Exemplo n.º 1
0
class StudentAI():

    def __init__(self,row,col,p):
        self.row = row
        self.col = col
        self.p = p
        self.board = Board(row,col,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1

        moves = self.board.get_all_possible_moves(self.color)
        tree_depth = 4
        
		# for beta alpha pruning
		alpha = -math.inf
        beta = math.inf
        
		# best moves list
		best_moves = []
        
		# Get best moves
		for row in moves:
class StudentAI():

    def __init__(self,col,row,p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col,row,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2

    def get_move(self, move):
        #print(self.color)
        if len(move) != 0:
            self.board.make_move(move,self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)

        #self.train()
        self.simulate_lr(self.color)

        #index = randint(0,len(moves)-1)
        #inner_index =  randint(0,len(moves[index])-1)
        #move = moves[index][inner_index]

        ql = QLearning()
        move = ql.make_action(self.board, moves)
        self.board.make_move(move, self.color)
        self.movecount += 1
        return move
Exemplo n.º 3
0
class ManualAI():
    """
    This class describes the ManualAI.
    """
    def __init__(self, col, row, p):
        """
        Intializes manualAI
        @param row: no of rows in the board
        @param col: no of columns in the board
        @param k: no of rows to be filled with checker pieces at the start
        @return :
        @raise :
        """
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = 2
        self.opponent = {1: 2, 2: 1}  # to switch turns after each turn

    def get_move(self, move):
        """
        get_move function for manualAI called from the gameloop in the main module.
        @param move: A Move object describing the move.
        @return res_move: A Move object describing the move manualAI wants to make. This move is basically console input.
        @raise :
        """
        if move.seq:
            # if move.seq is not an empty list
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)
        #print(moves)
        while True:
            try:
                for i, checker_moves in enumerate(moves):
                    print(i, ':[', end="")
                    for j, move in enumerate(checker_moves):
                        print(j, ":", move, end=", ")
                    print("]")
                index, inner_index = map(
                    lambda x: int(x),
                    input("Select Move {int} {int}: ").split(
                    ))  # input is from console is handled here.
                res_move = moves[index][inner_index]
            except KeyboardInterrupt:
                raise KeyboardInterrupt
            except:
                print('invalid move')
                continue
            else:
                break
        self.board.make_move(res_move, self.color)
        return res_move
    def simulate_lr(self, color):
        # simulate one time
        # record all X features to feature_matrix
        # update the y value accordingly

        print("entering simulations")
        newboard = Board(self.col, self.row, self.p)
        newboard.initialize_game()

        feature_list_b = []
        feature_list_w = []

        win = 0
        ### TODO: Fixing Current move in a new board
        curr_turn = self.opponent[color]

        for turn in range(50):
            if newboard.is_win(color) == color:
                win = 1
                break
            elif newboard.is_win(self.opponent[color]) == self.opponent[color]:
                break
            move = self.minimax_move(newboard.get_all_possible_moves(curr_turn))
            newboard.make_move(move, curr_turn)

            b, w = self.get_X(self.board)
            feature_list_b.append(b)
            feature_list_w.append(w)

            self.feature_matrix = np.append(self.feature_matrix, np.array([b, w]), axis=0)
            print(self.feature_matrix)
            curr_turn = self.opponent[curr_turn]

        else:
            win = 0.5

        # matrix = np.array([feature_list_b, feature_list_w])
        # feature_matrix = np.hstack((matrix, np.zeros((matrix.shape[0], 1))))

        # TODO: Fixing y value update
        if win == 1 and color == 1:
            for fb in feature_list_b:
                index = np.where(fb in self.feature_matrix[:, 0:self.feature_size])
                if index == []:
                    self.feature_matrix = np.append(self.feature_matrix, np.array([b, w]), axis=0)
                self.feature_matrix[index, self.feature_size] += 1

        elif win == 0 and color == 1:
            for fw in feature_list_w:
                index = np.where(fw in self.feature_matrix[:, 0:self.feature_size])
                if index == []:
                    self.feature_matrix = np.append(self.feature_matrix, np.array([b, w]), axis=0)
                self.feature_matrix[index, self.feature_size] += 1

        return win
Exemplo n.º 5
0
class StudentAI():
    col = 0
    row = 0
    k = 0
    g = 0

    def __init__(self,col,row,k,g):
        self.g = g
        self.col = col
        self.row = row
        self.k = k
        self.board = Board(col,row,k,g)

    def get_move(self,move):
        self.board.make_move(move,1)
        if self.g == 0:
            return Move(randint(0,self.col-1),randint(0,self.row-1))
        else:
            return Move(randint(0,self.col-1),0)
class StudentAI():

    def __init__(self,col,row,p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col,row,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2
        self.count = 0
    def get_move(self,move):
        if len(move) != 0:
            self.board.make_move(move,self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)
        # index = randint(0,len(moves)-1)
        # inner_index =  randint(0,len(moves[index])-1)
        # move = moves[index][inner_index]
        if len(moves) == 1 and len(moves[0]) == 1:
            move = moves[0][0]
        if self.count < 15:
            mct = MonteCarloTree(self.board, self.color, self.opponent, (10, 0, -10))
            move = mct.get_action(10, 0)
            self.board.make_move(move, self.color)
        else:
            mct = MonteCarloTree(self.board, self.color, self.opponent, (10, 0, -10))
            move = mct.get_action(10, 0)
            self.board.make_move(move, self.color)
        return move
Exemplo n.º 7
0
class StudentAI():

    def __init__(self,col,row,p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col,row,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2
    def get_move(self,move):
        if len(move) != 0:
            self.board.make_move(move,self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)
        index = randint(0,len(moves)-1)
        inner_index =  randint(0,len(moves[index])-1)
        move = moves[index][inner_index]
        self.board.make_move(move,self.color)
        return move
Exemplo n.º 8
0
class StudentAI():
    """
    This class describes randomAI
    """
    def __init__(self, col, row, p):
        """
        Intializes randomAI
        @param row: no of rows in the board
        @param col: no of columns in the board
        @param p: no of rows to be filled with checker pieces at the start
        @return :
        @raise :
        """
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}  # to switch turns after each turn
        self.color = 2

    def get_move(self, move):
        """
        get_move function for randomAI called from the gameloop in the main module.
        @param move: A Move object describing the move.
        @return res_move: A Move object describing the move manualAI wants to make. This move is a random move from the set of valid moves.
        @raise :
        """
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)
        index = randint(0, len(moves) - 1)
        inner_index = randint(0, len(moves[index]) - 1)
        move = moves[index][inner_index]
        self.board.make_move(move, self.color)
        return move
Exemplo n.º 9
0
class StudentAI:
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = 2
        # Add a timer to not exceed 8 minutes

    def get_move(self, move):
        # If a move has been made by the opponent, we are player 2
        # Else there has been no move, we are player 1
        if len(move) != 0:
            self.board.make_move(move, other(self.color))
        else:
            self.color = 1

