Exemplo n.º 1
0
def BSSN_source_terms_for_BSSN_constraints(custom_T4UU=None):
    global sourceterm_H, sourceterm_MU

    # Step 4.a: Call BSSN_source_terms_ito_T4UU to get SDD, SD, S, & rho
    if custom_T4UU == "unrescaled BSSN source terms already given":
        SDD = ixp.declarerank2("SDD", "sym01")
        SD = ixp.declarerank1("SD")
        S = sp.symbols("S", real=True)
        rho = sp.symbols("rho", real=True)
    else:
        SDD, SD, S, rho = stress_energy_source_terms_ito_T4UU_and_ADM_or_BSSN_metricvars(
            "BSSN", custom_T4UU)
    PI = par.Cparameters("REAL", thismodule, ["PI"],
                         "3.14159265358979323846264338327950288")

    # Step 4.b: Add source term to the Hamiltonian constraint H
    sourceterm_H = -16 * PI * rho

    # Step 4.c: Add source term to the momentum constraint M^i
    # Step 4.c.i: Compute gammaUU in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AitoB
    AitoB.ADM_in_terms_of_BSSN()  # Provides gammaUU
    # Step 4.c.ii: Raise S_i
    SU = ixp.zerorank1()
    for i in range(3):
        for j in range(3):
            SU[i] += AitoB.gammaUU[i][j] * SD[j]
    # Step 4.c.iii: Add source term to momentum constraint & rescale:
    sourceterm_MU = ixp.zerorank1()
    for i in range(3):
        sourceterm_MU[i] = -8 * PI * SU[i] / rfm.ReU[i]
Exemplo n.º 2
0
def ScalarField_Tmunu():

    global T4UU

    # Step 1.c: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.d: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    #    The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    Bq.BSSN_basic_tensors()
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Step 1.g: Define ADM quantities in terms of BSSN quantities
    BtoA.ADM_in_terms_of_BSSN()
    gammaDD = BtoA.gammaDD
    gammaUU = BtoA.gammaUU

    # Step 1.h: Define scalar field quantitites
    sf_dD = ixp.declarerank1("sf_dD")
    Pi = sp.Symbol("sfM", real=True)

    # Step 2a: Set up \partial^{t}\varphi = Pi/alpha
    sf4dU = ixp.zerorank1(DIM=4)
    sf4dU[0] = Pi / alpha

    # Step 2b: Set up \partial^{i}\varphi = -Pi*beta^{i}/alpha + gamma^{ij}\partial_{j}\varphi
    for i in range(DIM):
        sf4dU[i + 1] = -Pi * betaU[i] / alpha
        for j in range(DIM):
            sf4dU[i + 1] += gammaUU[i][j] * sf_dD[j]

    # Step 2c: Set up \partial^{i}\varphi\partial_{i}\varphi = -Pi**2 + gamma^{ij}\partial_{i}\varphi\partial_{j}\varphi
    sf4d2 = -Pi**2
    for i in range(DIM):
        for j in range(DIM):
            sf4d2 += gammaUU[i][j] * sf_dD[i] * sf_dD[j]

    # Step 3a: Setting up g^{\mu\nu}
    ADMg.g4UU_ito_BSSN_or_ADM("ADM",
                              gammaDD=gammaDD,
                              betaU=betaU,
                              alpha=alpha,
                              gammaUU=gammaUU)
    g4UU = ADMg.g4UU

    # Step 3b: Setting up T^{\mu\nu} for a massless scalar field
    T4UU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            T4UU[mu][nu] = sf4dU[mu] * sf4dU[nu] - g4UU[mu][nu] * sf4d2 / 2
def setup_ADM_quantities(inputvars):
    if inputvars == "ADM":
        gammaDD = ixp.declarerank2("gammaDD", "sym01")
        betaU = ixp.declarerank1("betaU")
        alpha = sp.symbols("alpha", real=True)
    elif inputvars == "BSSN":
        import BSSN.ADM_in_terms_of_BSSN as AitoB

        # Construct gamma_{ij} in terms of cf & gammabar_{ij}
        AitoB.ADM_in_terms_of_BSSN()
        gammaDD = AitoB.gammaDD
        # Next construct beta^i in terms of vet^i and reference metric quantities
        import BSSN.BSSN_quantities as Bq

        Bq.BSSN_basic_tensors()
        betaU = Bq.betaU
        alpha = sp.symbols("alpha", real=True)
    else:
        print("inputvars = " + str(inputvars) + " not supported. Please choose ADM or BSSN.")
        sys.exit(1)
    return gammaDD,betaU,alpha
Exemplo n.º 4
0
def Psi4(specify_tetrad=True):

    global psi4_im_pt, psi4_re_pt

    # Step 1.b: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.c: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.d: Import all ADM quantities as written in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AB
    AB.ADM_in_terms_of_BSSN()

    # Step 1.e: Set up tetrad vectors
    if specify_tetrad == True:
        import BSSN.Psi4_tetrads as BP4t
        BP4t.Psi4_tetrads()
        mre4U = BP4t.mre4U
        mim4U = BP4t.mim4U
        n4U = BP4t.n4U
    else:
        # For code validation against NRPy+ psi_4 tutorial module (Tutorial-Psi4.ipynb);
        #   ensures a more complete code validation.
        mre4U = ixp.declarerank1("mre4U", DIM=4)
        mim4U = ixp.declarerank1("mim4U", DIM=4)
        n4U = ixp.declarerank1("n4U", DIM=4)

    # Step 2: Construct the (rank-4) Riemann curvature tensor associated with the ADM 3-metric:
    RDDDD = ixp.zerorank4()
    gammaDDdDD = AB.gammaDDdDD

    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    RDDDD[i][k][l][m] = sp.Rational(1, 2) * \
                                        (gammaDDdDD[i][m][k][l] + gammaDDdDD[k][l][i][m] - gammaDDdDD[i][l][k][m] -
                                         gammaDDdDD[k][m][i][l])

    # ... then we add the term on the right:
    gammaDD = AB.gammaDD
    GammaUDD = AB.GammaUDD

    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    for n in range(DIM):
                        for p in range(DIM):
                            RDDDD[i][k][l][m] += gammaDD[n][p] * \
                                                 (GammaUDD[n][k][l] * GammaUDD[p][i][m] - GammaUDD[n][k][m] * GammaUDD[p][i][l])

    # Step 3: Construct the (rank-4) tensor in term 1 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank4term1DDDD = ixp.zerorank4()
    KDD = AB.KDD

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    rank4term1DDDD[i][j][k][l] = RDDDD[i][j][k][
                        l] + KDD[i][k] * KDD[l][j] - KDD[i][l] * KDD[k][j]

    # Step 4: Construct the (rank-3) tensor in term 2 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank3term2DDD = ixp.zerorank3()
    KDDdD = AB.KDDdD

    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                rank3term2DDD[j][k][l] = sp.Rational(
                    1, 2) * (KDDdD[j][k][l] - KDDdD[j][l][k])

    # ... then we construct the second term in this sum:
    #  \Gamma^{p}_{j[k} K_{l]p} = \frac{1}{2} (\Gamma^{p}_{jk} K_{lp}-\Gamma^{p}_{jl} K_{kp}):
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for p in range(DIM):
                    rank3term2DDD[j][k][l] += sp.Rational(
                        1, 2) * (GammaUDD[p][j][k] * KDD[l][p] -
                                 GammaUDD[p][j][l] * KDD[k][p])

