Exemplo n.º 1
0
def trim(RunningVolume, Sdata, Bdata, Pdata, Rdata, Cdata):
    '''
    It is the job of the trim function to generate the unified polyline
    curves of the yoyo as well as calculate the volume of the final yoyo
    half by calling the individual, pupose built subtracting functions
    of each yoyo section
    '''
    Pxc = []
    Pyc = []
    Rxc = []
    Ryc = []
    Cxc = []
    Cyc = []
    for i in range(0, len(Pdata)):
        Pxc = np.append(Pxc, Pdata[i, 0])
        Pyc = np.append(Pyc, Pdata[i, 1])
    Px, Py = Bezier(list(zip(Pxc, Pyc))).T
    RunningVolume = RunningVolume - ProfileSubtract(Px, Py)
    for i in range(0, len(Rdata)):
        Rxc = np.append(Rxc, Rdata[i, 0])
        Ryc = np.append(Ryc, Rdata[i, 1])
    Rx, Ry = Bezier(list(zip(Rxc, Ryc))).T
    RunningVolume = RunningVolume - RimSubtract(Rx, Ry)
    for i in range(0, len(Cdata)):
        Cxc = np.append(Cxc, Cdata[i, 0])
        Cyc = np.append(Cyc, Cdata[i, 1])
    Cx, Cy = Bezier(list(zip(Cxc, Cyc))).T
    RunningVolume = RunningVolume - CupSubtract(Cx, Cy)
    density = Sdata[7] / (10**(9))
    halfmass = RunningVolume * density * (10**3)
    megamatx, megamaty, prof, rim, cup, bulkmat = Bulkmat(
        Px, Py, Rx, Ry, Cx, Cy, Bdata, Pdata, Rdata, Cdata)
    return megamatx, megamaty, prof, rim, cup, bulkmat, halfmass
Exemplo n.º 2
0
 def drawAtLength(self, t):
     p = PVector(0, 0)
     s = self.scale
     l = 0
     for sg in self.segments:
         for g in sg:
             if l + g[2] > t:
                 if g[0] == LINETO:
                     t = (t - l) / g[2]
                     q = t * g[1] + (1 - t) * p
                     line(s * p.x, s * p.y, s * q.x, s * q.y)
                 elif g[0] == CURVETO:
                     t = t - l
                     bz = Bezier(s * p, s * g[1][0], s * g[1][1],
                                 s * g[1][2])
                     bz.drawToLength(s * t)
                 return
             if g[0] == MOVETO:
                 p = g[1]
             elif g[0] == LINETO:
                 line(s * p.x, s * p.y, s * g[1].x, s * g[1].y)
                 p = g[1]
             elif g[0] == CURVETO:
                 bezier(s * p.x, s * p.y, s * g[1][0].x, s * g[1][0].y,
                        s * g[1][1].x, s * g[1][1].y, s * g[1][2].x,
                        s * g[1][2].y)
                 p = g[1][2]
             l += g[2]
Exemplo n.º 3
0
 def computeBezier(self):
     if len(self.curvePoints) > 1:
         spline = Bezier()
         spline.compute(self.curvePoints)
         self.history.append(spline)
         self.curvePoints = []
         self.updateGL()
Exemplo n.º 4
0
 def drawCartesianAtLength(self, pen, t):
     p = PVector(0, 0)
     l = 0
     sgs = []
     for sg in self.segments:
         nsg = []
         sgs.append(nsg)
         for g in sg:
             if l + g[2] > t:
                 if g[0] == LINETO:
                     t = (t - l) / g[2]
                     q = t * g[1] + (1 - t) * p
                     nsg.append([LINETO, q, q.dist(p)])
                 elif g[0] == CURVETO:
                     t = t - l
                     bz = Bezier(p, g[1][0], g[1][1], g[1][2])
                     bza, bzb = bz.splitAtLength(t)
                     nsg.append([
                         CURVETO,
                         [bza.points[1], bza.points[2], bza.points[3]],
                         bza.length
                     ])
                 renderPath(sgs, self.scale, pen)
                 return
             nsg.append(g)
             if g[0] == CURVETO:
                 p = g[1][2]
             else:
                 p = g[1]
             l += g[2]
     renderPath(sgs, self.scale, pen)
Exemplo n.º 5
0
 def addCurveTo(self, b, c, d):
     bz = Bezier(self.point, b, c, d)
     l = bz.length()
     self.segment.append([CURVETO, [b, c, d], l])
     bz = Bezier(self.point, b, c, d)
     self.length += l
     self.point = d
     self.updatebb(b)
     self.updatebb(c)
     self.updatebb(d)
Exemplo n.º 6
0
 def addCurveRelTo(self, b, c, d):
     bz = Bezier(self.point, self.point + b, d + c, d)
     l = bz.length()
     self.segment.append([CURVETO, [self.point + b, d + c, d], l])
     bz = Bezier(self.point, self.point + b, d + c, d)
     self.length += l
     self.updatebb(self.point + b)
     self.updatebb(d + c)
     self.updatebb(d)
     self.point = d
Exemplo n.º 7
0
def draw_curve(fig, ax):
    t_points = np.arange(0, 1, 0.01)
    curve = Bezier.Curve(t_points, points)
    ax.plot(
        curve[:, 0],  # x-coordinates.
        curve[:, 1],  # y-coordinates.
    )
def pico(curvaNivel=False):
    aumento = 0.1
    rango = 6
    aumentoX = 0.4
    h = 2.6
    p = 1
    if curvaNivel:
        aumento = 0.025
        rango = 18
        aumentoX = 0.1