        mcts = MCTS(MCTSNode(self.color, self.board, self.color, []))
        movenode = mcts.best_move(800)  #TODO: decide number
        self.board.make_move(movenode.moves[0], self.color)
        return movenode.moves[0]
Exemplo n.º 10
0
    def simulate(self, player):
        win = 0
        counter = 0
        fake_board = Board(self.col, self.row, self.p)
        self.copy_board(fake_board)
        # print("DIT ME DIEN")
        # fake_board.show_board()
        # totaltime = 0
        while win == 0:
            moves = fake_board.get_all_possible_moves(player)
            if len(moves) == 1:
                index = 0
            elif len(moves) == 0:
                win = self.opponent[player]
                break
            else:
                index = randint(0, len(moves) - 1)
            if len(moves[index]) == 1:
                inner_index = 0
            else:
                inner_index = randint(0, len(moves[index]) - 1)
            move = moves[index][inner_index]
            fake_board.make_move(move, player)
            counter += 1
            # bt = time.time()
            if fake_board.tie_counter >= fake_board.tie_max:
                win = -1
            # totaltime += time.time() - bt
            # print("self.board.is_win():", time.time() - bt)
            player = self.opponent[player]

        # #print("total time is_win:", totaltime)
        # #bt = time.time()
        # for i in range(counter):
        #     self.board.undo()
        # #rint("total time undo:", time.time() - bt)
        # fake_board.show_board()
        return win
Exemplo n.º 11
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2

    def get_move(self, move):

        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1

        MCTS = MonteCarlo(self.board, self.color)
        move = MCTS.get_move()
        self.board.make_move(move, self.color)

        return move
Exemplo n.º 12
0
    def train_one_episode(self):
        new_board = Board()
        new_board.initialize_game()
        turn = ''

        while True:
            if new_board.is_win(self.color):
                break
            elif new_board.is_win(self.opponent[self.color]):
                break

            action = self.explore(new_board, self.color)
            state = new_board
            new_state = new_board.make_move(action, turn)
            self.Q_table[state, action] = self.Q_table[state, action] + self.lr * \
                                          (self.reward(state, action) + self.gamma * np.max(self.Q_tableQ[new_state, :])\
                                           - self.Q_table[state, action])
            state = new_state
Exemplo n.º 13
0
class StudentAI():

    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)
        best_move = moves[0][0]
        #self.board.make_move(best_move, self.color)
        #best_score = self.board_score( self.color )
        #self.board.undo()
        move = self.minMax(self.color, 3, -999999999, best_move, 999999999, best_move)[1]
        self.board.make_move(move, self.color)

        return move
    
    def minMax(self, player, depth, best_score, best_move, opponent_score, opponent_move):
        if depth == 0:
            return self.board_score( player ), best_move
        # get all the moves of the current player
        moves = self.board.get_all_possible_moves(player)
        # Itterate through each move
        for i in moves:
            for ii in i:
                # change to new game state
                self.board.make_move(ii, player)
                if (player == self.color):
                    opponent_score = self.minMax(self.opponent[self.color], depth-1, best_score, best_move,opponent_score, opponent_move)[0]
                    if (best_score <  opponent_score):
                        best_score = opponent_score
                        best_move = ii
                # opponent's turn: find the best score based on player's move
                elif (player == self.opponent[self.color]):
                    best_score = self.minMax(self.color, depth-1, best_score, best_move,opponent_score, opponent_move)[0]
                    if (opponent_score > best_score):
                        opponent_score = best_score
                        opponent_move = ii
                self.board.undo()
        return best_score, best_move, opponent_score, opponent_move

    def board_score(self, color):
        ## @param color: color of player making the move
        ## Heuristics to Evaluate with
        ## Normal Piece : 1000 pts
        ## King Piece : 2000 pts
        ## Rows away from enemy end if Normal : (rows - curr_row / rows) * 1000
        ## Amount of Pieces : (Amount of pieces left) / (self.col * self.p / 2) * 100
        ## Randomization : randomInt (0-10)

        player_points = 0
        opponent_points = 0
        for c in range(self.col):
            for r in range(self.row):
                current_piece = self.board.board[c][r]

                if current_piece.get_color() == color:
                    if current_piece.is_king == True:
                        player_points += 2000
                    else:
                        player_points += 1000
                        if color == 1:
                            player_points += ((self.row - r) / self.row) * 1000
                        else:
                            player_points += (r / self.row) * 1000
                elif current_piece.get_color() == self.opponent[color]:
                    if current_piece.is_king == True:
                        opponent_points += 2000
                    else:
                        opponent_points += 1000
                        if self.opponent[color] == 1:
                            opponent_points += ((self.row - r) / self.row) * 1000
                        else:
                            opponent_points += (r / self.row) * 1000
                else:
                    pass
        
        if color == 1:
            player_points += ((self.board.white_count / (self.col * self.p / 2)) * 100)
            opponent_points += ((self.board.black_count / (self.col * self.p / 2)) * 100)
        else:
            player_points += ((self.board.black_count / (self.col * self.p / 2)) * 100)
            opponent_points += ((self.board.white_count / (self.col * self.p / 2)) * 100)
        
        randomization = randint(0, 50)
            
        return player_points - opponent_points + randomization
Exemplo n.º 14
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = 2
        self.mcts = MCTS(TreeNode(self.board, self.color, None, None))
        self.total_time_remaining = 479
        self.time_divisor = row * col * 0.5
        self.timed_move_count = 2
        
    def get_move(self, move) -> Move:
        '''
        prune tree with opponent move
        MCTS
        '''
        # Start timer
        start_time = time()
        
        # Check if opponent gave a turn and execute it
        if len(move) != 0:
            self.play_move(move, OPPONENT[self.color])
        # If first move of game, change self.color and make random move
        else:
            self.color = 1
            self.mcts.root = TreeNode(self.board, self.color, None, None)

            moves = self.board.get_all_possible_moves(self.color)
            first_move = moves[0][1]
            self.play_move(first_move, self.color)
            return first_move
        
        # Check if only one move is possible
        moves = self.board.get_all_possible_moves(self.color)
        if len(moves) == 1 and len(moves[0]) == 1:
            self.play_move(moves[0][0], self.color)
            return moves[0][0]
        
