Exemplo n.º 1
0
def get_data():
    raw_data = []

    # loop through the csv and get each row
    with open('data/forestFireData.csv', 'rb') as csvfile:
        # reader reads the csv
        reader = csv.reader(csvfile, delimiter=',', quotechar='|')
        # append to the list the row
        for row in reader:
            raw_data.append(row)

    # get the header from the raw_data
    header = raw_data[0]

    # get the rest of the data
    data = raw_data[1:len(raw_data)]

    # make the nodes
    nodes = []

    # loop through the dimensions and make a node for each one
    for i in range(0, len(header)):
        node = BNNode(['0', '1'], util.col(data, i))
        node.col_index = i
        node.name = header[i]
        nodes.append(node)

    # set the classes
    classes = nodes[-1]
    del nodes[-1]

    # return everything
    return (nodes, data, classes.row_values)
Exemplo n.º 2
0
    def test_remove_parental_diff_from_pred(self):
        a = BNNode([], [])
        b = BNNode([], [])
        c = BNNode([], [])
        pred = [a,b,c]

        node = BNNode([], [])
        node.parents = [c]

        new_pred = BN.remove_parental_diff_from_pred(node, pred)
        self.assertEquals(2, len(new_pred))
        self.assertEquals(True, new_pred[0] == a)
        self.assertEquals(True, new_pred[1] == b)
Exemplo n.º 3
0
    def test_get_list_of_cols(self):
        n1 = BNNode([], [])
        n1.col_index = 0

        n2 = BNNode([], [])
        n2.col_index = 1

        n3 = BNNode([], [])
        n3.col_index = 2

        n1.parents.append(n2)
        n1.parents.append(n3)

        col_list = BNClassifier.get_list_of_cols(n1)
        self.assertEquals(1, col_list[0])
        self.assertEquals(2, col_list[1])
Exemplo n.º 4
0
    def test_get_count(self):

        n1 = BNNode([], [])
        n1.col_index = 0

        n2 = BNNode([], [])
        n2.col_index = 1

        n3 = BNNode([], [])
        n3.col_index = 2

        n1.parents.append(n2)
        n1.parents.append(n3)

        cols = [1,2]
        row = [0,1,0]
        data = [[0,1,0], [0,1,0], [0,0,0], [0,1,0]]
        classes = ['a', 'b', 'a', 'b']
        poss = ['a', 'b']
        counts = BNClassifier.get_count(row, n1, data, classes, poss)