    b = 0.6
    x = 0
    for i in range(0, rango):
        points_set_1 = a([[-b, -1, h], [-1, -p - x, h], [1, -p - x, h],
                          [b, -1, h]])
        t_points = np.arange(0, 1, 0.01)
        curve_set_1 = Bezier.Curve(t_points, points_set_1)
        ax.plot(curve_set_1[:, 0],
                curve_set_1[:, 1],
                curve_set_1[:, 2],
                color="green")

        h = h + aumento
        x = x + aumentoX
Exemplo n.º 9
0
    def SaveBest(self, seed, d):
        # make Bezier curves representing the fibers
        t_points = np.arange(0, 1, 0.01)
        # plane of vertical fibers
        vertical_grid = np.zeros((c.GRID_SIZE, c.GRID_SIZE))
        for n in range(c.FIBERS_TOP):
            points = np.array([[self.genome[n, 0], self.genome[n, 1]],
                               [self.genome[n, 2], self.genome[n, 3]]])
            curve = Bezier.Curve(t_points, points)
            grid = Bezier.DistCurve(curve)
            vertical_grid = np.logical_or(vertical_grid, grid)

        # plane of horizontal fibers
        horizontal_grid = np.zeros((c.GRID_SIZE, c.GRID_SIZE))
        for n in range(c.FIBERS_TOP, c.FIBERS):
            points = np.array([[self.genome[n, 0], self.genome[n, 1]],
                               [self.genome[n, 2], self.genome[n, 3]]])
            curve = Bezier.Curve(t_points, points)
            grid = Bezier.DistCurve(curve)
            horizontal_grid = np.logical_or(horizontal_grid, grid)

        file = open(f'results/best/Bezier-D{d}-Seed-{seed}.csv', 'w')
        l = np.count_nonzero(horizontal_grid) + np.count_nonzero(vertical_grid)
        file.write(f'{l} ')
        for i in range(c.GRID_SIZE):
            for j in range(c.GRID_SIZE):
                if horizontal_grid[i, j]:
                    file.write(f'{i+1} {j+1} -2 ')
        for i in range(c.GRID_SIZE):
            for j in range(c.GRID_SIZE):
                if vertical_grid[i, j]:
                    file.write(f'{i+1} {j+1} 0 ')
        file.close()

        file = open(f'results/best/Bezier-D{d}-Seed-{seed}-grid.csv', 'w')
        file.write('top grid:\n')
        for i in range(c.GRID_SIZE):
            for j in range(c.GRID_SIZE):
                file.write(f'{int(vertical_grid[i, j])} ')
            file.write('\n')

