Exemplo n.º 1
0
    def doit(self, dag: Dag):

        new_inputs = dag.inputs

        self.allroots = list(dag.roots())
        self.run(dag)

        new_inputs.append(self.P)
        new_inputs.append(self.R)
        new_inputs.append(self.O)

        # return dag that has taken precision as an input
        return Dag(outputs=dag.outputs, inputs=new_inputs)
Exemplo n.º 2
0
def matrix_multiply():
    a00 = Input(name="a00")
    a01 = Input(name="a01")
    a10 = Input(name="a10")
    a11 = Input(name="a11")

    b00 = Input(name="b00")
    b01 = Input(name="b01")
    b10 = Input(name="b10")
    b11 = Input(name="b11")

    p0 = Mul(Add(a00, a11), Add(b00, b11), name="p0")
    p1 = Mul(Add(a10, a11), b00, name="p1")
    p2 = Mul(a00, Sub(b01, b11), name="p2")
    p3 = Mul(a11, Sub(b10, b00), name="p3")
    p4 = Mul(b11, Add(a00, a01), name="p4")
    p5 = Mul(Add(b00, b01), Sub(a10, a00), name="p5")
    p6 = Mul(Add(b10, b11), Sub(a01, a11), name="p6")

    y00 = Add(Sub(Add(p0, p3), p4), p6, name="y00")
    y01 = Add(p2, p4, name="y01")
    y10 = Add(p1, p3, name="y10")
    y11 = Add(Sub(Add(p0, p2), p1), p5, name="y11")

    matrix_dag = Dag(outputs=[y00, y01, y10, y11], inputs=[
        a00, a01, a10, a11, b00, b01, b10, b11])

    return matrix_dag
Exemplo n.º 3
0
    def Matrix_Multiplication():
        a = Input(name="a")
        b = Input(name="b")

        a00 = a[0][0]
        a01 = a[0][1]
        a10 = a[1][0]
        a11 = a[1][1]

        b00 = b[0][0]
        b01 = b[0][1]
        b10 = b[1][0]
        b11 = b[1][1]

        p0 = (a00 + a11) * (b00 + b11)
        p1 = (a10 + a11) * b00
        p2 = a00 * (b01 - b11)
        p3 = a11 * (b10 - b00)
        p4 = (a00 + a01) * b11
        p5 = (a10 - a00) * (b00 + b01)
        p6 = (a01 - a11) * (b10 + b11)

        y00 = p0 + p3 - p4 + p6
        y01 = p2 + p4
        y10 = p1 + p3
        y11 = p0 + p2 - p1 + p5

        casestudy_dag = Dag(outputs=[y00, y01, y10, y11], inputs=[a, b])
        return casestudy_dag
Exemplo n.º 4
0
def generate_basic(a):
    x = Input(name="x")
    a = Constant(a, name="a")

    output = Mul(a, x, name="res")

    approx_dag = Dag(outputs=[output], inputs=[x])

    return approx_dag
Exemplo n.º 5
0
def gen_fig3():
    #(a*b) + 4 - b
    a = Input(name="a")
    b = Input(name="b")
    c = Constant(4, name="c")
    d = Mul(a, b, name="d")
    e = Add(d, c, name="e")
    z = Sub(e, b, name="z")

    fig3_dag = Dag(outputs=[z], inputs=[a, b])
    return fig3_dag
Exemplo n.º 6
0
def gen_dag1():
    #(a*b) + 4 - b
    x = Input(name="x")
    y = Input(name="y")
    z = Input(name="z")
    i = Mul(x, y, name="i")
    j = Sub(y, z, name="j")
    k = Mul(i, j, name="k")

    dag = Dag(outputs=[k], inputs=[x, y, z])
    return dag
Exemplo n.º 7
0
def gen_ex1():
    #(a * b) + (b * c)
    a = Input(name="a")
    b = Input(name="b")
    c = Input(name="c")
    d = Mul(a, b, name="d")
    e = Mul(b, c, name="e")
    z = Add(e, d, name="z")

    dag = Dag(outputs=[z], inputs=[a, b, c])
    return dag
Exemplo n.º 8
0
def generate_basic_lut():
    x = Input(name="x")
    amplitude = Input(name="a")
    shift = Input(name="b")

    output = Add(Mul(amplitude, LookupTable(
        np.sin, x)), shift, name="res")
    # output = Add(Mul(amplitude, x), shift, name="res")

    sin_dag = Dag(outputs=[output], inputs=[x, amplitude, shift])

    return sin_dag
Exemplo n.º 9
0
    def poly_approx():
        a = Input(name="a")
        c = Input(name="c")

        first = a[0]

        for i in range(1, 5):  # for degree 4 polynomial
            first = first * c + a[i]

