch = visible[cur:cur + self.N_POINTS_PER_ITER] batch_lat = lat[batch] batch_lon = lon[batch] x, y = self.Projection.latlon_to_easting_northing( batch_lat, batch_lon) x, y = self.Projection.easting_northing_to_pixel( x, y, zoom, origin, map_pane_pos) if self._jittering: dx, dy = self._jittering_offsets[batch].T x, y = x + dx, y + dy colors = (self._colorgen.getRGB( self._scaled_color_values[batch]).tolist() if self._color_attr else repeat((0xff, 0, 0))) sizes = self._size_coef * \ (self._sizes[batch] if self._size_attr else np.tile(10, len(batch))) opacity_subset, opacity_rest = self._opacity, int(.8 * self._opacity) for x, y, is_selected, size, color, _in_subset in \ zip(x, y, selected[batch], sizes, colors, in_subset[batch]): pensize2, selpensize2 = (.35, 1.5) if size >= 5 else (.15, .7) pensize2 *= self._size_coef selpensize2 *= self._size_coef size2 = size / 2 if is_selected: painter.setPen(QPen(QBrush(Qt.green), 2 * selpensize2)) painter.drawEllipse(x - size2 - selpensize2, y - size2 - selpensize2, size + selpensize2, size + selpensize2) color = QColor(*color) if _in_subset: color.setAlpha(opacity_subset) painter.setBrush(QBrush(color)) painter.setPen( QPen(QBrush(color.darker(180)), 2 * pensize2)) else: color.setAlpha(opacity_rest) painter.setBrush(Qt.NoBrush) painter.setPen( QPen(QBrush(color.lighter(120)), 2 * pensize2)) painter.drawEllipse(x - size2 - pensize2, y - size2 - pensize2, size + pensize2, size + pensize2) im.save(self._overlay_image_path, 'PNG') self.evalJS('markersImageLayer.setUrl("{}#{}"); 0;'.format( self.toFileURL(self._overlay_image_path), np.random.random())) cur += self.N_POINTS_PER_ITER if self.stop: return elif cur < len(visible): QTimer.singleShot(10, add_points) self._owwidget.progressBarAdvance(100 / n_iters, None) else: self._owwidget.progressBarFinished(None) self._image_token = None self._owwidget.progressBarFinished(None) self._owwidget.progressBarInit(None) QTimer.singleShot(10, add_points)
class WidgetManager(QObject): """ OWWidget instance manager class. This class handles the lifetime of OWWidget instances in a :class:`WidgetsScheme`. """ #: A new OWWidget was created and added by the manager. widget_for_node_added = Signal(SchemeNode, QWidget) #: An OWWidget was removed, hidden and will be deleted when appropriate. widget_for_node_removed = Signal(SchemeNode, QWidget) class ProcessingState(enum.IntEnum): """Widget processing state flags""" #: Signal manager is updating/setting the widget's inputs InputUpdate = 1 #: Widget has entered a blocking state (OWWidget.isBlocking) BlockingUpdate = 2 #: Widget has entered processing state ProcessingUpdate = 4 #: Widget is still in the process of initialization Initializing = 8 InputUpdate, BlockingUpdate, ProcessingUpdate, Initializing = ProcessingState #: State mask for widgets that cannot be deleted immediately #: (see __try_delete) _DelayDeleteMask = InputUpdate | BlockingUpdate #: Widget initialization states Delayed = namedtuple("Delayed", ["node"]) PartiallyInitialized = namedtuple("Materializing", ["node", "partially_initialized_widget"]) Materialized = namedtuple("Materialized", ["node", "widget"]) class CreationPolicy(enum.Enum): """Widget Creation Policy""" #: Widgets are scheduled to be created from the event loop, or when #: first accessed with `widget_for_node` Normal = "Normal" #: Widgets are created immediately when added to the workflow model Immediate = "Immediate" #: Widgets are created only when first accessed with `widget_for_node` OnDemand = "OnDemand" Normal, Immediate, OnDemand = CreationPolicy def __init__(self, parent=None): QObject.__init__(self, parent) self.__scheme = None self.__signal_manager = None self.__widgets = [] self.__initstate_for_node = {} self.__creation_policy = WidgetManager.Normal #: a queue of all nodes whose widgets are scheduled for #: creation/initialization self.__init_queue = deque() # type: Deque[SchemeNode] #: Timer for scheduling widget initialization self.__init_timer = QTimer(self, interval=0, singleShot=True) self.__init_timer.timeout.connect(self.__create_delayed) #: A mapping of SchemeNode -> OWWidget (note: a mapping is only added #: after the widget is actually created) self.__widget_for_node = {} #: a mapping of OWWidget -> SchemeNode self.__node_for_widget = {} # Widgets that were 'removed' from the scheme but were at # the time in an input update loop and could not be deleted # immediately self.__delay_delete = set() #: processing state flags for all widgets (including the ones #: in __delay_delete). #: Note: widgets which have not yet been created do not have an entry self.__widget_processing_state = {} # Tracks the widget in the update loop by the SignalManager self.__updating_widget = None def set_scheme(self, scheme): """ Set the :class:`WidgetsScheme` instance to manage. """ self.__scheme = scheme self.__signal_manager = scheme.findChild(SignalManager) self.__signal_manager.processingStarted[SchemeNode].connect( self.__on_processing_started) self.__signal_manager.processingFinished[SchemeNode].connect( self.__on_processing_finished) scheme.node_added.connect(self.add_widget_for_node) scheme.node_removed.connect(self.remove_widget_for_node) scheme.runtime_env_changed.connect(self.__on_env_changed) scheme.installEventFilter(self) def scheme(self): """ Return the scheme instance on which this manager is installed. """ return self.__scheme def signal_manager(self): """ Return the signal manager in use on the :func:`scheme`. """ return self.__signal_manager def widget_for_node(self, node): """ Return the OWWidget instance for the scheme node. """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Delayed): # Create the widget now if it is still pending state = self.__materialize(state) return state.widget elif isinstance(state, WidgetManager.PartiallyInitialized): widget = state.partially_initialized_widget log.warning( "WidgetManager.widget_for_node: " "Accessing a partially created widget instance. " "This is most likely a result of explicit " "QApplication.processEvents call from the '%s.%s' " "widgets __init__.", type(widget).__module__, type(widget).__name__, ) return widget elif isinstance(state, WidgetManager.Materialized): return state.widget else: assert False def node_for_widget(self, widget): """ Return the SchemeNode instance for the OWWidget. Raise a KeyError if the widget does not map to a node in the scheme. """ return self.__node_for_widget[widget] def widget_properties(self, node): """ Return the current widget properties/settings. Parameters ---------- node : SchemeNode Returns ------- settings : dict """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Materialized): return state.widget.settingsHandler.pack_data(state.widget) else: return node.properties def set_creation_policy(self, policy): """ Set the widget creation policy Parameters ---------- policy : WidgetManager.CreationPolicy """ if self.__creation_policy != policy: self.__creation_policy = policy if self.__creation_policy == WidgetManager.Immediate: self.__init_timer.stop() while self.__init_queue: state = self.__init_queue.popleft() self.__materialize(state) elif self.__creation_policy == WidgetManager.Normal: if not self.__init_timer.isActive() and self.__init_queue: self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_timer.stop() else: assert False def creation_policy(self): """ Return the current widget creation policy Returns ------- policy: WidgetManager.CreationPolicy """ return self.__creation_policy def add_widget_for_node(self, node): """ Create a new OWWidget instance for the corresponding scheme node. """ state = WidgetManager.Delayed(node) self.__initstate_for_node[node] = state if self.__creation_policy == WidgetManager.Immediate: self.__initstate_for_node[node] = self.__materialize(state) elif self.__creation_policy == WidgetManager.Normal: self.__init_queue.append(state) if not self.__init_timer.isActive(): self.__init_timer.start() elif self.__creation_policy == WidgetManager.OnDemand: self.__init_queue.append(state) def __materialize(self, state): # Create and initialize an OWWidget for a Delayed # widget initialization assert isinstance(state, WidgetManager.Delayed) if state in self.__init_queue: self.__init_queue.remove(state) node = state.node widget = self.create_widget_instance(node) self.__widgets.append(widget) self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__initialize_widget_state(node, widget) state = WidgetManager.Materialized(node, widget) self.__initstate_for_node[node] = state self.widget_for_node_added.emit(node, widget) return state def remove_widget_for_node(self, node): """ Remove the OWWidget instance for node. """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Delayed): del self.__initstate_for_node[node] self.__init_queue.remove(state) elif isinstance(state, WidgetManager.Materialized): # Update the node's stored settings/properties dict before # removing the widget. # TODO: Update/sync whenever the widget settings change. node.properties = self._widget_settings(state.widget) self.__widgets.remove(state.widget) del self.__initstate_for_node[node] del self.__widget_for_node[node] del self.__node_for_widget[state.widget] node.title_changed.disconnect(state.widget.setCaption) state.widget.progressBarValueChanged.disconnect(node.set_progress) self.widget_for_node_removed.emit(node, state.widget) self._delete_widget(state.widget) elif isinstance(state, WidgetManager.PartiallyInitialized): widget = state.partially_initialized_widget raise RuntimeError( "A widget/node {} was removed while being initialized. " "This is most likely a result of an explicit " "QApplication.processEvents call from the '{}.{}' " "widgets __init__.\n".format(state.node.title, type(widget).__module__, type(widget).__init__)) def _widget_settings(self, widget): return widget.settingsHandler.pack_data(widget) def _delete_widget(self, widget): """ Delete the OWBaseWidget instance. """ widget.close() # Save settings to user global settings. widget.saveSettings() # Notify the widget it will be deleted. widget.onDeleteWidget() state = self.__widget_processing_state[widget] if state & WidgetManager._DelayDeleteMask: # If the widget is in an update loop and/or blocking we # delay the scheduled deletion until the widget is done. log.debug( "Widget %s removed but still in state :%s. " "Deferring deletion.", widget, state, ) self.__delay_delete.add(widget) else: widget.deleteLater() del self.__widget_processing_state[widget] def create_widget_instance(self, node): """ Create a OWWidget instance for the node. """ desc = node.description klass = widget = None initialized = False error = None # First try to actually retrieve the class. try: klass = name_lookup(desc.qualified_name) except (ImportError, AttributeError): sys.excepthook(*sys.exc_info()) error = "Could not import {0!r}\n\n{1}".format( node.description.qualified_name, traceback.format_exc()) except Exception: sys.excepthook(*sys.exc_info()) error = "An unexpected error during import of {0!r}\n\n{1}".format( node.description.qualified_name, traceback.format_exc()) if klass is None: widget = mock_error_owwidget(node, error) initialized = True if widget is None: log.info( "WidgetManager: Creating '%s.%s' instance '%s'.", klass.__module__, klass.__name__, node.title, ) widget = klass.__new__( klass, None, captionTitle=node.title, signal_manager=self.signal_manager(), stored_settings=node.properties, # NOTE: env is a view of the real env and reflects # changes to the environment. env=self.scheme().runtime_env(), ) initialized = False # Init the node/widget mapping and state before calling __init__ # Some OWWidgets might already send data in the constructor # (should this be forbidden? Raise a warning?) triggering the signal # manager which would request the widget => node mapping or state # Furthermore they can (though they REALLY REALLY REALLY should not) # explicitly call qApp.processEvents. assert node not in self.__widget_for_node self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__widget_processing_state[widget] = WidgetManager.Initializing self.__initstate_for_node[node] = WidgetManager.PartiallyInitialized( node, widget) if not initialized: try: widget.__init__() except Exception: sys.excepthook(*sys.exc_info()) msg = traceback.format_exc() msg = "Could not create {0!r}\n\n{1}".format( node.description.name, msg) # remove state tracking for widget ... del self.__widget_for_node[node] del self.__node_for_widget[widget] del self.__widget_processing_state[widget] # ... and substitute it with a mock error widget. widget = mock_error_owwidget(node, msg) self.__widget_for_node[node] = widget self.__node_for_widget[widget] = node self.__widget_processing_state[widget] = 0 self.__initstate_for_node[node] = WidgetManager.Materialized( node, widget) self.__initstate_for_node[node] = WidgetManager.Materialized( node, widget) # Clear Initializing flag self.__widget_processing_state[widget] &= ~WidgetManager.Initializing node.title_changed.connect(widget.setCaption) # Widget's info/warning/error messages. widget.messageActivated.connect(self.