        file.write('\nbot grid:\n')
        for i in range(c.GRID_SIZE):
            for j in range(c.GRID_SIZE):
                file.write(f'{int(horizontal_grid[i, j])} ')
            file.write('\n')
        file.close()
Exemplo n.º 10
0
def splitCurve(curve, splits):
    p1, p2, p3 = curve.controlPoints
    q1 = p1
    r3 = p3
    q2 = PathUtilities.midpoint([p1, p2])
    r2 = PathUtilities.midpoint([p2, p3])
    q3 = r1 = PathUtilities.midpoint([q2, r2])
    q = Bezier([q1, q2, q3])
    r = Bezier([r1, r2, r3])

    if q.direction != Bezier.dir_mixed:
        splits.append(q)
    else:
        splitCurve(q, splits)

    if r.direction != Bezier.dir_mixed:
        splits.append(r)
    else:
        splitCurve(r, splits)
Exemplo n.º 11
0
    def CalculateCurvePoints(self, points, resolution=0.1) -> list:
        '''
		Calculates points of a curves and returns them.
		Parameters:
			points : list : list of co-ordinates used as the controls points
			resolution : float : number of steps in the 3D curve
		Returns : list : list of co-ordinates
		Exceptions : None
		'''
        t_points = np.arange(0, 1, resolution)
        curve_set = Bezier.Curve(t_points, np.array(points))
        return_l = curve_set.tolist()
        return_l.append(points[len(points) - 1])
        return return_l
Exemplo n.º 12
0
    def Start_Evaluation(self, plot=False):
        self.rnd1 = np.random.randint(low=1, high=10000)
        self.rnd2 = np.random.randint(low=1, high=10000)
        # make Bezier curves representing the fibers
        t_points = np.arange(0, 1, 0.01)
        # plane of vertical fibers
        vertical_grid = np.zeros((c.GRID_SIZE, c.GRID_SIZE))
        for n in range(c.FIBERS_TOP):
            points = np.array([[self.genome[n, 0], self.genome[n, 1]],
                               [self.genome[n, 2], self.genome[n, 3]]])
            curve = Bezier.Curve(t_points, points)
            grid = Bezier.DistCurve(curve)
            vertical_grid = np.logical_or(vertical_grid, grid)

        # plane of horizontal fibers
        horizontal_grid = np.zeros((c.GRID_SIZE, c.GRID_SIZE))
        for n in range(c.FIBERS_TOP, c.FIBERS):
            points = np.array([[self.genome[n, 0], self.genome[n, 1]],
                               [self.genome[n, 2], self.genome[n, 3]]])
            curve = Bezier.Curve(t_points, points)
            grid = Bezier.DistCurve(curve)
            horizontal_grid = np.logical_or(horizontal_grid, grid)

        # save the grids
        if plot:
            Bezier.PlotGrid(vertical_grid, "verticalGrid.jpg")
            Bezier.PlotGrid(horizontal_grid, "horizontalGrid.jpg")

        file = open(
            f'results/bezier/genome{self.ID}_{self.rnd1}_{self.rnd2}.csv', 'w')
        l = np.count_nonzero(horizontal_grid) + np.count_nonzero(vertical_grid)
        file.write(f'{l} ')
        for i in range(c.GRID_SIZE):
            for j in range(c.GRID_SIZE):
                if horizontal_grid[i, j]:
                    file.write(f'{i+1} {j+1} -2 ')
        for i in range(c.GRID_SIZE):
            for j in range(c.GRID_SIZE):
                if vertical_grid[i, j]:
                    file.write(f'{i+1} {j+1} 0 ')
        file.close()
        call([
            './membrane.exe',
            f'results/bezier/genome{self.ID}_{self.rnd1}_{self.rnd2}.csv',
            f'target/d{self.d}.csv.res'
        ])
Exemplo n.º 13
0
		b = b - 0.1
	elif i<30:
		b = b + 0.1
	elif i<55:
		b= b
	elif i>55:
		b = b -0.1