    # Finally, we multiply the term by $-8$:
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                rank3term2DDD[j][k][l] *= sp.sympify(-8)

    # Step 5: Construct the (rank-2) tensor in term 3 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf

    # Step 5.1: Construct 3-Ricci tensor R_{ij} = gamma^{im} R_{ijml}
    RDD = ixp.zerorank2()
    gammaUU = AB.gammaUU
    for j in range(DIM):
        for l in range(DIM):
            for i in range(DIM):
                for m in range(DIM):
                    RDD[j][l] += gammaUU[i][m] * RDDDD[i][j][m][l]

    # Step 5.2: Construct K^p_l = gamma^{pi} K_{il}
    KUD = ixp.zerorank2()
    for p in range(DIM):
        for l in range(DIM):
            for i in range(DIM):
                KUD[p][l] += gammaUU[p][i] * KDD[i][l]

    # Step 5.3: Construct trK = gamma^{ij} K_{ij}
    trK = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            trK += gammaUU[i][j] * KDD[i][j]

    # Next we put these terms together to construct the entire term in parentheses:
    # +4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right),
    rank2term3DD = ixp.zerorank2()
    for j in range(DIM):
        for l in range(DIM):
            rank2term3DD[j][l] = RDD[j][l] + trK * KDD[j][l]
            for p in range(DIM):
                rank2term3DD[j][l] += -KDD[j][p] * KUD[p][l]
    # Finally we multiply by +4:
    for j in range(DIM):
        for l in range(DIM):
            rank2term3DD[j][l] *= sp.sympify(4)

    # Step 6: Construct real & imaginary parts of psi_4
    #         by contracting constituent rank 2, 3, and 4
    #         tensors with input tetrads mre4U, mim4U, & n4U.

    def tetrad_product__Real_psi4(n, Mre, Mim, mu, nu, eta, delta):
        return +n[mu] * Mre[nu] * n[eta] * Mre[delta] - n[mu] * Mim[nu] * n[
            eta] * Mim[delta]

    def tetrad_product__Imag_psi4(n, Mre, Mim, mu, nu, eta, delta):
        return -n[mu] * Mre[nu] * n[eta] * Mim[delta] - n[mu] * Mim[nu] * n[
            eta] * Mre[delta]

    # We split psi_4 into three pieces, to expedite & possibly parallelize C code generation.
    psi4_re_pt = [sp.sympify(0), sp.sympify(0), sp.sympify(0)]
    psi4_im_pt = [sp.sympify(0), sp.sympify(0), sp.sympify(0)]
    # First term:
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    psi4_re_pt[0] += rank4term1DDDD[i][j][
                        k][l] * tetrad_product__Real_psi4(
                            n4U, mre4U, mim4U, i + 1, j + 1, k + 1, l + 1)
                    psi4_im_pt[0] += rank4term1DDDD[i][j][
                        k][l] * tetrad_product__Imag_psi4(
                            n4U, mre4U, mim4U, i + 1, j + 1, k + 1, l + 1)

    # Second term:
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                psi4_re_pt[1] += rank3term2DDD[j][k][l] * \
                           sp.Rational(1, 2) * (+tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, k + 1, l + 1)
                                                - tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, k + 1, l + 1))
                psi4_im_pt[1] += rank3term2DDD[j][k][l] * \
                           sp.Rational(1, 2) * (+tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, k + 1, l + 1)
                                                - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, k + 1, l + 1))
    # Third term:
    for j in range(DIM):
        for l in range(DIM):
            psi4_re_pt[2] += rank2term3DD[j][l] * \
                       (sp.Rational(1, 4) * (+tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, 0, l + 1)
                                             - tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, 0, l + 1)
                                             - tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, l + 1, 0)
                                             + tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, l + 1, 0)))
            psi4_im_pt[2] += rank2term3DD[j][l] * \
                       (sp.Rational(1, 4) * (+tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, 0, l + 1)
                                             - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, 0, l + 1)
                                             - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, l + 1, 0)
                                             + tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, l + 1, 0)))
Exemplo n.º 5
0
def driver_C_codes(Csrcdict,
                   ThornName,
                   rhs_list,
                   evol_gfs_list,
                   aux_gfs_list,
                   auxevol_gfs_list,
                   LapseCondition="OnePlusLog",
                   enable_stress_energy_source_terms=False):
    # First the ETK banner code, proudly showing the NRPy+ banner
    import NRPy_logo as logo
    outstr = """
#include <stdio.h>

void BaikalETK_Banner() 
{
    """
    logostr = logo.print_logo(print_to_stdout=False)
    outstr += "printf(\"BaikalETK: another Einstein Toolkit thorn generated by\\n\");\n"
    for line in logostr.splitlines():
        outstr += "    printf(\"" + line + "\\n\");\n"
    outstr += "}\n"

    # Finally add C code string to dictionaries (Python dictionaries are immutable)
    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("Banner.c")] = outstr.replace(
        "BaikalETK", ThornName)

    # Then the RegisterSlicing() function, needed for other ETK thorns
    outstr = """
#include "cctk.h"

#include "Slicing.h"

int BaikalETK_RegisterSlicing (void)
{
  Einstein_RegisterSlicing ("BaikalETK");
  return 0;
}"""

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "RegisterSlicing.c")] = outstr.replace("BaikalETK", ThornName)

    # Next BaikalETK_Symmetry_registration(): Register symmetries

    full_gfs_list = []
    full_gfs_list.extend(evol_gfs_list)
    full_gfs_list.extend(auxevol_gfs_list)
    full_gfs_list.extend(aux_gfs_list)

    outstr = """
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "Symmetry.h"

void BaikalETK_Symmetry_registration(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;

  // Stores gridfunction parity across x=0, y=0, and z=0 planes, respectively
  int sym[3];

  // Next register parities for each gridfunction based on its name 
  //    (to ensure this algorithm is robust, gridfunctions with integers
  //     in their base names are forbidden in NRPy+).
"""
    outstr += ""
    for gf in full_gfs_list:
        # Do not add T4UU gridfunctions if enable_stress_energy_source_terms==False:
        if not (enable_stress_energy_source_terms == False and "T4UU" in gf):
            outstr += """
  // Default to scalar symmetry:
  sym[0] = 1; sym[1] = 1; sym[2] = 1;
  // Now modify sym[0], sym[1], and/or sym[2] as needed 
  //    to account for gridfunction parity across 
  //    x=0, y=0, and/or z=0 planes, respectively
"""
            # If gridfunction name does not end in a digit, by NRPy+ syntax, it must be a scalar
            if gf[len(gf) - 1].isdigit() == False:
                pass  # Scalar = default
            elif len(gf) > 2:
                # Rank-1 indexed expression (e.g., vector)
                if gf[len(gf) - 2].isdigit() == False:
                    if int(gf[-1]) > 2:
                        print("Error: Found invalid gridfunction name: " + gf)
                        sys.exit(1)
                    symidx = gf[-1]
                    outstr += "  sym[" + symidx + "] = -1;\n"
                # Rank-2 indexed expression
                elif gf[len(gf) - 2].isdigit() == True:
                    if len(gf) > 3 and gf[len(gf) - 3].isdigit() == True:
                        print("Error: Found a Rank-3 or above gridfunction: " +
                              gf + ", which is at the moment unsupported.")
                        print("It should be easy to support this if desired.")
                        sys.exit(1)
                    symidx0 = gf[-2]
                    outstr += "  sym[" + symidx0 + "] *= -1;\n"
                    symidx1 = gf[-1]
                    outstr += "  sym[" + symidx1 + "] *= -1;\n"
            else:
                print(
                    "Don't know how you got this far with a gridfunction named "
                    + gf + ", but I'll take no more of this nonsense.")
                print(
                    "   Please follow best-practices and rename your gridfunction to be more descriptive"
                )
                sys.exit(1)
            outstr += "  SetCartSymVN(cctkGH, sym, \"BaikalETK::" + gf + "\");\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("Symmetry_registration_oldCartGrid3D.c")] = \
        outstr.replace("BaikalETK",ThornName)