__on_widget_state_changed) widget.messageDeactivated.connect(self.__on_widget_state_changed) # Widget's statusTip node.set_status_message(widget.statusMessage()) widget.statusMessageChanged.connect(node.set_status_message) # Widget's progress bar value state. widget.progressBarValueChanged.connect(node.set_progress) # Widget processing state (progressBarInit/Finished) # and the blocking state. widget.processingStateChanged.connect( self.__on_processing_state_changed) widget.blockingStateChanged.connect(self.__on_blocking_state_changed) if widget.isBlocking(): # A widget can already enter blocking state in __init__ self.__widget_processing_state[widget] |= self.BlockingUpdate if widget.processingState != 0: # It can also start processing (initialization of resources, ...) self.__widget_processing_state[widget] |= self.ProcessingUpdate node.set_processing_state(1) node.set_progress(widget.progressBarValue) # Install a help shortcut on the widget help_action = widget.findChild(QAction, "action-help") if help_action is not None: help_action.setEnabled(True) help_action.setVisible(True) help_action.triggered.connect(self.__on_help_request) # Up shortcut (activate/open parent) up_shortcut = QShortcut(QKeySequence(Qt.ControlModifier + Qt.Key_Up), widget) up_shortcut.activated.connect(self.__on_activate_parent) # Call setters only after initialization. widget.setWindowIcon(icon_loader.from_description(desc).get(desc.icon)) widget.setCaption(node.title) # Schedule an update with the signal manager, due to the cleared # implicit Initializing flag self.signal_manager()._update() return widget def node_processing_state(self, node): """ Return the processing state flags for the node. Same as `manager.widget_processing_state(manger.widget_for_node(node))` """ state = self.__initstate_for_node[node] if isinstance(state, WidgetManager.Materialized): return self.__widget_processing_state[state.widget] elif isinstance(state, WidgetManager.PartiallyInitialized): return self.__widget_processing_state[ state.partially_initialized_widget] else: return WidgetManager.Initializing def widget_processing_state(self, widget): """ Return the processing state flags for the widget. The state is an bitwise or of `InputUpdate` and `BlockingUpdate`. """ return self.__widget_processing_state[widget] def __create_delayed(self): if self.__init_queue: state = self.__init_queue.popleft() node = state.node self.__initstate_for_node[node] = self.__materialize(state) if self.__creation_policy == WidgetManager.Normal and self.__init_queue: # restart the timer if pending widgets still in the queue self.__init_timer.start() def eventFilter(self, receiver, event): if event.type() == QEvent.Close and receiver is self.__scheme: self.signal_manager().stop() # Notify the widget instances. for widget in list(self.__widget_for_node.values()): widget.close() widget.saveSettings() widget.onDeleteWidget() widget.deleteLater() event.accept() return True return QObject.eventFilter(self, receiver, event) def __on_help_request(self): """ Help shortcut was pressed. We send a `QWhatsThisClickedEvent` to the scheme and hope someone responds to it. """ # Sender is the QShortcut, and parent the OWBaseWidget widget = self.sender().parent() try: node = self.node_for_widget(widget) except KeyError: pass else: qualified_name = node.description.qualified_name help_url = "help://search?" + urlencode({"id": qualified_name}) event = QWhatsThisClickedEvent(help_url) QCoreApplication.sendEvent(self.scheme(), event) def __on_activate_parent(self): """ Activate parent shortcut was pressed. """ event = ActivateParentEvent() QCoreApplication.sendEvent(self.scheme(), event) def __initialize_widget_state(self, node, widget): """ Initialize the tracked info/warning/error message state. """ for message_group in widget.message_groups: message = user_message_from_state(message_group) if message: node.set_state_message(message) def __on_widget_state_changed(self, msg): """ The OWBaseWidget info/warning/error state has changed. """ widget = msg.group.widget try: node = self.node_for_widget(widget) except KeyError: pass else: self.__initialize_widget_state(node, widget) def __on_processing_state_changed(self, state): """ A widget processing state has changed (progressBarInit/Finished) """ widget = self.sender() if state: self.__widget_processing_state[widget] |= self.ProcessingUpdate else: self.__widget_processing_state[widget] &= ~self.ProcessingUpdate # propagate the change to the workflow model. try: # we can still track widget state after it was removed from the # workflow model (`__delay_delete`) node = self.node_for_widget(widget) except KeyError: pass else: self.__update_node_processing_state(node) def __on_processing_started(self, node): """ Signal manager entered the input update loop for the node. """ widget = self.widget_for_node(node) # Remember the widget instance. The node and the node->widget mapping # can be removed between this and __on_processing_finished. self.__updating_widget = widget self.__widget_processing_state[widget] |= self.InputUpdate self.__update_node_processing_state(node) def __on_processing_finished(self, node): """ Signal manager exited the input update loop for the node. """ widget = self.__updating_widget self.__widget_processing_state[widget] &= ~self.InputUpdate if widget in self.__node_for_widget: self.__update_node_processing_state(node) elif widget in self.__delay_delete: self.__try_delete(widget) else: raise ValueError("%r is not managed" % widget) self.__updating_widget = None def __on_blocking_state_changed(self, state): """ OWWidget blocking state has changed. """ if not state: # schedule an update pass. self.signal_manager()._update() widget = self.sender() if state: self.__widget_processing_state[widget] |= self.BlockingUpdate else: self.__widget_processing_state[widget] &= ~self.BlockingUpdate if widget in self.__node_for_widget: node = self.node_for_widget(widget) self.__update_node_processing_state(node) elif widget in self.__delay_delete: self.__try_delete(widget) def __update_node_processing_state(self, node): """ Update the `node.processing_state` to reflect the widget state. """ state = self.node_processing_state(node) node.set_processing_state(1 if state else 0) def __try_delete(self, widget): if not (self.__widget_processing_state[widget] & WidgetManager._DelayDeleteMask): log.debug("Delayed delete for widget %s", widget) self.__delay_delete.remove(widget) del self.__widget_processing_state[widget] widget.blockingStateChanged.disconnect( self.__on_blocking_state_changed) widget.processingStateChanged.disconnect( self.__on_processing_state_changed) widget.deleteLater() def __on_env_changed(self, key, newvalue, oldvalue): # Notify widgets of a runtime environment change for widget in self.__widget_for_node.values(): widget.workflowEnvChanged(key, newvalue, oldvalue)
def __init__(self): super().__init__() #: Input dissimilarity matrix self.matrix = None # type: Optional[Orange.misc.DistMatrix] #: Effective data used for plot styling/annotations. Can be from the #: input signal (`self.signal_data`) or the input matrix #: (`self.matrix.data`) self.data = None # type: Optional[Orange.data.Table] #: Input subset data table self.subset_data = None # type: Optional[Orange.data.Table] #: Data table from the `self.matrix.row_items` (if present) self.matrix_data = None # type: Optional[Orange.data.Table] #: Input data table self.signal_data = None self._similar_pairs = None self._subset_mask = None # type: Optional[np.ndarray] self._invalidated = False self.effective_matrix = None self._curve = None self.variable_x = ContinuousVariable("mds-x") self.variable_y = ContinuousVariable("mds-y") self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=0) self.__timer.timeout.connect(self.__next_step) self.__state = OWMDS.Waiting self.__in_next_step = False self.__draw_similar_pairs = False box = gui.vBox(self.controlArea, "MDS Optimization") form = QFormLayout( labelAlignment=Qt.AlignLeft, formAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow, verticalSpacing=10 ) form.addRow( "Max iterations:", gui.spin(box, self, "max_iter", 10, 10 ** 4, step=1)) form.addRow( "Initialization:", gui.radioButtons(box, self, "initialization", btnLabels=("PCA (Torgerson)", "Random"), callback=self.__invalidate_embedding)) box.layout().addLayout(form) form.addRow( "Refresh:", gui.comboBox(box, self, "refresh_rate", items=[t for t, _ in OWMDS.RefreshRate], callback=self.__invalidate_refresh)) gui.separator(box, 10) self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run) box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWMDSGraph(self, box, "MDSGraph", view_box=MDSInteractiveViewBox) box.layout().addWidget(self.graph.plot_widget) self.plot = self.graph.plot_widget g = self.graph.gui box = g.point_properties_box(self.controlArea) self.models = g.points_models self.size_model = self.models[2] self.label_model = self.models[3] self.size_model.order = \ self.size_model.order[:1] + ("Stress", ) + self.models[2].order[1:] gui.hSlider(box, self, "connected_pairs", label="Show similar pairs:", minValue=0, maxValue=20, createLabel=False, callback=self._on_connected_changed) g.add_widgets(ids=[g.JitterSizeSlider], widget=box) box = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ToolTipShowsAll, g.ClassDensity, g.LabelOnlySelected], box) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict palette = self.graph.plot_widget.palette() self.graph.set_palette(palette) gui.rubber(self.controlArea) self.graph.box_zoom_select(self.controlArea) gui.auto_commit(box, self, "auto_commit", "Send Selected", checkbox_label="Send selected automatically", box=None) self.plot.getPlotItem().hideButtons() self.plot.setRenderHint(QPainter.Antialiasing) self.graph.jitter_continuous = True self._initialize()
def add_points(): nonlocal cur, image_token if image_token != self._image_token: return batch = visible[cur:cur + self.N_POINTS_PER_ITER] batch_lat = lat[batch] batch_lon = lon[batch] x, y = self.Projection.latlon_to_easting_northing( batch_lat, batch_lon) x, y = self.Projection.easting_northing_to_pixel( x, y, zoom, origin, map_pane_pos) if self._jittering: dx, dy = self._jittering_offsets[batch].T x, y = x + dx, y + dy colors = (self._colorgen.getRGB( self._scaled_color_values[batch]).tolist() if self._color_attr else repeat((0xff, 0, 0))) sizes = self._size_coef * \ (self._sizes[batch] if self._size_attr else np.tile(10, len(batch))) opacity_subset, opacity_rest = self._opacity, int(.8 * self._opacity) for x, y, is_selected, size, color, _in_subset in \ zip(x, y, selected[batch], sizes, colors, in_subset[batch]): pensize2, selpensize2 = (.35, 1.5) if size >= 5 else (.15, .7) pensize2 *= self._size_coef selpensize2 *= self._size_coef size2 = size / 2 if is_selected: painter.setPen(QPen(QBrush(Qt.green), 2 * selpensize2)) painter.drawEllipse(x - size2 - selpensize2, y - size2 - selpensize2, size + selpensize2, size + selpensize2) color = QColor(*color) if _in_subset: color.setAlpha(opacity_subset) painter.setBrush(QBrush(color)) painter.setPen( QPen(QBrush(color.darker(180)), 2 * pensize2)) else: color.setAlpha(opacity_rest) painter.setBrush(Qt.NoBrush) painter.setPen( QPen(QBrush(color.lighter(120)), 2 * pensize2)) painter.drawEllipse(x - size2 - pensize2, y - size2 - pensize2, size + pensize2, size + pensize2) im.save(self._overlay_image_path, 'PNG') self.evalJS('markersImageLayer.setUrl("{}#{}"); 0;'.format( self.toFileURL(self._overlay_image_path), np.random.random())) cur += self.N_POINTS_PER_ITER if self.stop: return elif cur < len(visible): QTimer.singleShot(10, add_points) self._owwidget.progressBarAdvance(100 / n_iters, None) else: self._owwidget.progressBarFinished(None) self._image_token = None
def start(self): QTimer.singleShot(0, self._next)