	h = h + 0.02
h = h - (0.02)*5
#Generar con curvas de Bezier la salida del mortero
x = 0
for i in range(0, 12):
	points_set_1 = a([[-b, -2.1, h], [-1, -2.2 - x, h], [1, -2.2 - x, h], [b, -2.1, h]])
	t_points = np.arange(0, 1, 0.01)
	curve_set_1 = Bezier.Curve(t_points, points_set_1)
	ax.plot(curve_set_1[:, 0], curve_set_1[:, 1], curve_set_1[:, 2], color="green")

	points_set_2 = a([[-b, 2.1, h], [-1, 3.2, h], [1, 3.2, h], [b, 2.1, h]])
	t_points = np.arange(0, 1, 0.01)
	curve_set_2 = Bezier.Curve(t_points, points_set_2)
	ax.plot(curve_set_2[:, 0], curve_set_2[:, 1], curve_set_2[:, 2], color="green")

	points_set_3 = a([[2.1, b, h], [3.2, 1, h], [3.2, -1, h], [2.1, -b, h]])
	t_points = np.arange(0, 1, 0.01)
	curve_set_3 = Bezier.Curve(t_points, points_set_3)
	ax.plot(curve_set_3[:, 0], curve_set_3[:, 1], curve_set_3[:, 2], color="green")

	points_set_4 = a([[-2.1, -b, h], [-3.2, -1, h], [-3.2, 1, h], [-2.1, b, h]])
	t_points = np.arange(0, 1, 0.01)
	curve_set_4 = Bezier.Curve(t_points, points_set_4)
Exemplo n.º 14
0
        lenB = len(other.constPoints)
        
        if lenA > lenB:
            pointsA = self.constPoints
            pointsB = list(map(
                lambda a: Point(a[0], a[1]),
                other.renderPoints(lenA)             
            ))

        else:
            pointsA = list(map(
                lambda a: Point(a[0], a[1]),
                self.renderPoints(lenB),                
            ))
            pointsB = other.constPoints

        newPoints = list(map(
                lambda a, b: a.transition(b, proc),
                pointsA,
                pointsB
            )
        )

        return OscObject(newPoints)


if if __name__ == "__main__":
    a = OscObject(list())
    b = Bezier(list())
    c = OscObject(list())
    a.cpTransitionTo(c, 0.5)
Exemplo n.º 15
0
from Bezier import Bezier
import numpy as np
from numpy import array as a
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#~~~#

fig = plt.figure(dpi=128)

#~~~# Simple arch.

t_points = np.arange(0, 1, 0.01)
test = a([[0, 0], [0, 8], [5, 10], [9, 7], [4, 3]])
test_set_1 = Bezier.Curve(t_points, test)

plt.subplot(2, 3, 3)
plt.xticks([i1 for i1 in range(-20, 20)
            ]), plt.yticks([i1 for i1 in range(-20, 20)])
plt.gca().set_aspect('equal', adjustable='box')
plt.grid(b=True, which='major', axis='both')

plt.plot(test_set_1[:, 0], test_set_1[:, 1])
plt.plot(test[:, 0], test[:, 1], 'ro:')

#~~~# Simple wave.

t_points = np.arange(0, 1, 0.01)
test = a([[0, 5], [4, 10], [6, 10], [4, 0], [6, 0], [10, 5]])
test_set_1 = Bezier.Curve(t_points, test)
Exemplo n.º 16
0
    def y(self, t):
        return (
            self.y1
            + self._by * t
            + self._cy * t ** 2
            + self._dy * t ** 3
        )

    def dx(self, t):
        return (
            self._bx
            + 2 * self._cx * t
            + 3 * self._dx * t ** 2
        )

    def dy(self, t):
        return (
            self._by
            + 2 * self._cy * t
            + 3 * self._dy * t ** 2
        )

    def f(self, t):
        return np.sqrt(self.dx(t) ** 2 + self.dy(t) ** 2)