        casestudy_dag = Dag(outputs=[first], inputs=[a, c])

        return casestudy_dag
Exemplo n.º 10
0
def generate_square_wave():
    x = Input(name="x")

    a = LookupTable(np.sin, x)
    b = Add(Mul(Constant(1/3.), LookupTable(np.sin, Mul(Constant(3.), x))), a)
    c = Add(Mul(Constant(1/5.), LookupTable(np.sin, Mul(Constant(5.), x))), b)
    d = Add(Mul(Constant(1/7.), LookupTable(np.sin, Mul(Constant(7.), x))), c)
    e = Add(Mul(Constant(1/9.), LookupTable(np.sin,
                                            Mul(Constant(9.), x))), d, name="res")

    dag = Dag(outputs=[e], inputs=[x])

    return dag
Exemplo n.º 11
0
def gen_ex2():

    # sqrt((a * a) + (b * b) + (c * c))

    a = Input(name="a")
    b = Input(name="b")
    c = Input(name="c")

    out = LookupTable(np.sqrt, Add(
        Add(Mul(a, a), Mul(b, b)), Mul(c, c)), name="res", precision=8.)

    dag = Dag(outputs=[out], inputs=[a, b, c])
    return dag
Exemplo n.º 12
0
def generate_poly_approx(a, b, c, d):
    x = Input(name="x")
    a = Constant(a, name="a")
    b = Constant(b, name="b")
    c = Constant(c, name="c")
    d = Constant(d, name="d")

    output = Mul(
        Add(Mul(Add(Mul(Add(Mul(a, x), b), x), c), x), d), x, name="res")

    approx_dag = Dag(outputs=[output], inputs=[x])

    return approx_dag
Exemplo n.º 13
0
    def RGB_to_YCbCr():
        a = Input(name="a")

        col_1 = Constant(.299) * a[0] + Constant(.587) * \
            a[1] + Constant(.114) * a[2]
        col_2 = Constant(-.16875) * \
            a[0] + Constant(-.33126) * a[1] + Constant(.5) * a[2]
        col_3 = Constant(.5) * a[0] + Constant(-.41869) * \
            a[1] + Constant(-.08131) * a[2]

        casestudy_dag = Dag(outputs=[col_1, col_2, col_3], inputs=[a])

        return casestudy_dag
Exemplo n.º 14
0
def RGB_to_YCbCr():
    r = Input(name="r")
    g = Input(name="g")
    b = Input(name="b")

    col_1 = Add(Add(Mul(Constant(.299, name="C1"), r), Mul(Constant(.587, name="C2"), g)),
                Mul(Constant(.114, name="C3"), b), name="col_1")
    col_2 = Add(Add(Mul(Constant(-.16875, name="C4"), r), Mul(Constant(-.33126, name="C5"), g)),
                Mul(Constant(.5, name="C6"), b), name="col_2")
    col_3 = Add(Add(Mul(Constant(.5, name="C7"), r), Mul(Constant(-.41869, name="C8"), g)),
                Mul(Constant(-.08131, name="C9"), b), name="col_3")

    casestudy_dag = Dag(outputs=[col_1, col_2, col_3], inputs=[r, g, b])

    return casestudy_dag
Exemplo n.º 15
0
def gen_ex3():

    a = Input(name="a")
    b = Input(name="b")
    c = Input(name="c")
    d = Input(name="d")

    out = Add(Mul(a, Mul(b, Mul(c, d))), Mul(a, b), name="res")

    dag = Dag(outputs=[out], inputs=[a, b, c, d])
    return dag


# def test_fig3():

#     dag = gen_fig3()

#     bf = BitFlow(dag, {"z": 8.}, {'a': (-3., 2.),
#                                   'b': (4., 8.)}, lr=1e-2, range_lr=1e-2, train_range=True, training_size=50000, testing_size=10000, distribution=2, incorporate_ulp_loss=False, batch_size=16, test_optimizer=True)
#     bf.train(epochs=10, decay=0.8)

#     rounded_dag = bf.rounded_dag
#     original_dag = bf.original_dag

#     verilog_gen = BitFlow2Verilog(
#         "fig3", bf.P, bf.R, bf.filtered_vars, original_dag, {"z": 8.})
#     verilog_gen.evaluate()

    # # check saving object works
    # BitFlow.save("./models/fig3", bf)
    # new_bf = BitFlow.load("./models/fig3")

    # new_bf.train(epochs=5)

    # assert new_bf.range_lr == bf.range_lr

    return
Exemplo n.º 16
0
 def doit(self, dag: Dag):
     self.run(dag)
     return Dag(outputs=dag.outputs, inputs=dag.inputs)