    # Next set RHSs to zero
    outstr = """
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "Symmetry.h"

void BaikalETK_zero_rhss(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
"""
    set_rhss_to_zero = ""
    for gf in rhs_list:
        set_rhss_to_zero += gf + "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)] = 0.0;\n"

    outstr += lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                      ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                      ["1", "1", "1"], [
                          "#pragma omp parallel for",
                          "",
                          "",
                      ], "", set_rhss_to_zero)
    outstr += "}\n"
    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("zero_rhss.c")] = outstr.replace(
        "BaikalETK", ThornName)

    # Next registration with the Method of Lines thorn
    outstr = """
//--------------------------------------------------------------------------
// Register with the Method of Lines time stepper
// (MoL thorn, found in arrangements/CactusBase/MoL)
// MoL documentation located in arrangements/CactusBase/MoL/doc
//--------------------------------------------------------------------------
#include <stdio.h>

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

#include "Symmetry.h"

void BaikalETK_MoL_registration(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr = 0, group, rhs;

  // Register evolution & RHS gridfunction groups with MoL, so it knows

  group = CCTK_GroupIndex("BaikalETK::evol_variables");
  rhs = CCTK_GroupIndex("BaikalETK::evol_variables_rhs");
  ierr += MoLRegisterEvolvedGroup(group, rhs);
  
  if (ierr) CCTK_ERROR("Problems registering with MoL");
}
"""
    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "MoL_registration.c")] = outstr.replace("BaikalETK", ThornName)

    # Next register with the boundary conditions thorns.
    # PART 1: Set BC type to "none" for all variables
    # Since we choose NewRad boundary conditions, we must register all
    #   gridfunctions to have boundary type "none". This is because
    #   NewRad is seen by the rest of the Toolkit as a modification to the
    #   RHSs.

    # This code is based on Kranc's McLachlan/ML_BSSN/src/Boundaries.cc code.
    outstr = """
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Faces.h"
#include "util_Table.h"
#include "Symmetry.h"

// Set `none` boundary conditions on BSSN RHSs, as these are set via NewRad.
void BaikalETK_BoundaryConditions_evolved_gfs(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr CCTK_ATTRIBUTE_UNUSED = 0;
"""
    for gf in evol_gfs_list:
        outstr += """
  ierr = Boundary_SelectVarForBC(cctkGH, CCTK_ALL_FACES, 1, -1, "BaikalETK::""" + gf + """", "none");
  if (ierr < 0) CCTK_ERROR("Failed to register BC for BaikalETK::""" + gf + """!");
"""
    outstr += """
}

// Set `flat` boundary conditions on BSSN constraints, similar to what Lean does.
void BaikalETK_BoundaryConditions_aux_gfs(CCTK_ARGUMENTS) {
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr CCTK_ATTRIBUTE_UNUSED = 0;

"""
    for gf in aux_gfs_list:
        outstr += """
  ierr = Boundary_SelectVarForBC(cctkGH, CCTK_ALL_FACES, cctk_nghostzones[0], -1, "BaikalETK::""" + gf + """", "flat");
  if (ierr < 0) CCTK_ERROR("Failed to register BC for BaikalETK::""" + gf + """!");
"""
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "BoundaryConditions.c")] = outstr.replace("BaikalETK", ThornName)

    # PART 2: Set C code for calling NewRad BCs
    #   As explained in lean_public/LeanBSSNMoL/src/calc_bssn_rhs.F90,
    #   the function NewRad_Apply takes the following arguments:
    #   NewRad_Apply(cctkGH, var, rhs, var0, v0, radpower),
    #     which implement the boundary condition:
    #       var  =  var_at_infinite_r + u(r-var_char_speed*t)/r^var_radpower
    #  Obviously for var_radpower>0, var_at_infinite_r is the value of
    #    the variable at r->infinity. var_char_speed is the propagation
    #    speed at the outer boundary, and var_radpower is the radial
    #    falloff rate.

    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_NewRad(CCTK_ARGUMENTS) {
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
"""
    for gf in evol_gfs_list:
        var_at_infinite_r = "0.0"
        var_char_speed = "1.0"
        var_radpower = "1.0"

        if gf == "alpha":
            var_at_infinite_r = "1.0"
            if LapseCondition == "OnePlusLog":
                var_char_speed = "sqrt(2.0)"
            else:
                pass  # 1.0 (default) is fine
        if "aDD" in gf or "trK" in gf:  # consistent with Lean code.
            var_radpower = "2.0"

        outstr += "  NewRad_Apply(cctkGH, " + gf + ", " + gf.replace(
            "GF", ""
        ) + "_rhsGF, " + var_at_infinite_r + ", " + var_char_speed + ", " + var_radpower + ");\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "BoundaryCondition_NewRad.c")] = outstr.replace(
            "BaikalETK", ThornName)

    # First we convert from ADM to BSSN, as is required to convert initial data
    #    (given using) ADM quantities, to the BSSN evolved variables
    import BSSN.ADM_Numerical_Spherical_or_Cartesian_to_BSSNCurvilinear as atob
    IDhDD,IDaDD,IDtrK,IDvetU,IDbetU,IDalpha,IDcf,IDlambdaU = \
        atob.Convert_Spherical_or_Cartesian_ADM_to_BSSN_curvilinear("Cartesian","DoNotOutputADMInputFunction",os.path.join(ThornName,"src"))

    # Store the original list of registered gridfunctions; we'll want to unregister
    #   all the *SphorCart* gridfunctions after we're finished with them below.
    orig_glb_gridfcs_list = []
    for gf in gri.glb_gridfcs_list:
        orig_glb_gridfcs_list.append(gf)

    alphaSphorCart = gri.register_gridfunctions("AUXEVOL", "alphaSphorCart")
    betaSphorCartU = ixp.register_gridfunctions_for_single_rank1(
        "AUXEVOL", "betaSphorCartU")
    BSphorCartU = ixp.register_gridfunctions_for_single_rank1(
        "AUXEVOL", "BSphorCartU")
    gammaSphorCartDD = ixp.register_gridfunctions_for_single_rank2(
        "AUXEVOL", "gammaSphorCartDD", "sym01")
    KSphorCartDD = ixp.register_gridfunctions_for_single_rank2(
        "AUXEVOL", "KSphorCartDD", "sym01")