        # Set up time limit
        time_limit = self.total_time_remaining / self.time_divisor
        
        # MCTS
        move_chosen = self.mcts.search(time_limit)
        self.play_move(move_chosen, self.color)
        
        # Change time divisor
        self.time_divisor -= 0.5 - 1/self.timed_move_count
        self.timed_move_count += 1
        
        # Decrement time remaining and return
        self.total_time_remaining -= time() - start_time
        return move_chosen
    
    def play_move(self, move, color):
        """
        Updates board and tree root using Move given,
        either Move we just played or Move given by opponent.
        """
        self.board.make_move(move, color)
        
        for child in self.mcts.root.children.items():
            if str(move) == str(child[0]) and child[1] is not None:
                self.mcts.root = child[1]
                self.mcts.root.parent = None
                return

        self.mcts.root = TreeNode(self.board, OPPONENT[color], None, None)
Exemplo n.º 15
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        self.search_lim = 5
        self.current_node = TreeNode(None, self.color)

    def get_move(self, move):
        if len(move) != 0:
            # print("|" + str(move) + "|")
            self.board.make_move(move, self.opponent[self.color])
            #print("Player", self.opponent[self.color], "make move", move)
            if len(self.current_node.child_node) != 0:
                for child in self.current_node.child_node:
                    if str(child.move) == str(move):
                        self.current_node = child
        else:
            self.color = 1
            self.current_node.player = self.color
        for i in range(NS):
            self.mcts(self.current_node)
            #self.board.show_board()
            #print("mcts counter:", i)
        move = self.current_node.child_node[0]
        for child in self.current_node.child_node:
            if move.uct() < child.uct():
                move = child
        self.board.make_move(move.move, self.color)
        # print("Player", self.color, "make move", move.move, "with a winrate of", move.winrate(), "simulated", move.simulation)
        self.current_node = move
        return move.move

    def mcts(self, node):
        if node.simulation >= minVisit:
            #print("depth:", depth)
            node.simulation += 1
            if not len(node.child_node):
                moves = self.board.get_all_possible_moves(node.player)
                for move in moves:
                    for eachmove in move:
                        node.child_node.append(
                            TreeNode(eachmove, self.opponent[node.player],
                                     node))
            # proceed
            next = self.mcts_selection(node)
            self.board.make_move(next.move, node.player)
            result = self.board.is_win(node.player)
            if result:
                if result == self.opponent[node.player]: node.win += 1
                elif result == node.player:
                    next.win += 1
                    next.simulation += 1
                self.board.undo()
                return result
                #self.board.show_board()
            result = self.mcts(next)
            self.board.undo()
            # propagate up
            if result == self.opponent[node.player]:
                node.win += 1
            return result
        else:
            result = self.simulate(node.player)
            node.simulation += 1
            if result == self.opponent[node.player]:
                node.win += 1
            #print("simulating", result)
            return result

    def mcts_selection(self, node):  # Select optimal UCB node
        current = node.child_node[0]
        for child in node.child_node:
            #print(current.uct())
            if current.uct() < child.uct():
                current = child
        #print("player", node.player, "pick", current.move)
        return current

    def simulate(self, player):
        win = 0
        counter = 0
        fake_board = Board(self.col, self.row, self.p)
        self.copy_board(fake_board)
        # print("DIT ME DIEN")
        # fake_board.show_board()
        # totaltime = 0
        while win == 0:
            moves = fake_board.get_all_possible_moves(player)
            if len(moves) == 1:
                index = 0
            elif len(moves) == 0:
                win = self.opponent[player]
                break
            else:
                index = randint(0, len(moves) - 1)
            if len(moves[index]) == 1:
                inner_index = 0
            else:
                inner_index = randint(0, len(moves[index]) - 1)
            move = moves[index][inner_index]
            fake_board.make_move(move, player)
            counter += 1
            # bt = time.time()
            if fake_board.tie_counter >= fake_board.tie_max:
                win = -1
            # totaltime += time.time() - bt
            # print("self.board.is_win():", time.time() - bt)
            player = self.opponent[player]

        # #print("total time is_win:", totaltime)
        # #bt = time.time()
        # for i in range(counter):
        #     self.board.undo()
        # #rint("total time undo:", time.time() - bt)
        # fake_board.show_board()
        return win

    def copy_board(self, board):
        """
        EZ game
        :return: ez board
        """
        board.tie_counter = self.board.tie_counter
        board.tie_max = self.board.tie_max
        board.board = copy.deepcopy(self.board.board)
        board.saved_move = copy.deepcopy(self.board.saved_move)
        board.black_count = self.board.black_count
        board.white_count = self.board.white_count
Exemplo n.º 16
0
class StudentAI():

    def __init__(self,col,row,p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col,row,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2

    def get_move(self,move):
        if len(move) != 0:
            self.board.make_move(move,self.opponent[self.color])
        else:
            self.color = 1
        moves = self.board.get_all_possible_moves(self.color)
        index = randint(0,len(moves)-1)
        inner_index =  randint(0,len(moves[index])-1)
        # move = moves[index][inner_index]
        move = self.min_max_recursion(4, True)[0]
        self.board.make_move(move,self.color)
        return move

    def min_max_recursion(self, depth, maximizingPlayer):

        if depth == 0 and self.color == 1:
            return self.board.black_count - self.board.white_count

        elif depth == 0 and self.color == 2:
            return self.board.white_count - self.board.black_count

        maximum = -100
        max_move = ""
        minimum = 100
        min_move = ""
        if maximizingPlayer:
            selfmoves = self.board.get_all_possible_moves(self.color)
            #maximum = -100
            for s_checker_moves in selfmoves:
                for sm in s_checker_moves:
                    self.board.make_move(sm, self.color)
                    Recurs = self.min_max_recursion(depth - 1, False)
                    # print("Recurs: ",Recurs)
                    temp = maximum
                    if type(Recurs) == type(tuple()):
                        maximum = max(maximum, Recurs[1])
                    else:
                        maximum = max(maximum, Recurs)
                    # print("maximum: ",maximum)
                    if temp != maximum:
                        max_move = sm
                    #alpha = max(alpha, Recurs)
                    # print("alpha",alpha)

                    self.board.undo()

                    #if beta <= alpha:
                    #    break
            return (max_move, maximum)

        else:
            #minimum = 100
            oppmoves = self.board.get_all_possible_moves(self.opponent[self.color])
            for o_checker_moves in oppmoves:
                for om in o_checker_moves:
                    self.board.make_move(om, self.opponent[self.color])
                    Recurs = self.min_max_recursion(depth - 1, True)
                    # print("Recurs: ",Recurs)
                    temp = minimum
                    if type(Recurs) == type(tuple()):
                        minimum = min(minimum, Recurs[1])
                    else:
                        minimum = min(minimum, Recurs)
                    # print("minimum: ",minimum)
                    if temp != minimum:
                        min_move = om
                    #beta = min(beta, Recurs)
                    # print("beta: ", beta)

                    self.board.undo()