curve = Bezier(
    [(0, 0, 0), (2, 2, 0), (-1, 2, 0), (1, 0, 0)]
)
Exemplo n.º 17
0
Rdata = np.loadtxt('rim.txt', delimiter=',')
x1 = []
y1 = []
x2 = []
y2 = []
x3 = []
y3 = []

for i in range(0, len(Bdata)):
    x1 = np.append(x1, Bdata[i, 0])
    y1 = np.append(y1, Bdata[i, 1])

for i in range(0, len(Pdata)):
    x2 = np.append(x2, Pdata[i, 0])
    y2 = np.append(y2, Pdata[i, 1])

for i in range(0, len(Rdata)):
    x3 = np.append(x3, Rdata[i, 0])
    y3 = np.append(y3, Rdata[i, 1])

xp, yp = Bezier(list(zip(x2, y2))).T
xr, yr = Bezier(list(zip(x3, y3))).T

plt.plot(xp, yp)
plt.plot(xr, yr)
plt.plot(x1, y1)
plt.axis('equal')
plt.plot(x2, y2, "ro")
plt.plot(x2, y2, "b--")
plt.show()
Exemplo n.º 18
0
Cdata = np.loadtxt('cup.txt', delimiter=',')
Blank_Radius = Sdata[1] / 2
Blank_Length = Sdata[2] / 2
Blank_Volume = ((Blank_Radius**2) * math.pi) * Blank_Length
RunningVolume = Blank_Volume
RunningVolume = RunningVolume - BearingSubtract(3)
Pxc = []
Pyc = []
Rxc = []
Ryc = []
Cxc = []
Cyc = []
for i in range(0, len(Pdata)):
    Pxc = np.append(Pxc, Pdata[i, 0])
    Pyc = np.append(Pyc, Pdata[i, 1])
Px, Py = Bezier(list(zip(Pxc, Pyc))).T
RunningVolume = RunningVolume - ProfileSubtract(Px, Py)
for i in range(0, len(Rdata)):
    Rxc = np.append(Rxc, Rdata[i, 0])
    Ryc = np.append(Ryc, Rdata[i, 1])
Rx, Ry = Bezier(list(zip(Rxc, Ryc))).T
RunningVolume = RunningVolume - RimSubtract(Rx, Ry)
for i in range(0, len(Cdata)):
    Cxc = np.append(Cxc, Cdata[i, 0])
    Cyc = np.append(Cyc, Cdata[i, 1])
Cx, Cy = Bezier(list(zip(Cxc, Cyc))).T
RunningVolume = RunningVolume - CupSubtract(Cx, Cy)
density = Sdata[7] / (10**(9))
halfmass = RunningVolume * density * (10**3)
# This populates matrices for plotting
megamatx, megamaty, prof, rim, cup, bulkmat = Bulkmat(Px, Py, Rx, Ry, Cx, Cy,
Exemplo n.º 19
0
    x1 = np.append(x1, Bdata[i, 0])
    y1 = np.append(y1, Bdata[i, 1])
# Generates coordinates of profile
for i in range(0, len(Pdata)):
    x2 = np.append(x2, Pdata[i, 0])
    y2 = np.append(y2, Pdata[i, 1])
# Generates coordinates of rim
for i in range(0, len(Rdata)):
    x3 = np.append(x3, Rdata[i, 0])
    y3 = np.append(y3, Rdata[i, 1])
# Generates coordinates of cup
for i in range(0, len(Cdata)):
    x4 = np.append(x4, Cdata[i, 0])
    y4 = np.append(y4, Cdata[i, 1])

xp, yp = Bezier(list(zip(x2, y2))).T
xr, yr = Bezier(list(zip(x3, y3))).T
xc, yc = Bezier(list(zip(x4, y4))).T

plt.plot(xp, yp)
plt.plot(xr, yr)
plt.plot(xc, yc)

plt.axis('equal')
plt.plot(x1, y1)
plt.plot(x2, y2, "ro")
plt.plot(x2, y2, "b--")
plt.plot(x3, y3, "ro")
plt.plot(x3, y3, "b--")
plt.plot(x4, y4, "ro")
plt.plot(x4, y4, "b--")