    # ADM to BSSN conversion, used for converting ADM initial data into a form readable by this thorn.
    # ADM to BSSN, Part 1: Set up function call and pointers to ADM gridfunctions
    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_ADM_to_BSSN(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    
    CCTK_REAL *alphaSphorCartGF = alp;
"""
    # It's ugly if we output code in the following ordering, so we'll first
    #   output to a string and then sort the string to beautify the code a bit.
    outstrtmp = []
    for i in range(3):
        outstrtmp.append("    CCTK_REAL *betaSphorCartU" + str(i) +
                         "GF = beta" + chr(ord('x') + i) + ";\n")
        outstrtmp.append("    CCTK_REAL *BSphorCartU" + str(i) +
                         "GF = dtbeta" + chr(ord('x') + i) + ";\n")
        for j in range(i, 3):
            outstrtmp.append("    CCTK_REAL *gammaSphorCartDD" + str(i) +
                             str(j) + "GF = g" + chr(ord('x') + i) +
                             chr(ord('x') + j) + ";\n")
            outstrtmp.append("    CCTK_REAL *KSphorCartDD" + str(i) + str(j) +
                             "GF = k" + chr(ord('x') + i) + chr(ord('x') + j) +
                             ";\n")
    outstrtmp.sort()
    for line in outstrtmp:
        outstr += line

    # ADM to BSSN, Part 2: Set up ADM to BSSN conversions for BSSN gridfunctions that do not require
    #                      finite-difference derivatives (i.e., all gridfunctions except lambda^i (=Gamma^i
    #                      in non-covariant BSSN)):
    #                      h_{ij}, a_{ij}, trK, vet^i=beta^i,bet^i=B^i, cf (conformal factor), and alpha
    all_but_lambdaU_expressions = [
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD00"), rhs=IDhDD[0][0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD01"), rhs=IDhDD[0][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD02"), rhs=IDhDD[0][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD11"), rhs=IDhDD[1][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD12"), rhs=IDhDD[1][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD22"), rhs=IDhDD[2][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD00"), rhs=IDaDD[0][0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD01"), rhs=IDaDD[0][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD02"), rhs=IDaDD[0][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD11"), rhs=IDaDD[1][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD12"), rhs=IDaDD[1][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD22"), rhs=IDaDD[2][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "trK"), rhs=IDtrK),
        lhrh(lhs=gri.gfaccess("in_gfs", "vetU0"), rhs=IDvetU[0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "vetU1"), rhs=IDvetU[1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "vetU2"), rhs=IDvetU[2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "betU0"), rhs=IDbetU[0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "betU1"), rhs=IDbetU[1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "betU2"), rhs=IDbetU[2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "alpha"), rhs=IDalpha),
        lhrh(lhs=gri.gfaccess("in_gfs", "cf"), rhs=IDcf)
    ]

    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    all_but_lambdaU_outC = fin.FD_outputC("returnstring",
                                          all_but_lambdaU_expressions,
                                          outCparams)
    outstr += lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                      ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                      ["1", "1", "1"], ["#pragma omp parallel for", "", ""],
                      "    ", all_but_lambdaU_outC)

    # ADM to BSSN, Part 3: Set up ADM to BSSN conversions for BSSN gridfunctions defined from
    #                      finite-difference derivatives: lambda^i, which is Gamma^i in non-covariant BSSN):
    outstr += """
    const CCTK_REAL invdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const CCTK_REAL invdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const CCTK_REAL invdx2 = 1.0/CCTK_DELTA_SPACE(2);
"""

    path = os.path.join(ThornName, "src")
    BSSN_RHS_FD_orders_output = []
    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_RHSs_FD_order" in file:
                array = file.replace(".", "_").split("_")
                BSSN_RHS_FD_orders_output.append(int(array[4]))

    for current_FD_order in BSSN_RHS_FD_orders_output:
        # Store original finite-differencing order:
        orig_FD_order = par.parval_from_str(
            "finite_difference::FD_CENTDERIVS_ORDER")
        # Set new finite-differencing order:
        par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",
                                current_FD_order)

        outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
        lambdaU_expressions = [
            lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU0"), rhs=IDlambdaU[0]),
            lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU1"), rhs=IDlambdaU[1]),
            lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU2"), rhs=IDlambdaU[2])
        ]
        lambdaU_expressions_FDout = fin.FD_outputC("returnstring",
                                                   lambdaU_expressions,
                                                   outCparams)

        lambdafile = "ADM_to_BSSN__compute_lambdaU_FD_order_" + str(
            current_FD_order) + ".h"
        with open(os.path.join(ThornName, "src", lambdafile), "w") as file:
            file.write(
                lp.loop(["i2", "i1", "i0"], [
                    "cctk_nghostzones[2]", "cctk_nghostzones[1]",
                    "cctk_nghostzones[0]"
                ], [
                    "cctk_lsh[2]-cctk_nghostzones[2]",
                    "cctk_lsh[1]-cctk_nghostzones[1]",
                    "cctk_lsh[0]-cctk_nghostzones[0]"
                ], ["1", "1", "1"], ["#pragma omp parallel for", "", ""], "",
                        lambdaU_expressions_FDout))

        outstr += "    if(FD_order == " + str(current_FD_order) + ") {\n"
        outstr += "        #include \"" + lambdafile + "\"\n"
        outstr += "    }\n"
        # Restore original FD order
        par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",
                                orig_FD_order)

    outstr += """
    ExtrapolateGammas(cctkGH,lambdaU0GF);
    ExtrapolateGammas(cctkGH,lambdaU1GF);
    ExtrapolateGammas(cctkGH,lambdaU2GF);
}
"""

    # Unregister the *SphorCartGF's.
    gri.glb_gridfcs_list = orig_glb_gridfcs_list

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("ADM_to_BSSN.c")] = outstr.replace(
        "BaikalETK", ThornName)

    import BSSN.ADM_in_terms_of_BSSN as btoa
    import BSSN.BSSN_quantities as Bq

    btoa.ADM_in_terms_of_BSSN()
    Bq.BSSN_basic_tensors()  # Gives us betaU & BU

    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_BSSN_to_ADM(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

"""
    btoa_lhrh = []
    for i in range(3):
        for j in range(i, 3):
            btoa_lhrh.append(
                lhrh(lhs="g" + chr(ord('x') + i) + chr(ord('x') + j) +
                     "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                     rhs=btoa.gammaDD[i][j]))
    for i in range(3):
        for j in range(i, 3):
            btoa_lhrh.append(
                lhrh(lhs="k" + chr(ord('x') + i) + chr(ord('x') + j) +
                     "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                     rhs=btoa.KDD[i][j]))
    btoa_lhrh.append(
        lhrh(lhs="alp[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]", rhs=Bq.alpha))

    for i in range(3):
        btoa_lhrh.append(
            lhrh(lhs="beta" + chr(ord('x') + i) +
                 "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                 rhs=Bq.betaU[i]))

    for i in range(3):
        btoa_lhrh.append(
            lhrh(lhs="dtbeta" + chr(ord('x') + i) +
                 "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                 rhs=Bq.BU[i]))

    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    bssn_to_adm_Ccode = fin.FD_outputC("returnstring", btoa_lhrh, outCparams)
    outstr += lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                      ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                      ["1", "1", "1"], ["#pragma omp parallel for", "", ""],
                      "", bssn_to_adm_Ccode)

    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("BSSN_to_ADM.c")] = outstr.replace(
        "BaikalETK", ThornName)

    # Next, the driver for computing the Ricci tensor:
    outstr = """
#include <math.h>

#include "SIMD/SIMD_intrinsics.h"