                    #if beta <= alpha:
                    #    break
            return (min_move, minimum)
Exemplo n.º 17
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2

        self.root = Node(self.color, -1)
        self.start = None

    def flatten(self, ini_list) -> list:
        return sum(ini_list, [])

    def isTimeLeft(self):
        time = datetime.datetime.now()
        if (time - self.start).seconds < turnTimer:
            return True
        return False

    def select(
        self
    ) -> Node:  #REMINDER: moves is the flattened list of all available moves
        maxNode = self.root
        maxUct = -1
        ptr = self.root
        uct = None
        found = False

        while len(ptr.children) != 0:  #Node is not a leaf node
            moves = self.flatten(self.board.get_all_possible_moves(ptr.color))
            for m in moves:
                found = False
                for c in ptr.children:
                    if not found and m == c.move:
                        uct = c.UCT()
                        if uct > maxUct:
                            maxUct = uct
                            maxNode = c
                        found = True
                if not found:
                    return ptr  #Node is a leaf node, return parent to expand later

            if maxNode.move != -1:
                self.board.make_move(maxNode.move, ptr.color)
            ptr = maxNode

        # Node is leaf node
        return ptr  #Same thing as line 135

    def expand(self, node) -> Node:
        moves = self.flatten(self.board.get_all_possible_moves(node.color))
        toMove = moves[0]

        childrenMoves = []
        for c in node.children:
            childrenMoves.append(c.move.seq)
        for m in moves:
            if childrenMoves.count(
                    m.seq
            ) == 0:  #Get all available moves for node, then find the leaf node to expand
                toMove = m
                break

        child = Node(self.opponent[node.color], toMove, node)
        node.children.append(child)
        return child

    def simulate(self, child):
        players = {1: "B", 2: "W"}
        winner = None
        counter = 0
        color = child.color

        while self.board.is_win(players[color]) == 0:
            moves = self.flatten(self.board.get_all_possible_moves(color))
            if len(moves) != 0:  #player has moves
                i = randint(0, len(moves) - 1)
                self.board.make_move(moves[i], color)
                color = self.opponent[color]
                counter += 1
            else:  #player doesnt have moves, but game hasn't ended yet
                color = self.opponent[color]

        winner = self.board.is_win(players[color])
        while counter != 0:
            self.board.undo()
            counter -= 1
        return winner

    def backProp(self, result, child):
        while child is not None:
            child.upSims()
            if result != child.color:
                child.upWins()
            child = child.parent

    def MCTS(self, moves) -> Move:
        while (self.isTimeLeft()):
            parent = self.select()
            expand = self.expand(parent)  #TODO check if expand() returns None
            result = self.simulate(expand)
            self.backProp(result, expand)

        bestMove = None  # self.root.children[i].move
        if len(self.root.children) == 0:
            index = randint(0, len(moves) - 1)
            bestMove = moves[index]
        else:
            bestWR = -1
            i = 0
            while i != len(self.root.children):
                if self.root.children[i].getWinRate() > bestWR:
                    bestWR = self.root.children[i].getWinRate()
                    bestMove = self.root.children[i].move
                i += 1

        return bestMove

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])

            if self.root.parent is None:  # len(self.root.children) == 0:
                #what if the root.children doesnt contain the one move we wanted?
                # FIX: checking len of self.root.children to moves of self.root
                self.root.move = move
            else:
                i = 0
                while i != len(self.root.children):
                    if self.root.children[i].move == move:
                        break
                    i += 1
                if i != len(self.root.children):
                    self.root = self.root.children[i]
                else:  #no child node: add it
                    new_root = Node(self.color, move, self.root)
                    self.root.children.append(new_root)
                    self.root = new_root

        else:
            self.color = 1
            self.root.color = 1

        self.start = datetime.datetime.now()
        moves = self.flatten(self.board.get_all_possible_moves(
            self.root.color))
        move = self.MCTS(moves)

        self.board.make_move(move,
                             self.root.color)  # PROBLEM LINE: color mismatch
        # update root to move just picked from MCTS
        i = 0
        while i != len(self.root.children):
            if self.root.children[i].move == move:
                break
            i += 1
        self.root = self.root.children[i]
        return move
Exemplo n.º 18
0
class StudentAI:
    def __init__(self, col, row, k, g):
        self.k = k
        self.col = col
        self.row = row
        self.board = Board(col, row, k, g)
        self.g = True if g == 1 else False
        self.win = 10**k

    def get_move(self, move):
        if move.row == -1 and move.col == -1:
            move = Move(self.col // 2, self.row // 2)
            self.board = self.board.make_move(move, AI)
            return move

        self.board = self.board.make_move(move, OP)

        if self.g: move, _ = self.max_val(self.board.board, MIN, MAX, 6)
        else: move, _ = self.max_val(self.board.board, MIN, MAX, 4)

        while self.board.board[move.row][move.col] != 0:
            move.col = randint(0, self.col - 1)
            move.row = randint(0, self.row - 1)

        self.board = self.board.make_move(move, AI)
        return move

    def available_move(self, board):
        res = []
        for c in range(self.col // 2, self.col):
            for r in range(self.row - 1, -1, -1):
                if board[r][c] == 0:
                    res.append(Move(c, r))
                    if self.g: break
        for c in range(self.col // 2 - 1, -1, -1):
            for r in range(self.row - 1, -1, -1):
                if board[r][c] == 0:
                    res.append(Move(c, r))
                    if self.g: break
        return res

    def max_val(self, board, alpha, beta, deep):
        if deep == 0: return Move(0, 0), self.heuristic(board, AI)
        val = MIN

        res = [Move(0, 0), 0]
        moves = self.available_move(board)

        for mv in moves:
            board[mv.row][mv.col] = AI
            _, score = self.min_val(board, alpha, beta, deep - 1)
            board[mv.row][mv.col] = 0

            if score > val:
                val = score
                res = [mv, score]
                if val >= self.win: break

            alpha = max(alpha, val)
            if alpha >= beta: break
        return res

    def min_val(self, board, alpha, beta, deep):
        if deep == 0: return Move(0, 0), self.heuristic(board, OP)
        val = MAX

        res = [Move(0, 0), 0]
        moves = self.available_move(board)

        for mv in moves:
            board[mv.row][mv.col] = OP
            _, score = self.max_val(board, alpha, beta, deep - 1)
            board[mv.row][mv.col] = 0

            if score < val:
                val = score
                res = [mv, score]
                if val <= -self.win:
                    break

            beta = min(beta, val)
            if alpha >= beta: break
        return res

    def eval(self, board, player):
        val = 0
        for row in board:
            col = len(row)
            j1 = j2 = 0
            while j2 < col:
                space = 0
                while j1 < col and row[j1] != player:
                    j1 += 1
                j2 = j1
                while j2 < col and row[j2] == player:
                    j2 += 1

                if j1 < col and j2 < col:
                    diff = j2 - j1
                    if j1 - 1 > 0 and row[j1 - 1] == 0: space += 1
                    if row[j2] == 0: space += 1
                    if space == 2 and self.g == 0: diff += 1
                    if space != 0: val += 10**diff
                    elif self.k == diff: val += 10**diff
                elif j1 < col <= j2:
                    diff = col - j1
                    if j1 - 1 >= 0 and row[j1 - 1] == 0: space += 1
                    if space != 0: val += 10**diff
                    elif self.k == diff: val += 10**diff
                else: break
                j1 = j2
        return val