def __init__(self): super().__init__() self._current_path = "" self._data_loader = Loader() icon_open_dir = self.style().standardIcon(QStyle.SP_DirOpenIcon) # Top grid with file selection combo box self.file_layout = grid = QGridLayout() lb = QLabel("File:") lb.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) self.recent_combo = cb = QComboBox( sizeAdjustPolicy=QComboBox.AdjustToMinimumContentsLengthWithIcon, minimumContentsLength=20, toolTip="Select a recent file") self.recent_model = cb.model() # type: QStandardItemModel self.recent_combo.activated[int].connect(self._select_recent) browse = QPushButton("...", autoDefault=False, icon=icon_open_dir, clicked=self.browse) # reload = QPushButton("Reload", autoDefault=False, icon=icon_reload) grid.addWidget(lb, 0, 0, Qt.AlignVCenter) grid.addWidget(cb, 0, 1) grid.addWidget(browse, 0, 2) # grid.addWidget(reload, 0, 3) self.summary_label = label = QLabel("", self) label.ensurePolished() f = label.font() if f.pointSizeF() != -1: f.setPointSizeF(f.pointSizeF() * 5 / 6) else: f.setPixelSize(f.pixelSize() * 5 / 6) label.setFont(f) grid.addWidget(label, 1, 1, 1, 3) self.controlArea.layout().addLayout(grid) box = gui.widgetBox(self.controlArea, "Headers and Row Labels", spacing=-1) hl = QHBoxLayout() hl.setContentsMargins(0, 0, 0, 0) self.header_rows_spin = spin = QSpinBox(box, minimum=0, maximum=3, value=self._header_rows_count, keyboardTracking=False) spin.valueChanged.connect(self.set_header_rows_count) hl.addWidget(QLabel("Data starts with", box)) hl.addWidget(self.header_rows_spin) hl.addWidget(QLabel("header row(s)", box)) hl.addStretch(10) box.layout().addLayout(hl) hl = QHBoxLayout() hl.setContentsMargins(0, 0, 0, 0) self.header_cols_spin = spin = QSpinBox(box, minimum=0, maximum=3, value=self._header_cols_count, keyboardTracking=False) spin.valueChanged.connect(self.set_header_cols_count) hl.addWidget(QLabel("First", box)) hl.addWidget(self.header_cols_spin) hl.addWidget(QLabel("column(s) are row labels", box)) hl.addStretch(10) box.layout().addLayout(hl) self.data_struct_box = box = gui.widgetBox(self.controlArea, "Input Data Structure") gui.radioButtons(box, self, "_cells_in_rows", [ "Genes in rows, cells in columns", "Cells in rows, genes in columns" ], callback=self._cells_in_rows_changed) box = gui.widgetBox(self.controlArea, "Sample Data", spacing=-1) grid = QGridLayout() grid.setContentsMargins(0, 0, 0, 0) box.layout().addLayout(grid) self.sample_rows_cb = cb = QCheckBox(checked=self._sample_rows_enabled) self.sample_rows_p_spin = spin = QSpinBox(minimum=0, maximum=100, value=self._sample_rows_p) spin.valueChanged.connect(self.set_sample_rows_p) suffix = QLabel("% of cells") cb.toggled.connect(self.set_sample_rows_enabled) grid.addWidget(cb, 0, 0) grid.addWidget(spin, 0, 1) grid.addWidget(suffix, 0, 2) self.sample_cols_cb = cb = QCheckBox(checked=self._sample_cols_enabled) self.sample_cols_p_spin = spin = QSpinBox(minimum=0, maximum=100, value=self._sample_cols_p) spin.valueChanged.connect(self.set_sample_cols_p) suffix = QLabel("% of genes") cb.toggled.connect(self.set_sample_cols_enabled) grid.addWidget(cb, 1, 0) grid.addWidget(spin, 1, 1) grid.addWidget(suffix, 1, 2) grid.setColumnStretch(3, 10) self.annotation_files_box = box = gui.widgetBox( self.controlArea, "Cell && Gene Annotation Files") form = QFormLayout( formAlignment=Qt.AlignLeft, rowWrapPolicy=QFormLayout.WrapAllRows, ) box.layout().addLayout(form) self.row_annotations_cb = cb = QCheckBox( "Cell annotations", checked=self._row_annotations_enabled) self._row_annotations_w = w = QWidget( enabled=self._row_annotations_enabled) cb.toggled.connect(self.set_row_annotations_enabled) cb.toggled.connect(w.setEnabled) hl = QHBoxLayout() hl.setContentsMargins(0, 0, 0, 0) w.setLayout(hl) self.row_annotations_combo = QComboBox( sizeAdjustPolicy=QComboBox.AdjustToMinimumContentsLengthWithIcon, minimumContentsLength=18) self.row_annotations_combo.activated.connect( self._row_annotations_combo_changed) hl.addWidget(self.row_annotations_combo) hl.addWidget( QPushButton("...", box, autoDefault=False, icon=icon_open_dir, clicked=self.browse_row_annotations)) # hl.addWidget(QPushButton("Reload", box, autoDefault=False, # icon=icon_reload)) form.addRow(cb, w) self.col_annotations_cb = cb = QCheckBox( "Gene annotations", checked=self._col_annotations_enabled) self._col_annotations_w = w = QWidget( enabled=self._col_annotations_enabled) cb.toggled.connect(self.set_col_annotations_enabled) cb.toggled.connect(w.setEnabled) hl = QHBoxLayout() hl.setContentsMargins(0, 0, 0, 0) w.setLayout(hl) self.col_annotations_combo = QComboBox( sizeAdjustPolicy=QComboBox.AdjustToMinimumContentsLengthWithIcon, minimumContentsLength=18) self.col_annotations_combo.activated.connect( self._col_annotations_combo_changed) hl.addWidget(self.col_annotations_combo) hl.addWidget( QPushButton("...", box, autoDefault=False, icon=icon_open_dir, clicked=self.browse_col_annotations)) # hl.addWidget(QPushButton("Reload", box, autoDefault=False, # icon=icon_reload)) form.addRow(cb, w) self.controlArea.layout().addStretch(10) self.load_data_button = button = VariableTextPushButton( "Load data", autoDefault=True, textChoiceList=["Load data", "Reload"]) self.load_data_button.setAutoDefault(True) button.clicked.connect(self.commit, Qt.QueuedConnection) self.controlArea.layout().addWidget(button, alignment=Qt.AlignRight) init_recent_paths_model( self.recent_model, [RecentPath.create(p, []) for p in self._recent], ) init_recent_paths_model( self.row_annotations_combo.model(), [RecentPath.create(p, []) for p in self._recent_row_annotations]) init_recent_paths_model( self.col_annotations_combo.model(), [RecentPath.create(p, []) for p in self._recent_col_annotations]) self._update_summary() self._update_warning() if self._last_path != "" and os.path.exists(self._last_path): QTimer.singleShot(0, lambda: self.set_current_path(self._last_path)) else: self.recent_combo.setCurrentIndex(-1)
class EventSpy(QObject): """ A testing utility class (similar to QSignalSpy) to record events delivered to a QObject instance. Note ---- Only event types can be recorded (as QEvent instances are deleted on delivery). Note ---- Can only be used with a QCoreApplication running. Parameters ---------- object : QObject An object whose events need to be recorded. etype : Union[QEvent.Type, Sequence[QEvent.Type] A event type (or types) that should be recorded """ def __init__(self, object, etype, **kwargs): super().__init__(**kwargs) if not isinstance(object, QObject): raise TypeError self.__object = object try: len(etype) except TypeError: etypes = {etype} else: etypes = set(etype) self.__etypes = etypes self.__record = [] self.__loop = QEventLoop() self.__timer = QTimer(self, singleShot=True) self.__timer.timeout.connect(self.__loop.quit) self.__object.installEventFilter(self) def wait(self, timeout=5000): """ Start an event loop that runs until a spied event or a timeout occurred. Parameters ---------- timeout : int Timeout in milliseconds. Returns ------- res : bool True if the event occurred and False otherwise. Example ------- >>> app = QCoreApplication.instance() or QCoreApplication([]) >>> obj = QObject() >>> spy = EventSpy(obj, QEvent.User) >>> app.postEvent(obj, QEvent(QEvent.User)) >>> spy.wait() True >>> print(spy.events()) [1000] """ count = len(self.__record) self.__timer.stop() self.__timer.setInterval(timeout) self.__timer.start() self.__loop.exec_() self.__timer.stop() return len(self.__record) != count def eventFilter(self, reciever, event): if reciever is self.__object and event.type() in self.__etypes: self.__record.append(event.type()) if self.__loop.isRunning(): self.__loop.quit() return super().eventFilter(reciever, event) def events(self): """ Return a list of all (listened to) event types that occurred. Returns ------- events : List[QEvent.Type] """ return list(self.__record)
def __init__(self): super().__init__() box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWScatterPlotGraph(self, box, "ScatterPlot") box.layout().addWidget(self.graph.plot_widget) plot = self.graph.plot_widget axispen = QPen(self.palette().color(QPalette.Text)) axis = plot.getAxis("bottom") axis.setPen(axispen) axis = plot.getAxis("left") axis.setPen(axispen) self.data = None # Orange.data.Table self.subset_data = None # Orange.data.Table self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) #: Remember the saved state to restore self.__pending_selection_restore = self.selection_group self.selection_group = None common_options = dict(labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str) box = gui.vBox(self.controlArea, "Axis Data") dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) self.cb_attr_x = gui.comboBox(box, self, "attr_x", label="Axis x:", callback=self.update_attr, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox(box, self, "attr_y", label="Axis y:", callback=self.update_attr, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) gui.separator(vizrank_box, width=common_options["labelWidth"]) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) gui.separator(box) g = self.graph.gui g.add_widgets([g.JitterSizeSlider, g.JitterNumericValues], box) self.sampling = gui.auto_commit(self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) g.point_properties_box(self.controlArea) self.models = [self.xy_model] + g.points_models box_plot_prop = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([ g.ShowLegend, g.ShowGridLines, g.ToolTipShowsAll, g.ClassDensity, g.RegressionLine, g.LabelOnlySelected ], box_plot_prop) self.graph.box_zoom_select(self.controlArea) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict p = self.graph.plot_widget.palette() self.graph.set_palette(p) gui.auto_commit(self.controlArea, self, "auto_send_selection", "Send Selection", "Send Automatically") self.graph.zoom_actions(self)
def __init__(self, parent, plot): super().__init__(parent, plot) self.__timer = QTimer(self, interval=50) self.__timer.timeout.connect(self.__timout) self.__count = itertools.count() self.__pos = None
def eventFilter(self, receiver, event): if receiver is self.flow_view and event.type() == QEvent.LayoutRequest: QTimer.singleShot(0, self.__update_size_constraint) return super().eventFilter(receiver, event)
def test_anchoritem(self): anchoritem = NodeAnchorItem(None) anchoritem.setAnimationEnabled(False) self.scene.addItem(anchoritem) path = QPainterPath() path.addEllipse(0, 0, 100, 100) anchoritem.setAnchorPath(path) anchor = AnchorPoint() anchoritem.addAnchor(anchor) ellipse1 = QGraphicsEllipseItem(-3, -3, 6, 6) ellipse2 = QGraphicsEllipseItem(-3, -3, 6, 6) self.scene.addItem(ellipse1) self.scene.addItem(ellipse2) anchor.scenePositionChanged.connect(ellipse1.setPos) with self.assertRaises(ValueError): anchoritem.addAnchor(anchor) anchor1 = AnchorPoint() anchoritem.addAnchor(anchor1) anchor1.scenePositionChanged.connect(ellipse2.setPos) self.assertSequenceEqual(anchoritem.anchorPoints(), [anchor, anchor1]) self.assertSequenceEqual(anchoritem.anchorPositions(), [2 / 3, 1 / 3]) anchoritem.setAnchorPositions([0.5, 0.0]) self.assertSequenceEqual(anchoritem.anchorPositions(), [0.5, 0.0]) def advance(): t = anchoritem.anchorPositions() t = [(t + 0.05) % 1.0 for t in t] anchoritem.setAnchorPositions(t) timer = QTimer(anchoritem, interval=10) timer.start() timer.timeout.connect(advance) self.qWait() timer.stop() anchoritem.setAnchorOpen(True) anchoritem.setHovered(True) self.assertEqual(*[p.scenePos() for p in anchoritem.anchorPoints()]) anchoritem.setAnchorOpen(False) self.assertNotEqual(*[p.scenePos() for p in anchoritem.anchorPoints()]) anchoritem.setAnchorOpen(False) anchoritem.setHovered(True) self.assertNotEqual(*[p.scenePos() for p in anchoritem.anchorPoints()]) anchoritem = NodeAnchorItem(None) anchoritem.setSignals([ InputSignal("first", "object", "set_first"), InputSignal("second", "object", "set_second") ]) self.assertListEqual( anchoritem._NodeAnchorItem__pathStroker.dashPattern(), list(anchoritem._NodeAnchorItem__unanchoredDash)) anchoritem.setAnchorOpen(True) anchoritem.setHovered(True) self.assertListEqual( anchoritem._NodeAnchorItem__pathStroker.dashPattern(), list(anchoritem._NodeAnchorItem__channelDash))
def test(self): window = QWidget() layout = QVBoxLayout() window.setLayout(layout) stack = stackedwidget.AnimatedStackedWidget(animationEnabled=False) layout.addStretch(2) layout.addWidget(stack) layout.addStretch(2) window.show() widget1 = QLabel("A label " * 10) widget1.setWordWrap(True) widget2 = QGroupBox("Group") widget3 = QListView() self.assertEqual(stack.count(), 0) self.assertEqual(stack.currentIndex(), -1) stack.addWidget(widget1) self.assertEqual(stack.count(), 1) self.assertEqual(stack.currentIndex(), 0) stack.addWidget(widget2) stack.addWidget(widget3) self.assertEqual(stack.count(), 3) self.assertEqual(stack.currentIndex(), 0) def widgets(): return [stack.widget(i) for i in range(stack.count())] self.assertSequenceEqual([widget1, widget2, widget3], widgets()) stack.show() stack.removeWidget(widget2) self.assertEqual(stack.count(), 2) self.assertEqual(stack.currentIndex(), 0) self.assertSequenceEqual([widget1, widget3], widgets()) stack.setCurrentIndex(1) self.qWait() self.assertEqual(stack.currentIndex(), 1) widget2 = QGroupBox("Group") stack.insertWidget(1, widget2) self.assertEqual(stack.count(), 3) self.assertEqual(stack.currentIndex(), 2) self.assertSequenceEqual([widget1, widget2, widget3], widgets()) def toogle(): idx = stack.currentIndex() stack.setCurrentIndex((idx + 1) % stack.count()) timer = QTimer(stack, interval=100) timer.timeout.connect(toogle) timer.start() self.qWait(200) timer.stop() window.deleteLater()