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_driver_pt1_BSSN_Ricci(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;

    const CCTK_INT *FD_order = CCTK_ParameterGet("FD_order","BaikalETK",NULL);

    const CCTK_REAL NOSIMDinvdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const REAL_SIMD_ARRAY invdx0 = ConstSIMD(NOSIMDinvdx0);
    const CCTK_REAL NOSIMDinvdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const REAL_SIMD_ARRAY invdx1 = ConstSIMD(NOSIMDinvdx1);
    const CCTK_REAL NOSIMDinvdx2 = 1.0/CCTK_DELTA_SPACE(2);
    const REAL_SIMD_ARRAY invdx2 = ConstSIMD(NOSIMDinvdx2);
"""
    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_Ricci_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(*FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "driver_pt1_BSSN_Ricci.c")] = outstr.replace("BaikalETK", ThornName)

    def SIMD_declare_C_params():
        SIMD_declare_C_params_str = ""
        for i in range(len(par.glb_Cparams_list)):
            # keep_param is a boolean indicating whether we should accept or reject
            #    the parameter. singleparstring will contain the string indicating
            #    the variable type.
            keep_param, singleparstring = ccl.keep_param__return_type(
                par.glb_Cparams_list[i])

            if (keep_param) and ("CCTK_REAL" in singleparstring):
                parname = par.glb_Cparams_list[i].parname
                SIMD_declare_C_params_str += "    const "+singleparstring + "*NOSIMD"+parname+\
                                             " = CCTK_ParameterGet(\""+parname+"\",\"BaikalETK\",NULL);\n"
                SIMD_declare_C_params_str += "    const REAL_SIMD_ARRAY " + parname + " = ConstSIMD(*NOSIMD" + parname + ");\n"
        return SIMD_declare_C_params_str

    # Next, the driver for computing the BSSN RHSs:
    outstr = """
#include <math.h>

#include "SIMD/SIMD_intrinsics.h"

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_driver_pt2_BSSN_RHSs(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;

    const CCTK_INT *FD_order = CCTK_ParameterGet("FD_order","BaikalETK",NULL);

    const CCTK_REAL NOSIMDinvdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const REAL_SIMD_ARRAY invdx0 = ConstSIMD(NOSIMDinvdx0);
    const CCTK_REAL NOSIMDinvdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const REAL_SIMD_ARRAY invdx1 = ConstSIMD(NOSIMDinvdx1);
    const CCTK_REAL NOSIMDinvdx2 = 1.0/CCTK_DELTA_SPACE(2);
    const REAL_SIMD_ARRAY invdx2 = ConstSIMD(NOSIMDinvdx2);
""" + SIMD_declare_C_params()

    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_RHSs_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(*FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "driver_pt2_BSSN_RHSs.c")] = outstr.replace("BaikalETK", ThornName)

    # Next, the driver for enforcing detgammabar = detgammahat constraint:
    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_enforce_detgammabar_constraint(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
"""

    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "enforcedetgammabar_constraint_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("driver_enforcedetgammabar_constraint.c")] = \
        outstr.replace("BaikalETK",ThornName)

    # Next, the driver for computing the BSSN Hamiltonian & momentum constraints
    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_BSSN_constraints(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    const CCTK_REAL invdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const CCTK_REAL invdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const CCTK_REAL invdx2 = 1.0/CCTK_DELTA_SPACE(2);
"""
    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_constraints_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "driver_BSSN_constraints.c")] = outstr.replace("BaikalETK", ThornName)

    if enable_stress_energy_source_terms == True:
        # Declare T4DD as a set of gridfunctions. These won't
        #    actually appear in interface.ccl, as interface.ccl
        #    was set above. Thus before calling the code output
        #    by FD_outputC(), we'll have to set pointers
        #    to the actual gridfunctions they reference.
        #    (In this case the eTab's.)
        T4DD = ixp.register_gridfunctions_for_single_rank2("AUXEVOL",
                                                           "T4DD",
                                                           "sym01",
                                                           DIM=4)
        import BSSN.ADMBSSN_tofrom_4metric as AB4m
        AB4m.g4UU_ito_BSSN_or_ADM("BSSN")

        T4UUraised = ixp.zerorank2(DIM=4)
        for mu in range(4):
            for nu in range(4):
                for delta in range(4):
                    for gamma in range(4):
                        T4UUraised[mu][nu] += AB4m.g4UU[mu][delta] * AB4m.g4UU[
                            nu][gamma] * T4DD[delta][gamma]

        T4UU_expressions = [
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU00"), rhs=T4UUraised[0][0]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU01"), rhs=T4UUraised[0][1]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU02"), rhs=T4UUraised[0][2]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU03"), rhs=T4UUraised[0][3]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU11"), rhs=T4UUraised[1][1]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU12"), rhs=T4UUraised[1][2]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU13"), rhs=T4UUraised[1][3]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU22"), rhs=T4UUraised[2][2]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU23"), rhs=T4UUraised[2][3]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU33"), rhs=T4UUraised[3][3])
        ]

        outCparams = "outCverbose=False,includebraces=False,preindent=2,SIMD_enable=True"
        T4UUstr = fin.FD_outputC("returnstring", T4UU_expressions, outCparams)
        T4UUstr_loop = lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                               ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                               ["1", "1", "SIMD_width"],
                               ["#pragma omp parallel for", "", ""], "",
                               T4UUstr)

        outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "SIMD/SIMD_intrinsics.h"

void BaikalETK_driver_BSSN_T4UU(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    const CCTK_REAL *restrict T4DD00GF = eTtt;
    const CCTK_REAL *restrict T4DD01GF = eTtx;
    const CCTK_REAL *restrict T4DD02GF = eTty;
    const CCTK_REAL *restrict T4DD03GF = eTtz;
    const CCTK_REAL *restrict T4DD11GF = eTxx;
    const CCTK_REAL *restrict T4DD12GF = eTxy;
    const CCTK_REAL *restrict T4DD13GF = eTxz;
    const CCTK_REAL *restrict T4DD22GF = eTyy;
    const CCTK_REAL *restrict T4DD23GF = eTyz;
    const CCTK_REAL *restrict T4DD33GF = eTzz;
""" + T4UUstr_loop + """
}\n"""

        # Add C code string to dictionary (Python dictionaries are immutable)
        Csrcdict[append_to_make_code_defn_list(
            "driver_BSSN_T4UU.c")] = outstr.replace("BaikalETK", ThornName)
Exemplo n.º 6
0
def Psi4_tetradsv2():
    global l4U, n4U, mre4U, mim4U

    # Step 1.c: Check if tetrad choice is implemented:
    if par.parval_from_str(thismodule + "::TetradChoice") != "QuasiKinnersley":
        print("ERROR: " + thismodule + "::TetradChoice = " +
              par.parval_from_str("TetradChoice") + " currently unsupported!")
        exit(1)

    # Step 1.d: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.e: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.f: Import all ADM quantities as written in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AB
    AB.ADM_in_terms_of_BSSN()

    # Step 2.a: Declare the Cartesian x,y,z as input parameters
    #           and v_1^a, v_2^a, and v_3^a tetrads,
    #           as well as detgamma and gammaUU from
    #           BSSN.ADM_in_terms_of_BSSN
    x, y, z = par.Cparameters("REAL", thismodule, ["x", "y", "z"])

    v1UCart = ixp.zerorank1()
    v2UCart = ixp.zerorank1()