    def heuristic(self, board1, player):
        def transpose(board):
            return array(board).transpose().tolist()

        def diaganol(board):
            board = array(board)
            res = []
            for i in range(1, len(board)):
                res.append(diag(board, i).tolist())
                res.append(diag(board, -i).tolist())
            res.append(diag(board).tolist())
            return res

        board2 = transpose(board1)
        board3 = diaganol(board1)
        board4 = diaganol(board2)

        val1 = self.eval(board1, AI) + self.eval(board2, AI) + self.eval(
            board3, AI) + self.eval(board4, AI)
        val2 = self.eval(board1, OP) + self.eval(board2, OP) + self.eval(
            board3, OP) + self.eval(board4, OP)

        if val1 >= self.win and val2 >= self.win:
            return self.win if player == AI else -self.win
        if val1 >= self.win or val2 >= self.win:
            return self.win if val1 >= self.win else -self.win

        return val1 - val2
Exemplo n.º 19
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[
                self.color])  # Run opponent's move for self.board
        else:
            self.color = 1

        root = Tree(self.opponent[self.color])  #Tree root
        self.rec_tree(root, search_depth)
        self.rec_heuristic(root)

        avail_moves = root.value[list(root.value)[0]]
        cur_move = avail_moves[0]
        #print(avail_moves)

        self.board.make_move(cur_move, self.color)  # Make the optimal move
        move = cur_move
        return move

    def ftu(self, color):  #Function to use (min vs max by color)
        if color == self.color:  # Calculate Min
            return max
        else:  # Calculate Max
            return min

    def min_max(self, children,
                color):  # Returns dict -> {Max/min value: Moves to get here}
        ftu = self.ftu(color)  #Use corresponding min or max depending on color
        value_map = {}
        for child in children:
            for v in child.value.keys():
                value_map.setdefault(v, []).append(
                    child.move
                )  # D: {heuristic value: Move to make to get here}
        # print(value_map)
        return {ftu(value_map): value_map[ftu(value_map)]}

    def board_points(
            self):  # 5 + row number for pawns, 5 + row number + 2 for kings
        pts = 0
        for i in range(self.row):
            for j in range(self.col):
                checker = self.board.board[i][j]
                if checker.color == 'B':  # For black side pieces
                    pts += 5 + checker.row
                    if checker.is_king:  # 2 additional pts for king
                        pts += 2
                elif checker.color == 'W':  # FOr white side pieces
                    pts -= 11 - checker.row  # 5 + (6 - Row)
                    if checker.is_king:  # 2 additional pts for king
                        pts -= 2
        return pts if self.color == "B" else -pts

    def print_tree(self, root, level=0):
        # print("PRINTING TREE")

        print("\t" * level, root.value, "->", root.move)
        if len(root.children) != 0:  # Not Leaf node
            for child in root.children:
                self.print_tree(child, level + 1)

    def rec_tree(self, root: Tree, level=1):
        if level == 0:
            pass
        else:
            if root.move is not None:  # Not root of tree
                self.board.make_move(root.move, root.color)
            #Check if win here maybe?
            avail_moves = self.board.get_all_possible_moves(
                self.opponent[root.color])
            for i in range(len(avail_moves)):
                for j in range(len(avail_moves[i])):
                    #print(root)
                    root.children.append(
                        Tree(self.opponent[root.color], avail_moves[i][j]))
            for child in root.children:
                self.rec_tree(child, level - 1)

            if root.move is not None:
                self.board.undo()

    def rec_heuristic(self, root: Tree):
        if root.move is not None:
            self.board.make_move(root.move, root.color)
        if len(root.children) == 0:  #Passed node has no children
            pass  #Evaluate heuristic for board(and return?)
            root.value = {self.board_points(): []}
        else:  #Evaluate rec_heuristic for children, then retrieve values and apply min/max as appropriate
            for child in root.children:
                self.rec_heuristic(child)
            root.value = self.min_max(root.children, root.color)

        if root.move is not None:
            self.board.undo()
Exemplo n.º 20
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        self.ct = 0
        #self.dif_val = False
        self.size = self.col * self.row
        if self.size < 40:  #6x6
            #print(8)
            self.search_depth = 8
        elif self.size < 50:  #7x7
            #print(7)
            self.search_depth = 5
        elif self.size < 80:  #8x8
            #print(6)
            self.search_depth = 4
        else:
            self.search_depth = 4

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[
                self.color])  # Run opponent's move for self.board
        else:
            self.color = 1

        try:
            self.search_depth
        except NameError:
            print("ERROR")
            search_depth = 5

        if self.size < 40:  #6x6
            if self.ct == 5:
                self.search_depth += 1  #9
            elif self.ct == 10:
                self.search_depth += 1  #10
        elif self.size < 50:  #7x7
            if self.ct == 2:
                self.search_depth += 1  #6
            elif self.ct == 5:
                self.search_depth += 1  #7
            if self.ct == 10:
                self.search_depth += 1  #8
            elif self.ct == 15:
                self.search_depth += 1  #9
            elif self.ct == 20:
                self.search_depth += 1  #10
        elif self.size < 80:  #8x8
            if self.ct == 3:
                self.search_depth += 1  #5
            elif self.ct == 5:
                self.search_depth += 1  #6
            elif self.ct == 7:
                self.search_depth += 1  #7
            elif self.ct == 11:
                self.search_depth += 1  #8
        else:
            if self.ct == 10:
                self.search_depth += 1
            elif self.ct == 20:
                self.search_depth += 2

        root = Tree(self.opponent[self.color])  # Tree root
        #print('Detph', self.search_depth, self.ct)
        self.rec_tree(root, self.search_depth)  # Set up tree

        self.rec_min_max_heuristic(root)

        #self.rec_abp_heuristic(root)

        #self.rec_abp_v2(root)

        avail_moves = root.value[list(root.value)[0]]

        #cur_move = avail_moves[randint(0,len(avail_moves)-1)]
        cur_move = avail_moves[0]
        '''
        print("ALL MOVES")
        moves = self.board.get_all_possible_moves(self.color)
        for i, checker_moves in enumerate(moves):
            print(i, ':[', end="")
            for j, move in enumerate(checker_moves):
                print(j, ":", move, end=", ")
            print("]")
        print("AVAIL MOVES")
        #print(avail_moves)
        for i, checker_moves in enumerate(avail_moves):
            print(i, ':[', end="")
            for j, move in enumerate(checker_moves):
                print(j, ":", move, end=", ")
            print("]")
        '''
        #if self.dif_val:
        if debug: print("##########TREE##########")
        self.print_tree(root)
        if debug: print("##########TREE##########")
        #            self.dif_val = False
        self.board.make_move(cur_move, self.color)  # Make the optimal move
        move = cur_move
        return move