def test_nodeitem(self): one_item = NodeItem() one_item.setWidgetDescription(self.one_desc) one_item.setWidgetCategory(self.const_desc) one_item.setTitle("Neo") self.assertEqual(one_item.title(), "Neo") one_item.setProcessingState(True) self.assertEqual(one_item.processingState(), True) one_item.setProgress(50) self.assertEqual(one_item.progress(), 50) one_item.setProgress(100) self.assertEqual(one_item.progress(), 100) one_item.setProgress(101) self.assertEqual(one_item.progress(), 100, "Progress overshots") one_item.setProcessingState(False) self.assertEqual(one_item.processingState(), False) self.assertEqual(one_item.progress(), -1, "setProcessingState does not clear the progress.") self.scene.addItem(one_item) one_item.setPos(100, 100) negate_item = NodeItem() negate_item.setWidgetDescription(self.negate_desc) negate_item.setWidgetCategory(self.const_desc) self.scene.addItem(negate_item) negate_item.setPos(300, 100) nb_item = NodeItem() nb_item.setWidgetDescription(self.add_desc) nb_item.setWidgetCategory(self.operator_desc) self.scene.addItem(nb_item) nb_item.setPos(500, 100) positions = [] anchor = one_item.newOutputAnchor() anchor.scenePositionChanged.connect(positions.append) one_item.setPos(110, 100) self.assertTrue(len(positions) > 0) one_item.setErrorMessage("message") one_item.setWarningMessage("message") one_item.setInfoMessage("I am alive") one_item.setErrorMessage(None) one_item.setWarningMessage(None) one_item.setInfoMessage(None) one_item.setInfoMessage("I am back.") nb_item.setProcessingState(1) negate_item.setProcessingState(1) negate_item.shapeItem.startSpinner() def progress(): p = (nb_item.progress() + 25) % 100 nb_item.setProgress(p) if p > 50: nb_item.setInfoMessage("Over 50%") one_item.setWarningMessage("Second") else: nb_item.setInfoMessage(None) one_item.setWarningMessage(None) negate_item.setAnchorRotation(50 - p) timer = QTimer(nb_item, interval=5) timer.start() timer.timeout.connect(progress) self.qWait() timer.stop()
def showEvent(self, event): super().showEvent(event) QTimer.singleShot(0, self._update_splitter)
class OWScatterPlot(OWWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 inputs = [("Data", Table, "set_data", Default), ("Data Subset", Table, "set_subset_data"), ("Features", AttributeList, "set_shown_attributes")] outputs = [("Selected Data", Table, Default), (ANNOTATED_DATA_SIGNAL_NAME, Table), ("Features", Table)] settingsHandler = DomainContextHandler() auto_send_selection = Setting(True) auto_sample = Setting(True) toolbar_selection = Setting(0) attr_x = ContextSetting(None) attr_y = ContextSetting(None) graph = SettingProvider(OWScatterPlotGraph) jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10] graph_name = "graph.plot_widget.plotItem" class Information(OWWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") def __init__(self): super().__init__() box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWScatterPlotGraph(self, box, "ScatterPlot") box.layout().addWidget(self.graph.plot_widget) plot = self.graph.plot_widget axispen = QPen(self.palette().color(QPalette.Text)) axis = plot.getAxis("bottom") axis.setPen(axispen) axis = plot.getAxis("left") axis.setPen(axispen) self.data = None # Orange.data.Table self.subset_data = None # Orange.data.Table self.data_metas_X = None # self.data, where primitive metas are moved to X self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) common_options = dict( labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str) box = gui.vBox(self.controlArea, "Axis Data") dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) gui.comboBox( box, self, "attr_x", label="Axis x:", callback=self.update_attr, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox( box, self, "attr_y", label="Axis y:", callback=self.update_attr, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) gui.separator(vizrank_box, width=common_options["labelWidth"]) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) gui.separator(box) gui.valueSlider( box, self, value='graph.jitter_size', label='Jittering: ', values=self.jitter_sizes, callback=self.reset_graph_data, labelFormat=lambda x: "None" if x == 0 else ("%.1f %%" if x < 1 else "%d %%") % x) gui.checkBox( gui.indentedBox(box), self, 'graph.jitter_continuous', 'Jitter continuous values', callback=self.reset_graph_data) self.sampling = gui.auto_commit( self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) box = gui.vBox(self.controlArea, "Points") self.color_model = DomainModel( placeholder="(Same color)", valid_types=dmod.PRIMITIVE) self.cb_attr_color = gui.comboBox( box, self, "graph.attr_color", label="Color:", callback=self.update_colors, model=self.color_model, **common_options) self.label_model = DomainModel( placeholder="(No labels)", valid_types=dmod.PRIMITIVE) self.cb_attr_label = gui.comboBox( box, self, "graph.attr_label", label="Label:", callback=self.graph.update_labels, model=self.label_model, **common_options) self.shape_model = DomainModel( placeholder="(Same shape)", valid_types=DiscreteVariable) self.cb_attr_shape = gui.comboBox( box, self, "graph.attr_shape", label="Shape:", callback=self.graph.update_shapes, model=self.shape_model, **common_options) self.size_model = DomainModel( placeholder="(Same size)", valid_types=ContinuousVariable) self.cb_attr_size = gui.comboBox( box, self, "graph.attr_size", label="Size:", callback=self.graph.update_sizes, model=self.size_model, **common_options) self.models = [self.xy_model, self.color_model, self.label_model, self.shape_model, self.size_model] g = self.graph.gui g.point_properties_box(self.controlArea, box) box = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ShowGridLines], box) gui.checkBox( box, self, value='graph.tooltip_shows_all', label='Show all data on mouse hover') self.cb_class_density = gui.checkBox( box, self, value='graph.class_density', label='Show class density', callback=self.update_density) gui.checkBox( box, self, 'graph.label_only_selected', 'Label only selected points', callback=self.graph.update_labels) self.zoom_select_toolbar = g.zoom_select_toolbar( gui.vBox(self.controlArea, "Zoom/Select"), nomargin=True, buttons=[g.StateButtonsBegin, g.SimpleSelect, g.Pan, g.Zoom, g.StateButtonsEnd, g.ZoomReset] ) buttons = self.zoom_select_toolbar.buttons buttons[g.Zoom].clicked.connect(self.graph.zoom_button_clicked) buttons[g.Pan].clicked.connect(self.graph.pan_button_clicked) buttons[g.SimpleSelect].clicked.connect(self.graph.select_button_clicked) buttons[g.ZoomReset].clicked.connect(self.graph.reset_button_clicked) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict p = self.graph.plot_widget.palette() self.graph.set_palette(p) gui.auto_commit(self.controlArea, self, "auto_send_selection", "Send Selection", "Send Automatically") def zoom(s): """Zoom in/out by factor `s`.""" viewbox = plot.getViewBox() # scaleBy scales the view's bounds (the axis range) viewbox.scaleBy((1 / s, 1 / s)) def fit_to_view(): viewbox = plot.getViewBox() viewbox.autoRange() zoom_in = QAction( "Zoom in", self, triggered=lambda: zoom(1.25) ) zoom_in.setShortcuts([QKeySequence(QKeySequence.ZoomIn), QKeySequence(self.tr("Ctrl+="))]) zoom_out = QAction( "Zoom out", self, shortcut=QKeySequence.ZoomOut, triggered=lambda: zoom(1 / 1.25) ) zoom_fit = QAction( "Fit in view", self, shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0), triggered=fit_to_view ) self.addActions([zoom_in, zoom_out, zoom_fit]) # def settingsFromWidgetCallback(self, handler, context): # context.selectionPolygons = [] # for curve in self.graph.selectionCurveList: # xs = [curve.x(i) for i in range(curve.dataSize())] # ys = [curve.y(i) for i in range(curve.dataSize())] # context.selectionPolygons.append((xs, ys)) # def settingsToWidgetCallback(self, handler, context): # selections = getattr(context, "selectionPolygons", []) # for (xs, ys) in selections: # c = SelectionCurve("") # c.setData(xs,ys) # c.attach(self.graph) # self.graph.selectionCurveList.append(c) def reset_graph_data(self, *_): self.graph.rescale_data() self.update_graph() def set_data(self, data): self.clear_messages() self.Information.sampled_sql.clear() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(data, SqlTable): if data.approx_len() < 4000: data = Table(data) else: self.Information.sampled_sql() self.sql_data = data data_sample = data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if data is not None and (len(data) == 0 or len(data.domain) == 0): data = None if self.data and data and self.data.checksum() == data.checksum(): return self.closeContext() same_domain = (self.data and data and data.domain.checksum() == self.data.domain.checksum()) self.data = data self.data_metas_X = self.move_primitive_metas_to_X(data) if not same_domain: self.init_attr_values() self.vizrank.initialize() self.vizrank.attrs = self.data.domain.attributes if self.data is not None else [] self.vizrank_button.setEnabled( self.data is not None and self.data.domain.class_var is not None and len(self.data.domain.attributes) > 1 and len(self.data) > 1) if self.data is not None and self.data.domain.class_var is None \ and len(self.data.domain.attributes) > 1 and len(self.data) > 1: self.vizrank_button.setToolTip( "Data with a class variable is required.") else: self.vizrank_button.setToolTip("") self.openContext(self.data) def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Orange.data.Variable) and el.name == name: return el else: return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.graph.attr_label, str): self.graph.attr_label = findvar( self.graph.attr_label, self.label_model) if isinstance(self.graph.attr_color, str): self.graph.attr_color = findvar( self.graph.attr_color, self.color_model) if isinstance(self.graph.attr_shape, str): self.graph.attr_shape = findvar( self.graph.attr_shape, self.shape_model) if isinstance(self.graph.attr_size, str): self.graph.attr_size = findvar( self.graph.attr_size, self.size_model) def add_data(self, time=0.4): if self.data and len(self.data) > 2000: return self.__timer.stop() data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.data_metas_X = self.move_primitive_metas_to_X(self.data) self.handleNewSignals() def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() def move_primitive_metas_to_X(self, data): if data is not None: new_attrs = [a for a in data.domain.attributes + data.domain.metas if a.is_primitive()] new_metas = [m for m in data.domain.metas if not m.is_primitive()] data = Table.from_table(Domain(new_attrs, data.domain.class_vars, new_metas), data) return data def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None self.subset_data = self.move_primitive_metas_to_X(subset_data) self.controls.graph.alpha_value.setEnabled(subset_data is None) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): self.graph.new_data(self.data_metas_X, self.subset_data) if self.attribute_selection_list and \ all(attr in self.graph.domain for attr in self.attribute_selection_list): self.attr_x = self.attribute_selection_list[0] self.attr_y = self.attribute_selection_list[1] self.attribute_selection_list = None self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.unconditional_commit() def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] else: self.attribute_selection_list = None def get_shown_attributes(self): return self.attr_x, self.attr_y def init_attr_values(self): domain = self.data and self.data.domain for model in self.models: model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x self.graph.attr_color = domain and self.data.domain.class_var or None self.graph.attr_shape = None self.graph.attr_size = None self.graph.attr_label = None def set_attr(self, attr_x, attr_y): self.attr_x, self.attr_y = attr_x, attr_y self.update_attr() def update_attr(self): self.update_graph() self.cb_class_density.setEnabled(self.graph.can_draw_density()) self.send_features() def update_colors(self): self.graph.update_colors() self.cb_class_density.setEnabled(self.graph.can_draw_density()) def update_density(self): self.update_graph(reset_view=False) def update_graph(self, reset_view=True, **_): self.graph.zoomStack = [] if self.graph.data is None: return self.graph.update_data(self.attr_x, self.attr_y, reset_view) def selection_changed(self): self.send_data() def send_data(self): selected = None selection = None # TODO: Implement selection for sql data if isinstance(self.data, SqlTable): selected = self.data elif self.data is not None: selection = self.graph.get_selection() if len(selection) > 0: selected = self.data[selection] self.send("Selected Data", selected) self.send(ANNOTATED_DATA_SIGNAL_NAME, create_annotated_table(self.data, selection)) def send_features(self): features = None if self.attr_x or self.attr_y: dom = Domain([], metas=(StringVariable(name="feature"),)) features = Table(dom, [[self.attr_x], [self.attr_y]]) features.name = "Features" self.send("Features", features) def commit(self): self.send_data() self.send_features() def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) def send_report(self): def name(var): return var and var.name caption = report.render_items_vert(( ("Color", name(self.graph.attr_color)), ("Label", name(self.graph.attr_label)), ("Shape", name(self.graph.attr_shape)), ("Size", name(self.graph.attr_size)), ("Jittering", (self.attr_x.is_discrete or self.attr_y.is_discrete or self.graph.jitter_continuous) and self.graph.jitter_size))) self.report_plot() if caption: self.report_caption(caption) def onDeleteWidget(self): super().onDeleteWidget() self.graph.plot_widget.getViewBox().deleteLater() self.graph.plot_widget.clear()