    # detgamma = AB.detgamma
    # gammaUU  = AB.gammaUU

    # Step 2.b: Define v1U and v2U
    v1UCart = [-y, x, sp.sympify(0)]
    v2UCart = [x, y, z]

    # Step 2.c: Construct the Jacobian d x_Cart^i / d xx^j
    Jac_dUCart_dDrfmUD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            Jac_dUCart_dDrfmUD[i][j] = sp.diff(rfm.xxCart[i], rfm.xx[j])

    # Step 2.d: Invert above Jacobian to get needed d xx^j / d x_Cart^i
    Jac_dUrfm_dDCartUD, dummyDET = ixp.generic_matrix_inverter3x3(
        Jac_dUCart_dDrfmUD)

    # Step 2.e: Transform gammaDD to Cartesian basis:
    gammaCartDD = ixp.zerorank2()
    gammaDD = AB.gammaDD
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    gammaCartDD[i][j] += Jac_dUrfm_dDCartUD[k][
                        i] * Jac_dUrfm_dDCartUD[l][j] * gammaDD[k][l]

    gammaCartUU, detgammaCart = ixp.symm_matrix_inverter3x3(gammaCartDD)

    # Step 2.e: Transform v1U and v2U from the Cartesian to the xx^i basis
    v1U = ixp.zerorank1()
    v2U = ixp.zerorank1()
    for i in range(DIM):
        v1U[i] = v1UCart[i]
        v2U[i] = v2UCart[i]
    # for i in range(DIM):
    #     for j in range(DIM):
    #         v1U[i] += Jac_dUrfm_dDCartUD[i][j]*v1UCart[j]
    #         v2U[i] += Jac_dUrfm_dDCartUD[i][j]*v2UCart[j]

    # Step 2.f: Define the rank-3 version of the Levi-Civita symbol. Amongst
    #         other uses, this is needed for the construction of the approximate
    #         quasi-Kinnersley tetrad.
    def define_LeviCivitaSymbol_rank3(DIM=-1):
        if DIM == -1:
            DIM = par.parval_from_str("DIM")

        LeviCivitaSymbol = ixp.zerorank3()

        for i in range(DIM):
            for j in range(DIM):
                for k in range(DIM):
                    # From https://codegolf.stackexchange.com/questions/160359/levi-civita-symbol :
                    LeviCivitaSymbol[i][j][k] = (i - j) * (j - k) * (k - i) / 2
        return LeviCivitaSymbol

    # Step 2.g: Define v3U
    v3U = ixp.zerorank1()
    LeviCivitaSymbolDDD = define_LeviCivitaSymbol_rank3(DIM=3)
    for a in range(DIM):
        for b in range(DIM):
            for c in range(DIM):
                for d in range(DIM):
                    v3U[a] += sp.sqrt(detgammaCart) * gammaCartUU[a][
                        d] * LeviCivitaSymbolDDD[d][b][c] * v1U[b] * v2U[c]

    # Step 2.h: Define omega_{ij}
    omegaDD = ixp.zerorank2()

    # Step 2.i: Define e^a_i. Note that:
    #           omegaDD[0][0] = \omega_{11} above;
    #           omegaDD[1][1] = \omega_{22} above, etc.
    e1U = ixp.zerorank1()
    e2U = ixp.zerorank1()
    e3U = ixp.zerorank1()
    update_omega(omegaDD, v1U, v2U, v3U, gammaCartDD)
    for a in range(DIM):
        e1U[a] = v1U[a] / sp.sqrt(omegaDD[0][0])
    update_omega(omegaDD, e1U, v2U, v3U, gammaCartDD)
    for a in range(DIM):
        e2U[a] = (v2U[a] - omegaDD[0][1] * e1U[a]) / sp.sqrt(omegaDD[1][1])
    update_omega(omegaDD, e1U, e2U, v3U, gammaCartDD)
    for a in range(DIM):
        e3U[a] = (v3U[a] - omegaDD[0][2] * e1U[a] -
                  omegaDD[1][2] * e2U[a]) / sp.sqrt(omegaDD[2][2])

    # Step 2.j: Construct l^mu, n^mu, and m^mu, based on r^mu, theta^mu, phi^mu, and u^mu:
    rCart4U = ixp.zerorank1(DIM=4)
    thetaCart4U = ixp.zerorank1(DIM=4)
    phiCart4U = ixp.zerorank1(DIM=4)

    for a in range(DIM):
        rCart4U[a + 1] = e2U[a]
        thetaCart4U[a + 1] = e3U[a]
        phiCart4U[a + 1] = e1U[a]

    r4U = ixp.zerorank1(DIM=4)
    theta4U = ixp.zerorank1(DIM=4)
    phi4U = ixp.zerorank1(DIM=4)

    for a in range(DIM):
        for b in range(DIM):
            r4U[a + 1] += Jac_dUrfm_dDCartUD[a][b] * rCart4U[b + 1]
            theta4U[a + 1] += Jac_dUrfm_dDCartUD[a][b] * thetaCart4U[b + 1]
            phi4U[a + 1] += Jac_dUrfm_dDCartUD[a][b] * phiCart4U[b + 1]

    u4U = ixp.zerorank1(DIM=4)
    # FIXME? assumes alpha=1, beta^i = 0
    u4U[0] = 1

    l4U = ixp.zerorank1(DIM=4)
    n4U = ixp.zerorank1(DIM=4)
    mre4U = ixp.zerorank1(DIM=4)
    mim4U = ixp.zerorank1(DIM=4)

    isqrt2 = 1 / sp.sqrt(2)
    for mu in range(4):
        l4U[mu] = isqrt2 * (u4U[mu] + r4U[mu])
        n4U[mu] = isqrt2 * (u4U[mu] - r4U[mu])
        mre4U[mu] = isqrt2 * theta4U[mu]
        mim4U[mu] = isqrt2 * phi4U[mu]
Exemplo n.º 7
0
def Psi4_tetrads():
    global l4U, n4U, mre4U, mim4U

    # Step 1.c: Check if tetrad choice is implemented:
    if par.parval_from_str(thismodule + "::TetradChoice") != "QuasiKinnersley":
        print("ERROR: " + thismodule + "::TetradChoice = " +
              par.parval_from_str("TetradChoice") + " currently unsupported!")
        sys.exit(1)

    # Step 1.d: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.e: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.f: Import all ADM quantities as written in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AB
    AB.ADM_in_terms_of_BSSN()

    # Step 2.a: Declare the Cartesian x,y,z in terms of
    #           xx0,xx1,xx2.
    x = rfm.xxCart[0]
    y = rfm.xxCart[1]
    z = rfm.xxCart[2]

    # Step 2.b: Declare detgamma and gammaUU from
    #           BSSN.ADM_in_terms_of_BSSN;
    #           simplify detgamma & gammaUU expressions,
    #           which expedites Psi4 codegen.
    detgamma = sp.simplify(AB.detgamma)
    gammaUU = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            gammaUU[i][j] = sp.simplify(AB.gammaUU[i][j])

    # Step 2.c: Define v1U and v2U
    v1UCart = [-y, x, sp.sympify(0)]
    v2UCart = [x, y, z]

    # Step 2.d: Construct the Jacobian d x_Cart^i / d xx^j
    Jac_dUCart_dDrfmUD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            Jac_dUCart_dDrfmUD[i][j] = sp.simplify(
                sp.diff(rfm.xxCart[i], rfm.xx[j]))