    # Board Heuristic
    def board_points(
            self):  # 5 + row number for pawns, 5 + row number + 2 for kings
        king_pts_value = 5 + (
            self.row - 1
        ) + 5  #5 pts for piece, self.row -1 pts for pts at end of board, + 1 for being king

        pts = 0
        b_pawns = set()
        b_kings = set()
        w_pawns = set()
        w_kings = set()
        for i in range(self.row):
            for j in range(self.col):
                checker = self.board.board[i][j]
                if checker.color == "B":  #Black
                    if checker.is_king:
                        b_kings.add((i, j))
                    else:
                        b_pawns.add((i, j))
                elif checker.color == "W":  #White
                    if checker.is_king:
                        w_kings.add((i, j))
                    else:
                        w_pawns.add((i, j))
        # if b_pawns == set():
        #     print("-" * 20)
        #     self.board.show_board()
        # b_pawns = set()
        # b_kings = set()
        # w_pawns = set()
        # w_kings = set()
        # for i in range(self.row):
        #     for j in range(self.col):
        #         checker = self.board.board[i][j]
        #         if checker.color == "B": #Black
        #             if checker.is_king:
        #                 b_kings.add((i,j))
        #             else:
        #                 b_pawns.add((i,j))
        #         elif checker.color == "W": #White
        #             if checker.is_king:
        #                 w_kings.add((i,j))
        #             else:
        #                 w_pawns.add((i,j))

        for pawn in b_pawns:
            pts += 5 + pawn[0]
        for pawn in w_pawns:
            pts -= (5 + (self.row - pawn[0] - 1))
        for king in b_kings:
            pts += king_pts_value
            dist = 0
            for w in w_kings:
                dist += sqrt((king[0] - w[0])**2 + (king[1] - w[1])**2)
            for w in w_pawns:
                dist += sqrt((king[0] - w[0])**2 + (king[1] - w[1])**2)
            if len(w_kings) + len(w_pawns) != 0:
                pts -= dist / (len(w_kings) + len(w_pawns))
        for king in w_kings:
            pts -= king_pts_value
            dist = 0
            for b in b_kings:
                dist += sqrt((king[0] - b[0])**2 + (king[1] - b[1])**2)
            for b in b_pawns:
                dist += sqrt((king[0] - b[0])**2 + (king[1] - b[1])**2)
            if len(b_kings) + len(b_pawns) != 0:
                pts += dist / (len(b_kings) + len(b_pawns))

        #if abs(pts) > 2:
#            self.dif_val = True
#if debug: print(color(root.color), pts, -pts)
        return pts if self.color == 2 else -pts  #BLACK(1) GOES FIRST, so positive points, if self.color == white(2), then return white pieces as positive points

    def print_tree(self, root, level=0):
        if not debug:
            return
        print("\t" * level, color(root.color), root.value, "->", root.move)
        if len(root.children) != 0:  # Not Leaf node
            for child in root.children:
                self.print_tree(child, level + 1)

    def rec_tree(self, root: Tree, level=1):  # Create tree up to depth level
        if level == 0:
            pass
        else:
            if root.move is not None:  # Not root of tree
                self.board.make_move(root.move, root.color)
            # Check if win here maybe?
            avail_moves = self.board.get_all_possible_moves(
                self.opponent[root.color])
            for i in range(len(avail_moves)):
                for j in range(len(avail_moves[i])):
                    # print(root)
                    root.children.append(
                        Tree(self.opponent[root.color], avail_moves[i][j]))
            for child in root.children:
                self.rec_tree(child, level - 1)

            if root.move is not None:
                self.board.undo()

    # MinMax Functions
    def ftu(self, color):  # Function to use (min vs max by color)
        if color == self.color:  # Calculate Max
            return max
        else:  # Calculate Min
            return min

    def min_max(self, children,
                color):  # Returns dict -> {Max/min value: Moves to get here}
        ftu = self.ftu(
            color)  # Use corresponding min or max depending on color
        value_map = {}
        for child in children:
            for v in child.value.keys():
                value_map.setdefault(v, []).append(
                    child.move
                )  # D: {heuristic value: Move to make to get here}
        # print(value_map)
        return {ftu(value_map): value_map[ftu(value_map)]}

    def rec_min_max_heuristic(self,
                              root: Tree):  # Apply min_max heuristic to tree
        if root.move is not None:  # AKA this is root, the move is what opponent made to get here (none so we don't have to redo move on our board)
            self.board.make_move(root.move, root.color)
        if len(root.children) == 0:  # Passed node has no children
            # Evaluate heuristic for board(and return?)
            root.value = {
                self.board_points(): []
            }  # Value will be dict with key = heuristic points and value = all the moves that result in that many points
        else:  # Evaluate rec_heuristic for children, then retrieve values and apply min/max as appropriate
            for child in root.children:
                self.rec_min_max_heuristic(child)
            root.value = self.min_max(root.children, root.color)

        if root.move is not None:
            self.board.undo(
            )  # Undo move to revert action (done for searching) and return to parent

    # AlphaBeta Functions
    def set_alpha_beta(self, root, child, color):
        ftu = self.ftu(color)
        if child.value is None:
            print(child)
        if root.value is None:
            root.value = {}
        if color == self.color:  # Max aka update alpha (This ai's turn)
            # return ftu(alpha, ftu(child.value)), beta
            if root.alpha < ftu(child.value):
                root.alpha = ftu(child.value)
            root.value.setdefault(root.alpha, []).append(child.move)
        else:  # Min aka update beta (Opponent's turn)
            # return alpha, ftu(beta, ftu(child.value))
            if root.beta > ftu(child.value):
                root.beta = ftu(child.value)
            root.value.setdefault(root.beta, []).append(child.move)

    def rec_abp_heuristic(self,
                          root: Tree,
                          alpha=-999,
                          beta=999,
                          level=0):  # Alpha Beta Pruning
        if debug:
            print("\t" * level, color(root.color), "Enter: ", root.value, "->",
                  root.move)
        old_val = root.value
        if root.move is not None:  # AKA this is root, the move is what opponent made to get here (none so we don't have to redo move on our board)
            self.board.make_move(root.move, root.color)
        #self.board.show_board()
        if len(
                root.children
        ) == 0:  # Passed node has no children aka this is lowest level/leaf
            root.value = {self.board_points(): []}
            if debug:
                print("\t" * level, "LEAF: ", root.value, "->", root.move)
        else:  # Evaluate heuristic for child, retrieve value, update alphabeta, continue with next child if appropriate
            root.alpha = alpha
            root.beta = beta