class OWMDS(OWWidget): name = "MDS" description = "Two-dimensional data projection by multidimensional " \ "scaling constructed from a distance matrix." icon = "icons/MDS.svg" class Inputs: data = Input("Data", Orange.data.Table, default=True) distances = Input("Distances", Orange.misc.DistMatrix) data_subset = Input("Data Subset", Orange.data.Table) class Outputs: selected_data = Output("Selected Data", Orange.data.Table, default=True) annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table) settings_version = 2 #: Initialization type PCA, Random = 0, 1 #: Refresh rate RefreshRate = [ ("Every iteration", 1), ("Every 5 steps", 5), ("Every 10 steps", 10), ("Every 25 steps", 25), ("Every 50 steps", 50), ("None", -1) ] #: Runtime state Running, Finished, Waiting = 1, 2, 3 settingsHandler = settings.DomainContextHandler() max_iter = settings.Setting(300) initialization = settings.Setting(PCA) refresh_rate = settings.Setting(3) # output embedding role. NoRole, AttrRole, AddAttrRole, MetaRole = 0, 1, 2, 3 auto_commit = settings.Setting(True) selection_indices = settings.Setting(None, schema_only=True) #: Percentage of all pairs displayed (ranges from 0 to 20) connected_pairs = settings.Setting(5) legend_anchor = settings.Setting(((1, 0), (1, 0))) graph = SettingProvider(OWMDSGraph) jitter_sizes = [0, 0.1, 0.5, 1, 2, 3, 4, 5, 7, 10] graph_name = "graph.plot_widget.plotItem" class Error(OWWidget.Error): not_enough_rows = Msg("Input data needs at least 2 rows") matrix_too_small = Msg("Input matrix must be at least 2x2") no_attributes = Msg("Data has no attributes") mismatching_dimensions = \ Msg("Data and distances dimensions do not match.") out_of_memory = Msg("Out of memory") optimization_error = Msg("Error during optimization\n{}") def __init__(self): super().__init__() #: Input dissimilarity matrix self.matrix = None # type: Optional[Orange.misc.DistMatrix] #: Effective data used for plot styling/annotations. Can be from the #: input signal (`self.signal_data`) or the input matrix #: (`self.matrix.data`) self.data = None # type: Optional[Orange.data.Table] #: Input subset data table self.subset_data = None # type: Optional[Orange.data.Table] #: Data table from the `self.matrix.row_items` (if present) self.matrix_data = None # type: Optional[Orange.data.Table] #: Input data table self.signal_data = None self._similar_pairs = None self._subset_mask = None # type: Optional[np.ndarray] self._invalidated = False self.effective_matrix = None self._curve = None self.variable_x = ContinuousVariable("mds-x") self.variable_y = ContinuousVariable("mds-y") self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=0) self.__timer.timeout.connect(self.__next_step) self.__state = OWMDS.Waiting self.__in_next_step = False self.__draw_similar_pairs = False box = gui.vBox(self.controlArea, "MDS Optimization") form = QFormLayout( labelAlignment=Qt.AlignLeft, formAlignment=Qt.AlignLeft, fieldGrowthPolicy=QFormLayout.AllNonFixedFieldsGrow, verticalSpacing=10 ) form.addRow( "Max iterations:", gui.spin(box, self, "max_iter", 10, 10 ** 4, step=1)) form.addRow( "Initialization:", gui.radioButtons(box, self, "initialization", btnLabels=("PCA (Torgerson)", "Random"), callback=self.__invalidate_embedding)) box.layout().addLayout(form) form.addRow( "Refresh:", gui.comboBox(box, self, "refresh_rate", items=[t for t, _ in OWMDS.RefreshRate], callback=self.__invalidate_refresh)) gui.separator(box, 10) self.runbutton = gui.button(box, self, "Run", callback=self._toggle_run) box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWMDSGraph(self, box, "MDSGraph", view_box=MDSInteractiveViewBox) box.layout().addWidget(self.graph.plot_widget) self.plot = self.graph.plot_widget g = self.graph.gui box = g.point_properties_box(self.controlArea) self.models = g.points_models self.size_model = self.models[2] self.label_model = self.models[3] self.size_model.order = \ self.size_model.order[:1] + ("Stress", ) + self.models[2].order[1:] gui.hSlider(box, self, "connected_pairs", label="Show similar pairs:", minValue=0, maxValue=20, createLabel=False, callback=self._on_connected_changed) g.add_widgets(ids=[g.JitterSizeSlider], widget=box) box = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ToolTipShowsAll, g.ClassDensity, g.LabelOnlySelected], box) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict palette = self.graph.plot_widget.palette() self.graph.set_palette(palette) gui.rubber(self.controlArea) self.graph.box_zoom_select(self.controlArea) gui.auto_commit(box, self, "auto_commit", "Send Selected", checkbox_label="Send selected automatically", box=None) self.plot.getPlotItem().hideButtons() self.plot.setRenderHint(QPainter.Antialiasing) self.graph.jitter_continuous = True self._initialize() def reset_graph_data(self, *_): if self.data is not None: self.graph.rescale_data() self.update_graph() self.connect_pairs() def update_colors(self): pass def update_density(self): self.update_graph(reset_view=False) def update_regression_line(self): self.update_graph(reset_view=False) def init_attr_values(self): self.graph.set_domain(self.data) def prepare_data(self): pass def update_graph(self, reset_view=True, **_): self.graph.zoomStack = [] if self.graph.data is None: return self.graph.update_data(self.variable_x, self.variable_y, True) def selection_changed(self): self.commit() @Inputs.data @check_sql_input def set_data(self, data): """Set the input dataset. Parameters ---------- data : Optional[Orange.data.Table] """ if data is not None and len(data) < 2: self.Error.not_enough_rows() data = None else: self.Error.not_enough_rows.clear() self.signal_data = data if self.matrix is not None and data is not None and len(self.matrix) == len(data): self.closeContext() self.data = data self.init_attr_values() self.openContext(data) else: self._invalidated = True @Inputs.distances def set_disimilarity(self, matrix): """Set the dissimilarity (distance) matrix. Parameters ---------- matrix : Optional[Orange.misc.DistMatrix] """ if matrix is not None and len(matrix) < 2: self.Error.matrix_too_small() matrix = None else: self.Error.matrix_too_small.clear() self.matrix = matrix self.matrix_data = matrix.row_items if matrix is not None else None self._invalidated = True @Inputs.data_subset def set_subset_data(self, subset_data): """Set a subset of `data` input to highlight in the plot. Parameters ---------- subset_data: Optional[Orange.data.Table] """ self.subset_data = subset_data # invalidate the pen/brush when the subset is changed self._subset_mask = None # type: Optional[np.ndarray] self.controls.graph.alpha_value.setEnabled(subset_data is None) def _clear(self): self._similar_pairs = None self.__set_update_loop(None) self.__state = OWMDS.Waiting def _clear_plot(self): self.graph.plot_widget.clear() def _initialize(self): # clear everything self.closeContext() self._clear() self.Error.clear() self.data = None self.effective_matrix = None self.embedding = None self.init_attr_values() # if no data nor matrix is present reset plot if self.signal_data is None and self.matrix is None: return if self.signal_data is not None and self.matrix is not None and \ len(self.signal_data) != len(self.matrix): self.Error.mismatching_dimensions() self._update_plot() return if self.signal_data is not None: self.data = self.signal_data elif self.matrix_data is not None: self.data = self.matrix_data if self.matrix is not None: self.effective_matrix = self.matrix if self.matrix.axis == 0 and self.data is self.matrix_data: self.data = None elif self.data.domain.attributes: preprocessed_data = Orange.projection.MDS().preprocess(self.data) self.effective_matrix = Orange.distance.Euclidean(preprocessed_data) else: self.Error.no_attributes() return self.init_attr_values() self.openContext(self.data) def _toggle_run(self): if self.__state == OWMDS.Running: self.stop() self._invalidate_output() else: self.start() def start(self): if self.__state == OWMDS.Running: return elif self.__state == OWMDS.Finished: # Resume/continue from a previous run self.__start() elif self.__state == OWMDS.Waiting and \ self.effective_matrix is not None: self.__start() def stop(self): if self.__state == OWMDS.Running: self.__set_update_loop(None) def __start(self): self.__draw_similar_pairs = False X = self.effective_matrix init = self.embedding # number of iterations per single GUI update step _, step_size = OWMDS.RefreshRate[self.refresh_rate] if step_size == -1: step_size = self.max_iter def update_loop(X, max_iter, step, init): """ return an iterator over successive improved MDS point embeddings. """ # NOTE: this code MUST NOT call into QApplication.processEvents done = False iterations_done = 0 oldstress = np.finfo(np.float).max init_type = "PCA" if self.initialization == OWMDS.PCA else "random" while not done: step_iter = min(max_iter - iterations_done, step) mds = Orange.projection.MDS( dissimilarity="precomputed", n_components=2, n_init=1, max_iter=step_iter, init_type=init_type, init_data=init) mdsfit = mds(X) iterations_done += step_iter embedding, stress = mdsfit.embedding_, mdsfit.stress_ stress /= np.sqrt(np.sum(embedding ** 2, axis=1)).sum() if iterations_done >= max_iter: done = True elif (oldstress - stress) < mds.params["eps"]: done = True init = embedding oldstress = stress yield embedding, mdsfit.stress_, iterations_done / max_iter self.__set_update_loop(update_loop(X, self.max_iter, step_size, init)) self.progressBarInit(processEvents=None) def __set_update_loop(self, loop): """ Set the update `loop` coroutine. The `loop` is a generator yielding `(embedding, stress, progress)` tuples where `embedding` is a `(N, 2) ndarray` of current updated MDS points, `stress` is the current stress and `progress` a float ratio (0 <= progress <= 1) If an existing update coroutine loop is already in place it is interrupted (i.e. closed). .. note:: The `loop` must not explicitly yield control flow to the event loop (i.e. call `QApplication.processEvents`) """ if self.__update_loop is not None: self.__update_loop.close() self.__update_loop = None self.progressBarFinished(processEvents=None) self.__update_loop = loop if loop is not None: self.setBlocking(True) self.progressBarInit(processEvents=None) self.setStatusMessage("Running") self.runbutton.setText("Stop") self.__state = OWMDS.Running self.__timer.start() else: self.setBlocking(False) self.setStatusMessage("") self.runbutton.setText("Start") self.__state = OWMDS.Finished self.__timer.stop() def __next_step(self): if self.__update_loop is None: return assert not self.__in_next_step self.__in_next_step = True loop = self.__update_loop self.Error.out_of_memory.clear() try: embedding, _, progress = next(self.__update_loop) assert self.__update_loop is loop except StopIteration: self.__set_update_loop(None) self.unconditional_commit() self.__draw_similar_pairs = True self._update_plot() except MemoryError: self.Error.out_of_memory() self.__set_update_loop(None) self.__draw_similar_pairs = True except Exception as exc: self.Error.optimization_error(str(exc)) self.__set_update_loop(None) self.__draw_similar_pairs = True else: self.progressBarSet(100.0 * progress, processEvents=None) self.embedding = embedding self._update_plot() # schedule next update self.__timer.start() self.__in_next_step = False def __invalidate_embedding(self): # reset/invalidate the MDS embedding, to the default initialization # (Random or PCA), restarting the optimization if necessary. if self.embedding is None: return state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) X = self.effective_matrix if self.initialization == OWMDS.PCA: self.embedding = torgerson(X) else: self.embedding = np.random.rand(len(X), 2) self._update_plot() # restart the optimization if it was interrupted. if state == OWMDS.Running: self.__start() def __invalidate_refresh(self): state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) # restart the optimization if it was interrupted. # TODO: decrease the max iteration count by the already # completed iterations count. if state == OWMDS.Running: self.__start() def handleNewSignals(self): if self._invalidated: self.__draw_similar_pairs = False self._invalidated = False self._initialize() self.start() if self._subset_mask is None and self.subset_data is not None and \ self.data is not None: self._subset_mask = np.in1d(self.data.ids, self.subset_data.ids) self._update_plot(new=True) self.unconditional_commit() def _invalidate_output(self): self.commit() def _on_connected_changed(self): self._similar_pairs = None self.connect_pairs() def _update_plot(self, new=False): self._clear_plot() if self.embedding is not None: self._setup_plot(new=new) else: self.graph.new_data(None) def connect_pairs(self): if self._curve: self.graph.plot_widget.removeItem(self._curve) if not (self.connected_pairs and self.