    # Step 2.e: Invert above Jacobian to get needed d xx^j / d x_Cart^i
    Jac_dUrfm_dDCartUD, dummyDET = ixp.generic_matrix_inverter3x3(
        Jac_dUCart_dDrfmUD)

    # Step 2.e.i: Simplify expressions for d xx^j / d x_Cart^i:
    for i in range(DIM):
        for j in range(DIM):
            Jac_dUrfm_dDCartUD[i][j] = sp.simplify(Jac_dUrfm_dDCartUD[i][j])

    # Step 2.f: Transform v1U and v2U from the Cartesian to the xx^i basis
    v1U = ixp.zerorank1()
    v2U = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            v1U[i] += Jac_dUrfm_dDCartUD[i][j] * v1UCart[j]
            v2U[i] += Jac_dUrfm_dDCartUD[i][j] * v2UCart[j]

    # Step 2.g: Define v3U
    v3U = ixp.zerorank1()
    LeviCivitaSymbolDDD = ixp.LeviCivitaSymbol_dim3_rank3()
    for a in range(DIM):
        for b in range(DIM):
            for c in range(DIM):
                for d in range(DIM):
                    v3U[a] += sp.sqrt(detgamma) * gammaUU[a][
                        d] * LeviCivitaSymbolDDD[d][b][c] * v1U[b] * v2U[c]

    # Step 2.g.i: Simplify expressions for v1U,v2U,v3U. This greatly expedites the C code generation (~10x faster)
    #             Drat. Simplification with certain versions of SymPy & coord systems results in a hang. Let's just
    #             evaluate the expressions so the most trivial optimizations can be performed.
    for a in range(DIM):
        v1U[a] = v1U[a].doit()  # sp.simplify(v1U[a])
        v2U[a] = v2U[a].doit()  # sp.simplify(v2U[a])
        v3U[a] = v3U[a].doit()  # sp.simplify(v3U[a])

    # Step 2.h: Define omega_{ij}
    omegaDD = ixp.zerorank2()
    gammaDD = AB.gammaDD

    def v_vectorDU(v1U, v2U, v3U, i, a):
        if i == 0:
            return v1U[a]
        if i == 1:
            return v2U[a]
        if i == 2:
            return v3U[a]
        print("ERROR: unknown vector!")
        sys.exit(1)

    def update_omega(omegaDD, i, j, v1U, v2U, v3U, gammaDD):
        omegaDD[i][j] = sp.sympify(0)
        for a in range(DIM):
            for b in range(DIM):
                omegaDD[i][j] += v_vectorDU(v1U, v2U, v3U, i, a) * v_vectorDU(
                    v1U, v2U, v3U, j, b) * gammaDD[a][b]

    # Step 2.i: Define e^a_i. Note that:
    #           omegaDD[0][0] = \omega_{11} above;
    #           omegaDD[1][1] = \omega_{22} above, etc.
    # First e_1^a: Orthogonalize & normalize:
    e1U = ixp.zerorank1()
    update_omega(omegaDD, 0, 0, v1U, v2U, v3U, gammaDD)
    for a in range(DIM):
        e1U[a] = v1U[a] / sp.sqrt(omegaDD[0][0])

    # Next e_2^a: First orthogonalize:
    e2U = ixp.zerorank1()
    update_omega(omegaDD, 0, 1, e1U, v2U, v3U, gammaDD)
    for a in range(DIM):
        e2U[a] = (v2U[a] - omegaDD[0][1] * e1U[a])
    # Then normalize:
    update_omega(omegaDD, 1, 1, e1U, e2U, v3U, gammaDD)
    for a in range(DIM):
        e2U[a] /= sp.sqrt(omegaDD[1][1])

    # Next e_3^a: First orthogonalize:
    e3U = ixp.zerorank1()
    update_omega(omegaDD, 0, 2, e1U, e2U, v3U, gammaDD)
    update_omega(omegaDD, 1, 2, e1U, e2U, v3U, gammaDD)
    for a in range(DIM):
        e3U[a] = (v3U[a] - omegaDD[0][2] * e1U[a] - omegaDD[1][2] * e2U[a])
    # Then normalize:
    update_omega(omegaDD, 2, 2, e1U, e2U, e3U, gammaDD)
    for a in range(DIM):
        e3U[a] /= sp.sqrt(omegaDD[2][2])

    # Step 2.j: Construct l^mu, n^mu, and m^mu, based on r^mu, theta^mu, phi^mu, and u^mu:
    r4U = ixp.zerorank1(DIM=4)
    u4U = ixp.zerorank1(DIM=4)
    theta4U = ixp.zerorank1(DIM=4)
    phi4U = ixp.zerorank1(DIM=4)

    for a in range(DIM):
        r4U[a + 1] = e2U[a]
        theta4U[a + 1] = e3U[a]
        phi4U[a + 1] = e1U[a]

    # FIXME? assumes alpha=1, beta^i = 0
    if par.parval_from_str(thismodule + "::UseCorrectUnitNormal") == "False":
        u4U[0] = 1
    else:
        # Eq. 2.116 in Baumgarte & Shapiro:
        #  n^mu = {1/alpha, -beta^i/alpha}. Note that n_mu = {alpha,0}, so n^mu n_mu = -1.
        import BSSN.BSSN_quantities as Bq
        Bq.declare_BSSN_gridfunctions_if_not_declared_already()
        Bq.BSSN_basic_tensors()
        u4U[0] = 1 / Bq.alpha
        for i in range(DIM):
            u4U[i + 1] = -Bq.betaU[i] / Bq.alpha

    l4U = ixp.zerorank1(DIM=4)
    n4U = ixp.zerorank1(DIM=4)
    mre4U = ixp.zerorank1(DIM=4)
    mim4U = ixp.zerorank1(DIM=4)

    # M_SQRT1_2 = 1 / sqrt(2) (defined in math.h on Linux)
    M_SQRT1_2 = par.Cparameters("#define", thismodule, "M_SQRT1_2", "")
    isqrt2 = M_SQRT1_2  #1/sp.sqrt(2) <- SymPy drops precision to 15 sig. digits in unit tests
    for mu in range(4):
        l4U[mu] = isqrt2 * (u4U[mu] + r4U[mu])
        n4U[mu] = isqrt2 * (u4U[mu] - r4U[mu])
        mre4U[mu] = isqrt2 * theta4U[mu]
        mim4U[mu] = isqrt2 * phi4U[mu]
Exemplo n.º 8
0
def stress_energy_source_terms_ito_T4UU_and_ADM_or_BSSN_metricvars(
        inputvars, custom_T4UU=None):
    # Step 1: Check if rfm.reference_metric() already called. If not, BSSN
    #         quantities are not yet defined, so cannot proceed!
    if rfm.have_already_called_reference_metric_function == False:
        print(
            "BSSN_source_terms_ito_T4UU(): Must call reference_metric() first!"
        )
        sys.exit(1)

    # Step 2.a: Define gamma4DD[mu][nu] = g_{mu nu} + n_{mu} n_{nu}
    alpha = sp.symbols("alpha", real=True)
    zero = sp.sympify(0)
    n4D = [-alpha, zero, zero, zero]
    AB4m.g4DD_ito_BSSN_or_ADM(inputvars)

    gamma4DD = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            gamma4DD[mu][nu] = AB4m.g4DD[mu][nu] + n4D[mu] * n4D[nu]