            if debug: print("\t" * 16, "CHILDREN:", end=" ")
            for child in root.children:
                if debug: print(child.move, end=", ")
            if debug: print("(", color(self.opponent[root.color]), ")", sep="")

            for child in root.children:
                if root.alpha >= root.beta:  # Break out of loop once alpha >= beta (Pruning)
                    if debug: print("PRUNING")
                    break
                self.rec_abp_heuristic(child, root.alpha, root.beta, level + 1)
                self.set_alpha_beta(
                    root, child, root.color
                )  # Apply alpha/beta values based on min/max of child to current node
                if debug:
                    print("\t" * level, color(root.color), "New Value: ",
                          root.value, "->", root.move)
        if root.move is not None:
            self.board.undo()
        if debug:
            print("\t" * level, color(root.color), "Exit: ", root.value, "->",
                  root.move)
        #print(max(list(root.value), key = abs), "\t", root.move, "->", root.value)
        #if abs(max(list(root.value), key = abs)) > 2:
        #print("\t" * level, "Enter: ", old_val, "->", root.move)
        #print("\t" * level, "Exit: ", root.value, "->", root.move)

    def rec_abp_v2(self, root: Tree, alpha=-999, beta=999):
        if root.move is not None:  # AKA this is root, the move is what opponent made to get here (none so we don't have to redo move on our board)
            self.board.make_move(root.move, root.color)
        else:
            root.value = {}
        if len(root.children) == 0:
            root.value = self.board_points()
            if root.move is not None:
                self.board.undo()
            return root.value
        else:
            if color == self.color:  #MaximizingPlayer
                #val = -999
                for child in root.children:
                    '''
                    val = max(val, rec_abp_v2(child, alpha, beta))
                    alpha = max(alpha, val)
                    '''
                    val = self.rec_abp_v2(child, alpha, beta)
                    if alpha > val:  #Alpha > Val
                        root.alpha = alpha
                    else:  #Val > Alpha
                        alpha = val
                        if root.move is None:  #Root node, ie save the move to get here
                            root.value.setdefault(alpha, []).append(child.move)
                        root.alpha = alpha
                    if alpha >= beta:
                        break
                if root.move is not None:
                    self.board.undo()
                return alpha
            else:  #Minimizing Player
                #val = 999
                for child in root.children:
                    '''
                    val = min(val, alphabeta(child, alpha, beta))
                    beta = min(val, beta)
                    '''
                    val = self.rec_abp_v2(child, alpha, beta)
                    if beta < val:  #Beta < Val
                        root.beta = beta
                    else:
                        beta = val
                        if root.move is None:
                            root.value.setdefault(beta, []).append(child.move)
                        root.beta = beta
                    if alpha >= beta:
                        break
                if root.move is not None:
                    self.board.undo()
                return beta
Exemplo n.º 21
0
class StudentAI():
    INITIAL_DEPTH_LIMIT = 5
    EARLY_GAME_TURNS = 10
    TURN_COLOR_MAP = {1: "B", 2: "W"}

    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        self.depth = 0
        self.turn = 0
        self.control = asyncio.get_event_loop()
        self.iterative_depth_limit = self.INITIAL_DEPTH_LIMIT
        self.time_left = TimeFlags.UNDER
        self.time_used = 0
        self.upper_depth_limit = float('inf')
        self.time_limit = 480  # 8 minutes
        self.late_game_flag = False
        self.heuristic_flag = 1  #use ieee1, if 2, use ieee2
        self.flag_just_changed = 0

    # Timer, which can to have set values based on total used time. Min sleep must be > 1
    async def timer(self, state):
        # Here was originally a hueristic to determin which sleep pattern/upper depth limit to use
        # our_count = self.countOurPieces(state)
        # if self.time_used < 120:          # Use this sleep before two minute mark
        #     if our_count <= self.p*self.row/2*0.4:
        #         self.upper_depth_limit = 12
        #         await asyncio.sleep(20)
        #     else:
        #         self.upper_depth_limit = 2
        #         await asyncio.sleep(1)

        try:
            if self.time_used < 120:  # Use this sleep before two minute mark
                self.upper_depth_limit = 8
                await asyncio.sleep(15)

            elif self.time_used < 240:  # Four minute mark
                self.upper_depth_limit = 7
                await asyncio.sleep(10)

            elif self.time_used < 360:  # Six minute mark
                self.upper_depth_limit = 7
                await asyncio.sleep(8)

            elif self.time_used < 420:  # Seven minute mark
                self.upper_depth_limit = 6
                await asyncio.sleep(5)

            else:  # Anything longer than above
                self.upper_depth_limit = 5
                await asyncio.sleep(1)

            # After waiting, set time to over time
            self.time_left = TimeFlags.OVER

        # Handle when we cancel the timer
        except asyncio.CancelledError:
            self.time_left = TimeFlags.UNDER

        # finally:
        #     self.upper_depth_limit = float('inf')

    # Asyncio function that will create the tasks and run them concurrently
    # It will wait until both are either finished or canceled, and then return that move
    async def min_max_start(self):
        # Create tasks which will be ran concurrently
        self.task_timer = asyncio.Task(self.timer(self.board))
        self.task_minmax = asyncio.Task(self.minMaxSearch(self.board))

        # Run tasks together at the same time, returns minimax moves, hence [0]
        chosen_move = await asyncio.gather(self.task_minmax, self.task_timer)
        return chosen_move[0]

    def get_move(self, move):
        # Keep track of time so we can figure out total time used
        start_time = self.control.time()

        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
        self.turn += 1

        # Start the asynchronous minmax timer search
        move = self.control.run_until_complete(self.min_max_start())

        # Make our move
        self.board.make_move(move, self.color)

        # Add to our ongoing used time, 8 minute time limit as defined under self.timer()
        self.time_used += self.control.time() - start_time

        return move

    async def minMaxSearch(self, state):
        # Get all of our moves
        ourMoves = state.get_all_possible_moves(self.color)
        lastBestVal = float('-inf')

        # Iterate through all of our moves to find the max of them
        self.time_left = TimeFlags.UNDER
        self.iterative_depth_limit = self.INITIAL_DEPTH_LIMIT
        while self.time_left != TimeFlags.OVER:
            for moves in ourMoves:
                for ourMove in moves:
                    # If we're over time, just return our current best
                    if self.time_left == TimeFlags.OVER:
                        return lastBestMove

                    state.make_move(ourMove, self.color)
                    tempMax = await self.minValue(state, 1, float('-inf'),
                                                  float('inf'))
                    if lastBestVal < tempMax:
                        lastBestVal = tempMax
                        lastBestMove = ourMove

                    state.undo()

            # If maxVal is better than the one kept from the lastBestMove, set those as lastBest

            # Upon each iteration, increase depth limit by 1
            self.iterative_depth_limit += 1

            # If we reached out set max, stop iterating and just return what we have
            if self.iterative_depth_limit > self.upper_depth_limit:
                break