__draw_similar_pairs): return emb_x, emb_y = self.graph.get_xy_data_positions( self.variable_x, self.variable_y, self.graph.valid_data) if self._similar_pairs is None: # This code requires storing lower triangle of X (n x n / 2 # doubles), n x n / 2 * 2 indices to X, n x n / 2 indices for # argsort result. If this becomes an issue, it can be reduced to # n x n argsort indices by argsorting the entire X. Then we # take the first n + 2 * p indices. We compute their coordinates # i, j in the original matrix. We keep those for which i < j. # n + 2 * p will suffice to exclude the diagonal (i = j). If the # number of those for which i < j is smaller than p, we instead # take i > j. Among those that remain, we take the first p. # Assuming that MDS can't show so many points that memory could # become an issue, I preferred using simpler code. m = self.effective_matrix n = len(m) p = min(n * (n - 1) // 2 * self.connected_pairs // 100, MAX_N_PAIRS * self.connected_pairs // 20) indcs = np.triu_indices(n, 1) sorted = np.argsort(m[indcs])[:p] self._similar_pairs = fpairs = np.empty(2 * p, dtype=int) fpairs[::2] = indcs[0][sorted] fpairs[1::2] = indcs[1][sorted] emb_x_pairs = emb_x[self._similar_pairs].reshape((-1, 2)) emb_y_pairs = emb_y[self._similar_pairs].reshape((-1, 2)) # Filter out zero distance lines (in embedding coords). # Null (zero length) line causes bad rendering artifacts # in Qt when using the raster graphics system (see gh-issue: 1668). (x1, x2), (y1, y2) = (emb_x_pairs.T, emb_y_pairs.T) pairs_mask = ~(np.isclose(x1, x2) & np.isclose(y1, y2)) emb_x_pairs = emb_x_pairs[pairs_mask, :] emb_y_pairs = emb_y_pairs[pairs_mask, :] self._curve = pg.PlotCurveItem( emb_x_pairs.ravel(), emb_y_pairs.ravel(), pen=pg.mkPen(0.8, width=2, cosmetic=True), connect="pairs", antialias=True) self.graph.plot_widget.addItem(self._curve) def _setup_plot(self, new=False): emb_x, emb_y = self.embedding[:, 0], self.embedding[:, 1] coords = np.vstack((emb_x, emb_y)).T data = self.data attributes = data.domain.attributes + (self.variable_x, self.variable_y) domain = Domain(attributes=attributes, class_vars=data.domain.class_vars, metas=data.domain.metas) data = Table.from_numpy(domain, X=hstack((data.X, coords)), Y=data.Y, metas=data.metas) subset_data = data[self._subset_mask] if self._subset_mask is not None else None self.graph.new_data(data, subset_data=subset_data, new=new) self.graph.update_data(self.variable_x, self.variable_y, True) self.connect_pairs() def commit(self): if self.embedding is not None: names = get_unique_names([v.name for v in self.data.domain.variables], ["mds-x", "mds-y"]) output = embedding = Orange.data.Table.from_numpy( Orange.data.Domain([ContinuousVariable(names[0]), ContinuousVariable(names[1])]), self.embedding ) else: output = embedding = None if self.embedding is not None and self.data is not None: domain = self.data.domain domain = Orange.data.Domain(domain.attributes, domain.class_vars, domain.metas + embedding.domain.attributes) output = self.data.transform(domain) output.metas[:, -2:] = embedding.X selection = self.graph.get_selection() if output is not None and len(selection) > 0: selected = output[selection] else: selected = None if self.graph.selection is not None and np.max(self.graph.selection) > 1: annotated = create_groups_table(output, self.graph.selection) else: annotated = create_annotated_table(output, selection) self.Outputs.selected_data.send(selected) self.Outputs.annotated_data.send(annotated) def onDeleteWidget(self): super().onDeleteWidget() self._clear_plot() self._clear() def send_report(self): if self.data is None: return def name(var): return var and var.name caption = report.render_items_vert(( ("Color", name(self.graph.attr_color)), ("Label", name(self.graph.attr_label)), ("Shape", name(self.graph.attr_shape)), ("Size", name(self.graph.attr_size)), ("Jittering", self.graph.jitter_size != 0 and "{} %".format(self.graph.jitter_size)))) self.report_plot() if caption: self.report_caption(caption) @classmethod def migrate_settings(cls, settings_, version): if version < 2: settings_graph = {} for old, new in (("label_only_selected", "label_only_selected"), ("symbol_opacity", "alpha_value"), ("symbol_size", "point_width"), ("jitter", "jitter_size")): settings_graph[new] = settings_[old] settings_["graph"] = settings_graph settings_["auto_commit"] = settings_["autocommit"] @classmethod def migrate_context(cls, context, version): if version < 2: domain = context.ordered_domain n_domain = [t for t in context.ordered_domain if t[1] == 2] c_domain = [t for t in context.ordered_domain if t[1] == 1] context_values_graph = {} for _, old_val, new_val in ((domain, "color_value", "attr_color"), (c_domain, "shape_value", "attr_shape"), (n_domain, "size_value", "attr_size"), (domain, "label_value", "attr_label")): tmp = context.values[old_val] if tmp[1] >= 0: context_values_graph[new_val] = (tmp[0], tmp[1] + 100) elif tmp[0] != "Stress": context_values_graph[new_val] = None else: context_values_graph[new_val] = tmp context.values["graph"] = context_values_graph
def __init__(self): super().__init__() RecentPathsWComboMixin.__init__(self) self.domain = None self.data = None self.loaded_file = "" self.reader = None layout = QGridLayout() layout.setSpacing(4) gui.widgetBox(self.controlArea, orientation=layout, box='Source') vbox = gui.radioButtons(None, self, "source", box=True, callback=self.load_data, addToLayout=False) rb_button = gui.appendRadioButton(vbox, "File:", addToLayout=False) layout.addWidget(rb_button, 0, 0, Qt.AlignVCenter) box = gui.hBox(None, addToLayout=False, margin=0) box.setSizePolicy(Policy.MinimumExpanding, Policy.Fixed) self.file_combo.setSizePolicy(Policy.MinimumExpanding, Policy.Fixed) self.file_combo.activated[int].connect(self.select_file) box.layout().addWidget(self.file_combo) layout.addWidget(box, 0, 1) file_button = gui.button(None, self, '...', callback=self.browse_file, autoDefault=False) file_button.setIcon(self.style().standardIcon(QStyle.SP_DirOpenIcon)) file_button.setSizePolicy(Policy.Maximum, Policy.Fixed) layout.addWidget(file_button, 0, 2) reload_button = gui.button(None, self, "Reload", callback=self.load_data, autoDefault=False) reload_button.setIcon(self.style().standardIcon( QStyle.SP_BrowserReload)) reload_button.setSizePolicy(Policy.Fixed, Policy.Fixed) layout.addWidget(reload_button, 0, 3) self.sheet_box = gui.hBox(None, addToLayout=False, margin=0) self.sheet_combo = QComboBox() self.sheet_combo.activated[str].connect(self.select_sheet) self.sheet_combo.setSizePolicy(Policy.MinimumExpanding, Policy.Fixed) self.sheet_label = QLabel() self.sheet_label.setText('Sheet') self.sheet_label.setSizePolicy(Policy.MinimumExpanding, Policy.Fixed) self.sheet_box.layout().addWidget(self.sheet_label, Qt.AlignLeft) self.sheet_box.layout().addWidget(self.sheet_combo, Qt.AlignVCenter) layout.addWidget(self.sheet_box, 2, 1) self.sheet_box.hide() rb_button = gui.appendRadioButton(vbox, "URL:", addToLayout=False) layout.addWidget(rb_button, 3, 0, Qt.AlignVCenter) self.url_combo = url_combo = QComboBox() url_model = NamedURLModel(self.sheet_names) url_model.wrap(self.recent_urls) url_combo.setLineEdit(LineEditSelectOnFocus()) url_combo.setModel(url_model) url_combo.setSizePolicy(Policy.Ignored, Policy.Fixed) url_combo.setEditable(True) url_combo.setInsertPolicy(url_combo.InsertAtTop) url_edit = url_combo.lineEdit() l, t, r, b = url_edit.getTextMargins() url_edit.setTextMargins(l + 5, t, r, b) layout.addWidget(url_combo, 3, 1, 1, 3) url_combo.activated.connect(self._url_set) # whit completer we set that combo box is case sensitive when # matching the history completer = QCompleter() completer.setCaseSensitivity(Qt.CaseSensitive) url_combo.setCompleter(completer) box = gui.vBox(self.controlArea, "Info") self.infolabel = gui.widgetLabel(box, 'No data loaded.') self.warnings = gui.widgetLabel(box, '') box = gui.widgetBox(self.controlArea, "Columns (Double click to edit)") self.domain_editor = DomainEditor(self) self.editor_model = self.domain_editor.model() box.layout().addWidget(self.domain_editor) box = gui.hBox(box) gui.button(box, self, "Reset", callback=self.reset_domain_edit, autoDefault=False) gui.rubber(box) self.apply_button = gui.button(box, self, "Apply", callback=self.apply_domain_edit) self.apply_button.setEnabled(False) self.apply_button.setFixedWidth(170) self.editor_model.dataChanged.connect( lambda: self.apply_button.setEnabled(True)) hBox = gui.hBox(self.controlArea) gui.rubber(hBox) gui.button(hBox, self, "Browse documentation datasets", callback=lambda: self.browse_file(True), autoDefault=False) gui.rubber(hBox) self.set_file_list() # Must not call open_file from within __init__. open_file # explicitly re-enters the event loop (by a progress bar) self.setAcceptDrops(True) if self.source == self.LOCAL_FILE: last_path = self.last_path() if last_path and os.path.exists(last_path) and \ os.path.getsize(last_path) > self.SIZE_LIMIT: self.Warning.file_too_big() return QTimer.singleShot(0, self.load_data)
class OWScatterPlot(OWDataProjectionWidget): """Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.""" name = 'Scatter Plot' description = "Interactive scatter plot visualization with " \ "intelligent data visualization enhancements." icon = "icons/ScatterPlot.svg" priority = 140 keywords = [] class Inputs(OWDataProjectionWidget.Inputs): features = Input("Features", AttributeList) class Outputs(OWDataProjectionWidget.Outputs): features = Output("Features", AttributeList, dynamic=False) settings_version = 4 auto_sample = Setting(True) attr_x = ContextSetting(None) attr_y = ContextSetting(None) tooltip_shows_all = Setting(True) GRAPH_CLASS = OWScatterPlotGraph graph = SettingProvider(OWScatterPlotGraph) embedding_variables_names = None xy_changed_manually = Signal(Variable, Variable) class Warning(OWDataProjectionWidget.Warning): missing_coords = Msg("Plot cannot be displayed because '{}' or '{}' " "is missing for all data points") no_continuous_vars = Msg("Data has no continuous variables") class Information(OWDataProjectionWidget.Information): sampled_sql = Msg("Large SQL table; showing a sample.") missing_coords = Msg( "Points with missing '{}' or '{}' are not displayed") def __init__(self): self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) super().__init__() # manually register Matplotlib file writers self.graph_writers = self.graph_writers.copy() for w in [MatplotlibFormat, MatplotlibPDFFormat]: self.graph_writers.append(w) def _add_controls(self): self._add_controls_axis() self._add_controls_sampling() super()._add_controls() self.gui.add_widgets([ self.gui.ShowGridLines, self.gui.ToolTipShowsAll, self.gui.RegressionLine ], self._plot_box) gui.checkBox( gui.indentedBox(self._plot_box), self, value="graph.orthonormal_regression", label="Treat variables as independent", callback=self.graph.update_regression_line, tooltip= "If checked, fit line to group (minimize distance from points);\n" "otherwise fit y as a function of x (minimize vertical distances)") def _add_controls_axis(self): common_options = dict(labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, contentsLength=14) self.attr_box = gui.vBox(self.controlArea, True) dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=ContinuousVariable) self.cb_attr_x = gui.comboBox(self.attr_box, self, "attr_x", label="Axis x:", callback=self.set_attr_from_combo, model=self.xy_model, **common_options, searchable=True) self.cb_attr_y = gui.comboBox(self.attr_box, self, "attr_y", label="Axis y:", callback=self.set_attr_from_combo, model=self.xy_model, **common_options, searchable=True) vizrank_box = gui.hBox(self.attr_box) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) def _add_controls_sampling(self): self.sampling = gui.auto_commit(self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) @property def effective_variables(self): return [self.attr_x, self.attr_y ] if self.attr_x and self.attr_y else [] def _vizrank_color_change(self): self.vizrank.initialize() err_msg = "" if self.data is None: err_msg = "No data on input" elif self.data.is_sparse(): err_msg = "Data is sparse" elif len(self.xy_model) < 3: err_msg = "Not enough features for ranking" elif self.attr_color is None: err_msg = "Color variable is not selected" elif np.isnan( self.data.get_column_view( self.attr_color)[0].astype(float)).all(): err_msg = "Color variable has no values" self.vizrank_button.setEnabled(not err_msg) self.vizrank_button.setToolTip(err_msg) def set_data(self, data): super().set_data(data) self._vizrank_color_change() def findvar(name, iterable): """Find a Orange.data.Variable in `iterable` by name""" for el in iterable: if isinstance(el, Variable) and el.name == name: return el return None # handle restored settings from < 3.3.9 when attr_* were stored # by name if isinstance(self.attr_x, str): self.attr_x = findvar(self.attr_x, self.xy_model) if isinstance(self.attr_y, str): self.attr_y = findvar(self.attr_y, self.xy_model) if isinstance(self.attr_label, str): self.attr_label = findvar(self.attr_label, self.gui.label_model) if isinstance(self.attr_color, str): self.attr_color = findvar(self.attr_color, self.gui.color_model) if isinstance(self.attr_shape, str): self.attr_shape = findvar(self.attr_shape, self.gui.shape_model) if isinstance(self.attr_size, str): self.attr_size = findvar(self.attr_size, self.gui.size_model) def check_data(self): super().check_data() self.__timer.stop() self.sampling.setVisible(False) self.sql_data = None if isinstance(self.data, SqlTable): if self.data.approx_len() < 4000: self.data = Table(self.data) else: self.Information.sampled_sql() self.sql_data = self.data data_sample = self.data.sample_time(0.8, no_cache=True) data_sample.download_data(2000, partial=True) self.data = Table(data_sample) self.sampling.setVisible(True) if self.auto_sample: self.