    # Step 2.b: If expression for components of T4UU not given, declare T4UU here
    if custom_T4UU == None:
        T4UU = ixp.declarerank2("T4UU", "sym01", DIM=4)
    else:
        T4UU = custom_T4UU

    # Step 2.c: Define BSSN source terms
    global SDD, SD, S, rho
    # Step 2.c.i: S_{ij} = gamma_{i mu} gamma_{j nu} T^{mu nu}
    SDD = ixp.zerorank2()
    for i in range(3):
        for j in range(3):
            for mu in range(4):
                for nu in range(4):
                    SDD[i][j] += gamma4DD[i + 1][mu] * gamma4DD[
                        j + 1][nu] * T4UU[mu][nu]
    # Step 2.c.ii: S_{i} = -gamma_{i mu} n_{nu} T^{mu nu}
    SD = ixp.zerorank1()
    for i in range(3):
        for mu in range(4):
            for nu in range(4):
                SD[i] += -gamma4DD[i + 1][mu] * n4D[nu] * T4UU[mu][nu]
    # Step 2.c.iii: S = gamma^{ij} S_{ij}
    if inputvars == "ADM":
        gammaDD = ixp.declarerank2("gammaDD", "sym01")
        gammaUU, dummydet = ixp.symm_matrix_inverter3x3(gammaDD)  # Set gammaUU
    elif inputvars == "BSSN":
        import BSSN.ADM_in_terms_of_BSSN as AitoB  # NRPy+: ADM quantities in terms of BSSN quantities
        AitoB.ADM_in_terms_of_BSSN()
        gammaUU = AitoB.gammaUU

    S = zero
    for i in range(3):
        for j in range(3):
            S += gammaUU[i][j] * SDD[i][j]
    # Step 2.c.iv: rho = n_{mu} n_{nu} T^{mu nu}
    rho = zero
    for mu in range(4):
        for nu in range(4):
            rho += n4D[mu] * n4D[nu] * T4UU[mu][nu]
    return SDD, SD, S, rho
Exemplo n.º 9
0
def Psi4():

    global psi4_im, psi4_re

    # Step 1.b: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.c: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.d: Import all ADM quantities as written in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AB
    AB.ADM_in_terms_of_BSSN()

    # Step 2: Construct the (rank-4) Riemann curvature tensor associated with the ADM 3-metric:
    RDDDD = ixp.zerorank4()
    gammaDDdDD = AB.gammaDDdDD

    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    RDDDD[i][k][l][m] = sp.Rational(1, 2) * \
                                        (gammaDDdDD[i][m][k][l] + gammaDDdDD[k][l][i][m] - gammaDDdDD[i][l][k][m] -
                                         gammaDDdDD[k][m][i][l])

    # ... then we add the term on the right:
    gammaDD = AB.gammaDD
    GammaUDD = AB.GammaUDD

    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    for n in range(DIM):
                        for p in range(DIM):
                            RDDDD[i][k][l][m] += gammaDD[n][p] * \
                                                 (GammaUDD[n][k][l] * GammaUDD[p][i][m] - GammaUDD[n][k][m] * GammaUDD[p][i][l])

    # Step 3: Construct the (rank-4) tensor in term 1 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank4term1 = ixp.zerorank4()
    KDD = AB.KDD

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    rank4term1[i][j][k][l] = RDDDD[i][j][k][
                        l] + KDD[i][k] * KDD[l][j] - KDD[i][l] * KDD[k][j]

    # Step 4: Construct the (rank-3) tensor in term 2 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank3term2 = ixp.zerorank3()
    KDDdD = AB.KDDdD

    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                rank3term2[j][k][l] = sp.Rational(
                    1, 2) * (KDDdD[j][k][l] - KDDdD[j][l][k])

    # ... then we construct the second term in this sum:
    #  \Gamma^{p}_{j[k} K_{l]p} = \frac{1}{2} (\Gamma^{p}_{jk} K_{lp}-\Gamma^{p}_{jl} K_{kp}):
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for p in range(DIM):
                    rank3term2[j][k][l] += sp.Rational(
                        1, 2) * (GammaUDD[p][j][k] * KDD[l][p] -
                                 GammaUDD[p][j][l] * KDD[k][p])

    # Finally, we multiply the term by $-8$:
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                rank3term2[j][k][l] *= sp.sympify(-8)

    # Step 5: Construct the (rank-2) tensor in term 3 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank2term3 = ixp.zerorank2()
    gammaUU = AB.gammaUU

    for j in range(DIM):
        for l in range(DIM):
            for i in range(DIM):
                for m in range(DIM):
                    rank2term3[j][l] += gammaUU[i][m] * RDDDD[i][j][m][l]

    # ... then we add on the second term in parentheses, where $K^p_l = \gamma^{mp} K_{ml}$
    for j in range(DIM):
        for l in range(DIM):
            for m in range(DIM):
                for p in range(DIM):
                    rank2term3[j][l] += -KDD[j][p] * gammaUU[p][m] * KDD[m][l]

    # Finally we add the third term in parentheses, and multiply all terms by $+4$:
    for j in range(DIM):
        for l in range(DIM):
            for i in range(DIM):
                for m in range(DIM):
                    rank2term3[j][l] += gammaUU[i][m] * KDD[i][m] * KDD[j][l]
    for j in range(DIM):
        for l in range(DIM):
            rank2term3[j][l] *= sp.sympify(4)

    mre4U = ixp.declarerank1("mre4U", DIM=4)
    mim4U = ixp.declarerank1("mim4U", DIM=4)
    n4U = ixp.declarerank1("n4U", DIM=4)

    def tetrad_product__Real_psi4(n, Mre, Mim, mu, nu, eta, delta):
        return +n[mu] * Mre[nu] * n[eta] * Mre[delta] - n[mu] * Mim[nu] * n[
            eta] * Mim[delta]

    def tetrad_product__Imag_psi4(n, Mre, Mim, mu, nu, eta, delta):
        return -n[mu] * Mre[nu] * n[eta] * Mim[delta] - n[mu] * Mim[nu] * n[
            eta] * Mre[delta]

    psi4_re = sp.sympify(0)
    psi4_im = sp.sympify(0)
    # First term:
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    psi4_re += rank4term1[i][j][
                        k][l] * tetrad_product__Real_psi4(
                            n4U, mre4U, mim4U, i + 1, j + 1, k + 1, l + 1)
                    psi4_im += rank4term1[i][j][
                        k][l] * tetrad_product__Imag_psi4(
                            n4U, mre4U, mim4U, i + 1, j + 1, k + 1, l + 1)

    # Second term:
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                psi4_re += rank3term2[j][k][l] * \
                           sp.Rational(1, 2) * (+tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, k + 1, l + 1)
                                                - tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, k + 1, l + 1))
                psi4_im += rank3term2[j][k][l] * \
                           sp.Rational(1, 2) * (+tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, k + 1, l + 1)
                                                - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, k + 1, l + 1))
    # Third term:
    for j in range(DIM):
        for l in range(DIM):
            psi4_re += rank2term3[j][l] * \
                       (sp.Rational(1, 4) * (+tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, 0, l + 1)
                                             - tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, 0, l + 1)
                                             - tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, l + 1, 0)
                                             + tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, l + 1, 0)))
            psi4_im += rank2term3[j][l] * \
                       (sp.Rational(1, 4) * (+tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, 0, l + 1)
                                             - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, 0, l + 1)
                                             - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, l + 1, 0)
                                             + tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, l + 1, 0)))