__timer.start() if self.data is not None: if not self.data.domain.has_continuous_attributes(True, True): self.Warning.no_continuous_vars() self.data = None if self.data is not None and (len(self.data) == 0 or len(self.data.domain) == 0): self.data = None def get_embedding(self): self.valid_data = None if self.data is None: return None x_data = self.get_column(self.attr_x, filter_valid=False) y_data = self.get_column(self.attr_y, filter_valid=False) if x_data is None or y_data is None: return None self.Warning.missing_coords.clear() self.Information.missing_coords.clear() self.valid_data = np.isfinite(x_data) & np.isfinite(y_data) if self.valid_data is not None and not np.all(self.valid_data): msg = self.Information if np.any(self.valid_data) else self.Warning msg.missing_coords(self.attr_x.name, self.attr_y.name) return np.vstack((x_data, y_data)).T # Tooltip def _point_tooltip(self, point_id, skip_attrs=()): point_data = self.data[point_id] xy_attrs = (self.attr_x, self.attr_y) text = "<br/>".join( escape('{} = {}'.format(var.name, point_data[var])) for var in xy_attrs) if self.tooltip_shows_all: others = super()._point_tooltip(point_id, skip_attrs=xy_attrs) if others: text = "<b>{}</b><br/><br/>{}".format(text, others) return text def add_data(self, time=0.4): if self.data and len(self.data) > 2000: self.__timer.stop() return data_sample = self.sql_data.sample_time(time, no_cache=True) if data_sample: data_sample.download_data(2000, partial=True) data = Table(data_sample) self.data = Table.concatenate((self.data, data), axis=0) self.handleNewSignals() def init_attr_values(self): super().init_attr_values() data = self.data domain = data.domain if data and len(data) else None self.xy_model.set_domain(domain) self.attr_x = self.xy_model[0] if self.xy_model else None self.attr_y = self.xy_model[1] if len(self.xy_model) >= 2 \ else self.attr_x def switch_sampling(self): self.__timer.stop() if self.auto_sample and self.sql_data: self.add_data() self.__timer.start() def set_subset_data(self, subset_data): self.warning() if isinstance(subset_data, SqlTable): if subset_data.approx_len() < AUTO_DL_LIMIT: subset_data = Table(subset_data) else: self.warning("Data subset does not support large Sql tables") subset_data = None super().set_subset_data(subset_data) # called when all signals are received, so the graph is updated only once def handleNewSignals(self): self.attr_box.setEnabled(True) self.vizrank.setEnabled(True) if self.attribute_selection_list and self.data is not None and \ self.data.domain is not None and \ all(attr in self.data.domain for attr in self.attribute_selection_list): self.attr_x, self.attr_y = self.attribute_selection_list[:2] self.attr_box.setEnabled(False) self.vizrank.setEnabled(False) super().handleNewSignals() if self._domain_invalidated: self.graph.update_axes() self._domain_invalidated = False @Inputs.features def set_shown_attributes(self, attributes): if attributes and len(attributes) >= 2: self.attribute_selection_list = attributes[:2] self._invalidated = self._invalidated \ or self.attr_x != attributes[0] \ or self.attr_y != attributes[1] else: self.attribute_selection_list = None def set_attr(self, attr_x, attr_y): if attr_x != self.attr_x or attr_y != self.attr_y: self.attr_x, self.attr_y = attr_x, attr_y self.attr_changed() def set_attr_from_combo(self): self.attr_changed() self.xy_changed_manually.emit(self.attr_x, self.attr_y) def attr_changed(self): self.setup_plot() self.commit() def get_axes(self): return {"bottom": self.attr_x, "left": self.attr_y} def colors_changed(self): super().colors_changed() self._vizrank_color_change() def commit(self): super().commit() self.send_features() def send_features(self): features = [attr for attr in [self.attr_x, self.attr_y] if attr] self.Outputs.features.send(features or None) def get_widget_name_extension(self): if self.data is not None: return "{} vs {}".format(self.attr_x.name, self.attr_y.name) return None @classmethod def migrate_settings(cls, settings, version): if version < 2 and "selection" in settings and settings["selection"]: settings["selection_group"] = [(a, 1) for a in settings["selection"]] if version < 3: if "auto_send_selection" in settings: settings["auto_commit"] = settings["auto_send_selection"] if "selection_group" in settings: settings["selection"] = settings["selection_group"] @classmethod def migrate_context(cls, context, version): values = context.values if version < 3: values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"] if version < 4: if values["attr_x"][1] % 100 == 1 or values["attr_y"][1] % 100 == 1: raise IncompatibleContext()
def __init__(self): super().__init__() box = gui.vBox(self.mainArea, True, margin=0) self.graph = OWScatterPlotGraph(self, box, "ScatterPlot") box.layout().addWidget(self.graph.plot_widget) plot = self.graph.plot_widget axispen = QPen(self.palette().color(QPalette.Text)) axis = plot.getAxis("bottom") axis.setPen(axispen) axis = plot.getAxis("left") axis.setPen(axispen) self.data = None # Orange.data.Table self.subset_data = None # Orange.data.Table self.data_metas_X = None # self.data, where primitive metas are moved to X self.sql_data = None # Orange.data.sql.table.SqlTable self.attribute_selection_list = None # list of Orange.data.Variable self.__timer = QTimer(self, interval=1200) self.__timer.timeout.connect(self.add_data) common_options = dict( labelWidth=50, orientation=Qt.Horizontal, sendSelectedValue=True, valueType=str) box = gui.vBox(self.controlArea, "Axis Data") dmod = DomainModel self.xy_model = DomainModel(dmod.MIXED, valid_types=dmod.PRIMITIVE) gui.comboBox( box, self, "attr_x", label="Axis x:", callback=self.update_attr, model=self.xy_model, **common_options) self.cb_attr_y = gui.comboBox( box, self, "attr_y", label="Axis y:", callback=self.update_attr, model=self.xy_model, **common_options) vizrank_box = gui.hBox(box) gui.separator(vizrank_box, width=common_options["labelWidth"]) self.vizrank, self.vizrank_button = ScatterPlotVizRank.add_vizrank( vizrank_box, self, "Find Informative Projections", self.set_attr) gui.separator(box) gui.valueSlider( box, self, value='graph.jitter_size', label='Jittering: ', values=self.jitter_sizes, callback=self.reset_graph_data, labelFormat=lambda x: "None" if x == 0 else ("%.1f %%" if x < 1 else "%d %%") % x) gui.checkBox( gui.indentedBox(box), self, 'graph.jitter_continuous', 'Jitter continuous values', callback=self.reset_graph_data) self.sampling = gui.auto_commit( self.controlArea, self, "auto_sample", "Sample", box="Sampling", callback=self.switch_sampling, commit=lambda: self.add_data(1)) self.sampling.setVisible(False) box = gui.vBox(self.controlArea, "Points") self.color_model = DomainModel( placeholder="(Same color)", valid_types=dmod.PRIMITIVE) self.cb_attr_color = gui.comboBox( box, self, "graph.attr_color", label="Color:", callback=self.update_colors, model=self.color_model, **common_options) self.label_model = DomainModel( placeholder="(No labels)", valid_types=dmod.PRIMITIVE) self.cb_attr_label = gui.comboBox( box, self, "graph.attr_label", label="Label:", callback=self.graph.update_labels, model=self.label_model, **common_options) self.shape_model = DomainModel( placeholder="(Same shape)", valid_types=DiscreteVariable) self.cb_attr_shape = gui.comboBox( box, self, "graph.attr_shape", label="Shape:", callback=self.graph.update_shapes, model=self.shape_model, **common_options) self.size_model = DomainModel( placeholder="(Same size)", valid_types=ContinuousVariable) self.cb_attr_size = gui.comboBox( box, self, "graph.attr_size", label="Size:", callback=self.graph.update_sizes, model=self.size_model, **common_options) self.models = [self.xy_model, self.color_model, self.label_model, self.shape_model, self.size_model] g = self.graph.gui g.point_properties_box(self.controlArea, box) box = gui.vBox(self.controlArea, "Plot Properties") g.add_widgets([g.ShowLegend, g.ShowGridLines], box) gui.checkBox( box, self, value='graph.tooltip_shows_all', label='Show all data on mouse hover') self.cb_class_density = gui.checkBox( box, self, value='graph.class_density', label='Show class density', callback=self.update_density) gui.checkBox( box, self, 'graph.label_only_selected', 'Label only selected points', callback=self.graph.update_labels) self.zoom_select_toolbar = g.zoom_select_toolbar( gui.vBox(self.controlArea, "Zoom/Select"), nomargin=True, buttons=[g.StateButtonsBegin, g.SimpleSelect, g.Pan, g.Zoom, g.StateButtonsEnd, g.ZoomReset] ) buttons = self.zoom_select_toolbar.buttons buttons[g.Zoom].clicked.connect(self.graph.zoom_button_clicked) buttons[g.Pan].clicked.connect(self.graph.pan_button_clicked) buttons[g.SimpleSelect].clicked.connect(self.graph.select_button_clicked) buttons[g.ZoomReset].clicked.connect(self.graph.reset_button_clicked) self.controlArea.layout().addStretch(100) self.icons = gui.attributeIconDict p = self.graph.plot_widget.palette() self.graph.set_palette(p) gui.auto_commit(self.controlArea, self, "auto_send_selection", "Send Selection", "Send Automatically") def zoom(s): """Zoom in/out by factor `s`.""" viewbox = plot.getViewBox() # scaleBy scales the view's bounds (the axis range) viewbox.scaleBy((1 / s, 1 / s)) def fit_to_view(): viewbox = plot.getViewBox() viewbox.autoRange() zoom_in = QAction( "Zoom in", self, triggered=lambda: zoom(1.25) ) zoom_in.setShortcuts([QKeySequence(QKeySequence.ZoomIn), QKeySequence(self.tr("Ctrl+="))]) zoom_out = QAction( "Zoom out", self, shortcut=QKeySequence.ZoomOut, triggered=lambda: zoom(1 / 1.25) ) zoom_fit = QAction( "Fit in view", self, shortcut=QKeySequence(Qt.ControlModifier | Qt.Key_0), triggered=fit_to_view ) self.addActions([zoom_in, zoom_out, zoom_fit])
def __init__(self): super().__init__() self.map = map = LeafletMap(self) # type: LeafletMap self.mainArea.layout().addWidget(map) self.selection = None self.data = None self.learner = None def selectionChanged(indices): self.selection = self.data[ indices] if self.data is not None and indices else None self._indices = indices self.commit() map.selectionChanged.connect(selectionChanged) def _set_map_provider(): map.set_map_provider(self.TILE_PROVIDERS[self.tile_provider]) box = gui.vBox(self.controlArea, 'Map') gui.comboBox(box, self, 'tile_provider', orientation=Qt.Horizontal, label='Map:', items=tuple(self.TILE_PROVIDERS.keys()), sendSelectedValue=True, callback=_set_map_provider) self._latlon_model = DomainModel(parent=self, valid_types=ContinuousVariable) self._class_model = DomainModel(parent=self, placeholder='(None)', valid_types=DomainModel.PRIMITIVE) self._color_model = DomainModel(parent=self, placeholder='(Same color)', valid_types=DomainModel.PRIMITIVE) self._shape_model = DomainModel(parent=self, placeholder='(Same shape)', valid_types=DiscreteVariable) self._size_model = DomainModel(parent=self, placeholder='(Same size)', valid_types=ContinuousVariable) self._label_model = DomainModel(parent=self, placeholder='(No labels)') def _set_lat_long(): self.map.set_data(self.data, self.lat_attr, self.lon_attr) self.train_model() self._combo_lat = combo = gui.comboBox(box, self, 'lat_attr', orientation=Qt.Horizontal, label='Latitude:', sendSelectedValue=True, callback=_set_lat_long) combo.setModel(self._latlon_model) self._combo_lon = combo = gui.comboBox(box, self, 'lon_attr', orientation=Qt.Horizontal, label='Longitude:', sendSelectedValue=True, callback=_set_lat_long) combo.setModel(self._latlon_model) def _toggle_legend(): self.map.toggle_legend(self.show_legend) gui.checkBox(box, self, 'show_legend', label='Show legend', callback=_toggle_legend) box = gui.vBox(self.controlArea, 'Overlay') self._combo_class = combo = gui.comboBox(box, self, 'class_attr', orientation=Qt.Horizontal, label='Target:', sendSelectedValue=True, callback=self.train_model) self.controls.class_attr.setModel(self._class_model) self.set_learner(self.learner) box = gui.vBox(self.controlArea, 'Points') self._combo_color = combo = gui.comboBox( box, self, 'color_attr', orientation=Qt.Horizontal, label='Color:', sendSelectedValue=True, callback=lambda: self.map.set_marker_color(self.color_attr)) combo.setModel(self._color_model) self._combo_label = combo = gui.comboBox( box, self, 'label_attr', orientation=Qt.Horizontal, label='Label:', sendSelectedValue=True, callback=lambda: self.map.set_marker_label(self.label_attr)) combo.setModel(self._label_model) self._combo_shape = combo = gui.comboBox( box, self, 'shape_attr', orientation=Qt.Horizontal, label='Shape:', sendSelectedValue=True, callback=lambda: self.map.set_marker_shape(self.shape_attr)) combo.setModel(self._shape_model) self._combo_size = combo = gui.comboBox( box, self, 'size_attr', orientation=Qt.Horizontal, label='Size:', sendSelectedValue=True, callback=lambda: self.map.set_marker_size(self.size_attr)) combo.setModel(self._size_model) def _set_opacity(): map.set_marker_opacity(self.opacity) def _set_zoom(): map.set_marker_size_coefficient(self.zoom) def _set_jittering(): map.set_jittering(self.jittering) def _set_clustering(): map.set_clustering(self.cluster_points) self._opacity_slider = gui.hSlider(box, self, 'opacity', None, 1, 100, 5, label='Opacity:', labelFormat=' %d%%', callback=_set_opacity) self._zoom_slider = gui.valueSlider(box, self, 'zoom', None, values=(20, 50, 100, 200, 300, 400, 500, 700, 1000), label='Symbol size:', labelFormat=' %d%%', callback=_set_zoom) self._jittering = gui.valueSlider(box, self, 'jittering', label='Jittering:', values=(0, .5, 1, 2, 5), labelFormat=' %.1f%%', ticks=True, callback=_set_jittering) self._clustering_check = gui.checkBox(box, self, 'cluster_points', label='Cluster points', callback=_set_clustering) gui.rubber(self.controlArea) gui.auto_commit(self.controlArea, self, 'autocommit', 'Send Selection') QTimer.singleShot(0, _set_map_provider) QTimer.singleShot(0, _toggle_legend) QTimer.singleShot(0, _set_opacity) QTimer.singleShot(0, _set_zoom) QTimer.singleShot(0, _set_jittering) QTimer.singleShot(0, _set_clustering)
class OWMDS(OWDataProjectionWidget): name = "MDS" description = "Two-dimensional data projection by multidimensional " \ "scaling constructed from a distance matrix." icon = "icons/MDS.svg" keywords = ["multidimensional scaling", "multi dimensional scaling"] class Inputs(OWDataProjectionWidget.Inputs): distances = Input("Distances", DistMatrix) settings_version = 3 #: Initialization type PCA, Random, Jitter = 0, 1, 2 #: Refresh rate RefreshRate = [("Every iteration", 1), ("Every 5 steps", 5), ("Every 10 steps", 10), ("Every 25 steps", 25), ("Every 50 steps", 50), ("None", -1)] #: Runtime state Running, Finished, Waiting = 1, 2, 3 max_iter = settings.Setting(300) initialization = settings.Setting(PCA) refresh_rate = settings.Setting(3) GRAPH_CLASS = OWMDSGraph graph = SettingProvider(OWMDSGraph) embedding_variables_names = ("mds-x", "mds-y") class Error(OWDataProjectionWidget.Error): not_enough_rows = Msg("Input data needs at least 2 rows") matrix_too_small = Msg("Input matrix must be at least 2x2") no_attributes = Msg("Data has no attributes") mismatching_dimensions = \ Msg("Data and distances dimensions do not match.") out_of_memory = Msg("Out of memory") optimization_error = Msg("Error during optimization\n{}") def __init__(self): super().__init__() #: Input dissimilarity matrix self.matrix = None # type: Optional[DistMatrix] #: Data table from the `self.matrix.row_items` (if present) self.matrix_data = None # type: Optional[Table] #: Input data table self.signal_data = None self._invalidated = False self.embedding = None self.effective_matrix = None self.__update_loop = None # timer for scheduling updates self.__timer = QTimer(self, singleShot=True, interval=0) self.__timer.timeout.connect(self.__next_step) self.__state = OWMDS.Waiting self.__in_next_step = False self.graph.pause_drawing_pairs() g = self.graph.gui self.size_model = g.points_models[2] self.size_model.order = g.points_models[2].order[:1] + ("Stress", ) + \ g.points_models[2].order[1:] # self._initialize() def _add_controls(self): self._add_controls_optimization() super()._add_controls() self.graph.gui.add_control(self._effects_box, gui.hSlider, "Show similar pairs:", master=self.graph, value="connected_pairs", minValue=0, maxValue=20, createLabel=False, callback=self._on_connected_changed) def _add_controls_optimization(self): box = gui.vBox(self.controlArea, box=True) self.runbutton = gui.button(box, self, "Run optimization", callback=self._toggle_run) gui.comboBox(box, self, "refresh_rate", label="Refresh: ", orientation=Qt.Horizontal, items=[t for t, _ in OWMDS.RefreshRate], callback=self.__invalidate_refresh) hbox = gui.hBox(box, margin=0) gui.button(hbox, self, "PCA", callback=self.do_PCA) gui.button(hbox, self, "Randomize", callback=self.do_random) gui.button(hbox, self, "Jitter", callback=self.do_jitter) def set_data(self, data): """Set the input dataset. Parameters ---------- data : Optional[Table] """ if data is not None and len(data) < 2: self.Error.not_enough_rows() data = None else: self.Error.not_enough_rows.clear() self.signal_data = data if self.matrix is not None and data is not None and \ len(self.matrix) == len(data): self.closeContext() self.data = data self.init_attr_values() self.openContext(data) else: self._invalidated = True @Inputs.distances def set_disimilarity(self, matrix): """Set the dissimilarity (distance) matrix. Parameters ---------- matrix : Optional[Orange.misc.DistMatrix] """ if matrix is not None and len(matrix) < 2: self.Error.matrix_too_small() matrix = None else: self.Error.matrix_too_small.clear() self.matrix = matrix self.matrix_data = matrix.row_items if matrix is not None else None self._invalidated = True def clear(self): super().clear() self.embedding = None self.effective_matrix = None self.graph.set_effective_matrix(None) self.__set_update_loop(None) self.__state = OWMDS.Waiting def _initialize(self): self.closeContext() self.clear() self.clear_messages() # if no data nor matrix is present reset plot if self.signal_data is None and self.matrix is None: self.data = None self.init_attr_values() return if self.signal_data is not None and self.matrix is not None and \ len(self.signal_data) != len(self.matrix): self.Error.mismatching_dimensions() self.init_attr_values() return if self.signal_data is not None: self.data = self.signal_data elif self.matrix_data is not None: self.data = self.matrix_data if self.matrix is not None: self.effective_matrix = self.matrix if self.matrix.axis == 0 and self.data is self.matrix_data: self.data = None elif self.data.domain.attributes: preprocessed_data = MDS().preprocess(self.data) self.effective_matrix = Euclidean(preprocessed_data) else: self.Error.no_attributes() self.init_attr_values() return self.init_attr_values() self.openContext(self.data) self.graph.set_effective_matrix(self.effective_matrix) def _toggle_run(self): if self.__state == OWMDS.Running: self.stop() self._invalidate_output() else: self.start() def start(self): if self.__state == OWMDS.Running: return elif self.__state == OWMDS.Finished: # Resume/continue from a previous run self.__start() elif self.__state == OWMDS.Waiting and \ self.effective_matrix is not None: self.__start() def stop(self): if self.__state == OWMDS.Running: self.__set_update_loop(None) def __start(self): self.graph.pause_drawing_pairs() X = self.effective_matrix init = self.embedding # number of iterations per single GUI update step _, step_size = OWMDS.RefreshRate[self.refresh_rate] if step_size == -1: step_size = self.max_iter def update_loop(X, max_iter, step, init): """ return an iterator over successive improved MDS point embeddings. """ # NOTE: this code MUST NOT call into QApplication.processEvents done = False iterations_done = 0 oldstress = np.finfo(np.float).max init_type = "PCA" if self.initialization == OWMDS.PCA else "random" while not done: step_iter = min(max_iter - iterations_done, step) mds = MDS(dissimilarity="precomputed", n_components=2, n_init=1, max_iter=step_iter, init_type=init_type, init_data=init) mdsfit = mds(X) iterations_done += step_iter embedding, stress = mdsfit.embedding_, mdsfit.stress_ stress /= np.sqrt(np.sum(embedding**2, axis=1)).sum() if iterations_done >= max_iter: done = True elif (oldstress - stress) < mds.params["eps"]: done = True init = embedding oldstress = stress yield embedding, mdsfit.stress_, iterations_done / max_iter self.__set_update_loop(update_loop(X, self.max_iter, step_size, init)) self.progressBarInit(processEvents=None) def __set_update_loop(self, loop): """ Set the update `loop` coroutine. The `loop` is a generator yielding `(embedding, stress, progress)` tuples where `embedding` is a `(N, 2) ndarray` of current updated MDS points, `stress` is the current stress and `progress` a float ratio (0 <= progress <= 1) If an existing update coroutine loop is already in place it is interrupted (i.e. closed). .. note:: The `loop` must not explicitly yield control flow to the event loop (i.e. call `QApplication.processEvents`) """ if self.__update_loop is not None: self.__update_loop.close() self.__update_loop = None self.progressBarFinished(processEvents=None) self.__update_loop = loop if loop is not None: self.setBlocking(True) self.progressBarInit(processEvents=None) self.setStatusMessage("Running") self.runbutton.setText("Stop") self.__state = OWMDS.Running self.__timer.start() else: self.setBlocking(False) self.setStatusMessage("") self.runbutton.setText("Start") self.__state = OWMDS.Finished self.__timer.stop() def __next_step(self): if self.__update_loop is None: return assert not self.__in_next_step self.__in_next_step = True loop = self.__update_loop self.Error.out_of_memory.clear() try: embedding, _, progress = next(self.__update_loop) assert self.__update_loop is loop except StopIteration: self.__set_update_loop(None) self.unconditional_commit() self.graph.resume_drawing_pairs() self.graph.update_coordinates() except MemoryError: self.Error.out_of_memory() self.__set_update_loop(None) self.graph.resume_drawing_pairs() except Exception as exc: self.Error.optimization_error(str(exc)) self.__set_update_loop(None) self.graph.resume_drawing_pairs() else: self.progressBarSet(100.0 * progress, processEvents=None) self.embedding = embedding self.graph.update_coordinates() # schedule next update self.__timer.start() self.__in_next_step = False def do_PCA(self): self.__invalidate_embedding(self.PCA) def do_random(self): self.__invalidate_embedding(self.Random) def do_jitter(self): self.__invalidate_embedding(self.Jitter) def __invalidate_embedding(self, initialization=PCA): def jitter_coord(part): span = np.max(part) - np.min(part) part += np.random.uniform(-span / 20, span / 20, len(part)) # reset/invalidate the MDS embedding, to the default initialization # (Random or PCA), restarting the optimization if necessary. state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) if self.effective_matrix is None: return X = self.effective_matrix if initialization == OWMDS.PCA: self.embedding = torgerson(X) elif initialization == OWMDS.Random: self.embedding = np.random.rand(len(X), 2) else: jitter_coord(self.embedding[:, 0]) jitter_coord(self.embedding[:, 1]) self.setup_plot() # restart the optimization if it was interrupted. if state == OWMDS.Running: self.__start() def __invalidate_refresh(self): state = self.__state if self.__update_loop is not None: self.__set_update_loop(None) # restart the optimization if it was interrupted. # TODO: decrease the max iteration count by the already # completed iterations count. if state == OWMDS.Running: self.__start() def handleNewSignals(self): if self._invalidated: self.graph.pause_drawing_pairs() self._invalidated = False self._initialize() self.__invalidate_embedding() self.cb_class_density.setEnabled(self.can_draw_density()) self.start() super().handleNewSignals() def _invalidate_output(self): self.commit() def _on_connected_changed(self): self.graph.set_effective_matrix(self.effective_matrix) self.graph.update_pairs(reconnect=True) def setup_plot(self): super().setup_plot() if self.embedding is not None: self.graph.update_pairs(reconnect=True) def get_size_data(self): if self.attr_size == "Stress": return stress(self.embedding, self.effective_matrix) else: return super().get_size_data() def get_embedding(self): self.valid_data = np.ones(len(self.embedding), dtype=bool) \ if self.embedding is not None else None return self.embedding def _get_projection_data(self): if self.embedding is None: return None if self.data is None: x_name, y_name = self.embedding_variables_names variables = ContinuousVariable(x_name), ContinuousVariable(y_name) return Table(Domain(variables), self.embedding) return super()._get_projection_data() @classmethod def migrate_settings(cls, settings_, version): if version < 2: settings_graph = {} for old, new in (("label_only_selected", "label_only_selected"), ("symbol_opacity", "alpha_value"), ("symbol_size", "point_width"), ("jitter", "jitter_size")): settings_graph[new] = settings_[old] settings_["graph"] = settings_graph settings_["auto_commit"] = settings_["autocommit"] if version < 3: if "connected_pairs" in settings_: connected_pairs = settings_["connected_pairs"] settings_["graph"]["connected_pairs"] = connected_pairs @classmethod def migrate_context(cls, context, version): if version < 2: domain = context.ordered_domain n_domain = [t for t in context.ordered_domain if t[1] == 2] c_domain = [t for t in context.ordered_domain if t[1] == 1] context_values = {} for _, old_val, new_val in ((domain, "color_value", "attr_color"), (c_domain, "shape_value", "attr_shape"), (n_domain, "size_value", "attr_size"), (domain, "label_value", "attr_label")): tmp = context.values[old_val] if tmp[1] >= 0: context_values[new_val] = (tmp[0], tmp[1] + 100) elif tmp[0] != "Stress": context_values[new_val] = None else: context_values[new_val] = tmp context.values = context_values if version < 3 and "graph" in context.values: values = context.values values["attr_color"] = values["graph"]["attr_color"] values["attr_size"] = values["graph"]["attr_size"] values["attr_shape"] = values["graph"]["attr_shape"] values["attr_label"] = values["graph"]["attr_label"]