            # Context switch back to the timer, to check if it's ran out
            await asyncio.sleep(0)

        # Return depth limit back to what it was originally, cancel the timer because we've reached
        # the upper depth limit.
        self.iterative_depth_limit = self.INITIAL_DEPTH_LIMIT
        self.task_timer.cancel()

        return lastBestMove

    async def maxValue(self, state, depth, alpha, beta):
        #Check if this state is a win state
        isWin = state.is_win(self.TURN_COLOR_MAP[self.opponent[self.color]])
        if isWin != 0:
            if isWin == self.color:
                return 999999999
            elif isWin == self.opponent[self.color]:
                return -999999999
        await asyncio.sleep(0)
        #Get all of our moves and check if we have hit depth limit or if timer runs out. If we have, run eval function
        ourMoves = state.get_all_possible_moves(self.color)
        if (depth >= self.iterative_depth_limit
            ) or len(ourMoves) == 0 or self.time_left == TimeFlags.OVER:
            return self.evalFunction(state)

        v = float('-inf')
        depth += 1
        for moves in ourMoves:
            for ourMove in moves:
                state.make_move(ourMove, self.color)
                v = max(v, await self.minValue(state, depth, alpha, beta))
                state.undo()
                if v >= beta:
                    return v
                alpha = max(alpha, v)
        return v

    async def minValue(self, state, depth, alpha, beta):
        isWin = state.is_win(self.TURN_COLOR_MAP[self.color])
        if isWin != 0:
            if isWin == self.color:
                return 999999999
            elif isWin == self.opponent[self.color]:
                return -999999999
        await asyncio.sleep(0)
        oppMoves = state.get_all_possible_moves(self.opponent[self.color])
        if (depth >= self.iterative_depth_limit
            ) or len(oppMoves) == 0 or self.time_left == TimeFlags.OVER:
            return self.evalFunction(state)

        v = float('inf')
        depth += 1
        for moves in oppMoves:
            for oppMove in moves:
                state.make_move(oppMove, self.opponent[self.color])
                v = min(v, await self.maxValue(state, depth, alpha, beta))
                state.undo()
                if v <= alpha:
                    return v
                beta = min(beta, v)
        return v

    def evalFunction(self, state):
        if self.turn < self.EARLY_GAME_TURNS:
            return self.ieeeEvaluation1(state)  #go to their side

        if self.late_game_flag:
            if self.flag_just_changed > 0:
                self.flag_just_changed -= 1
                if self.heuristic_flag == 1:
                    return self.ieeeEvaluation1(state)
                elif self.heuristic_flag == 2:
                    return self.ieeeEvaluation2(state)
            else:
                self.checkSide(state)
                if self.heuristic_flag == 1:
                    return self.ieeeEvaluation1(state)
                elif self.heuristic_flag == 2:
                    return self.ieeeEvaluation2(state)

        else:
            self.checkLateGame(state)
            return self.ieeeEvaluation1(state)

        # earlyOrLate = self.getEarlyOrLate(state)
        # if earlyOrLate[0] == -1:
        #     return -999999999
        # elif earlyOrLate[0] == 0:
        #     return self.ieeeEvaluation(state)
        # elif earlyOrLate[0] == 1:
        #     return self.lateGameKingEval(state, earlyOrLate[1], earlyOrLate[2], earlyOrLate[3])

    def checkLateGame(self, state):
        numOurCheckers = 0
        numOurKings = 0
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":
                        numOurCheckers += 1
                        if checkerPiece.is_king:
                            numOurKings += 1

                elif self.color == 2:
                    if checkerPiece.color == "W":
                        numOurCheckers += 1
                        if checkerPiece.is_king:
                            numOurKings += 1

        if numOurKings / numOurCheckers == 1:
            self.late_game_flag = True

    def checkSide(self, state):
        #return 0 if we have our troops not yet all on their side
        #return 1 if we have our troops on their side
        numOurCheckers = 0
        numSideUs = 0
        numSideTheirs = 0
        if self.color == 1:
            rowCheck = 2 if len(state.board) == 7 else 3
            rowCheckTheir = 4
        elif self.color == 2:
            rowCheck = 4
            rowCheckTheir = 2 if len(state.board) == 7 else 3

        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":
                        numOurCheckers += 1
                        if row < rowCheck:
                            numSideUs += 1
                        if row > rowCheckTheir:
                            numSideTheirs += 1

                elif self.color == 2:
                    if checkerPiece.color == "W":
                        numOurCheckers += 1
                        if row > rowCheck:
                            numSideUs += 1
                        if row < rowCheckTheir:
                            numSideTheirs += 1

        if self.heuristic_flag == 1 and numSideTheirs / numOurCheckers > 0.8:
            self.heuristic_flag = 2
            self.flag_just_changed = 10

        if self.heuristic_flag == 2 and numSideUs / numOurCheckers > 0.8:
            self.heuristic_flag = 1
            self.flag_just_changed = 10

    #black always starts from 0,0 while white starts on the other side
    def ieeeEvaluation1(self, state):
        ourPawn = 0
        ourKing = 0
        ourMiddle = 0
        ourRow = 0
        oppPawn = 0
        oppKing = 0
        oppMiddle = 0
        oppRow = 0
        boardRowLen = len(state.board)
        middleRowEnd = len(state.board) - 3
        middleColEnd = len(state.board[0]) - 3
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":  #our piece
                        ourRow += row
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            ourMiddle += 1

                        if checkerPiece.is_king:
                            ourKing += 1
                        else:
                            ourPawn += 1

                    elif checkerPiece.color == "W":  #their piece
                        oppRow += boardRowLen - row - 1
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            oppMiddle += 1

                        if checkerPiece.is_king:
                            oppKing += 1
                        else:
                            oppPawn += 1
                elif self.color == 2:
                    if checkerPiece.color == "W":  #our piece
                        ourRow += boardRowLen - row - 1
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            ourMiddle += 1

                        if checkerPiece.is_king:
                            ourKing += 1
                        else:
                            ourPawn += 1
                    elif checkerPiece.color == "B":  #opponent piece
                        oppRow += row
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            oppMiddle += 1

                        if checkerPiece.is_king:
                            oppKing += 1
                        else:
                            oppPawn += 1

        return (80 * ((ourPawn - oppPawn) + 2.5 * (ourKing - oppKing))) + (
            40 * (ourRow - oppRow)) + (20 * (ourMiddle - oppMiddle))

    def ieeeEvaluation2(self, state):
        ourPawn = 0
        ourKing = 0
        ourMiddle = 0
        ourRow = 0
        oppPawn = 0
        oppKing = 0
        oppMiddle = 0
        oppRow = 0
        boardRowLen = len(state.board)
        middleRowEnd = len(state.board) - 3
        middleColEnd = len(state.board[0]) - 3
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":  #our piece
                        ourRow += boardRowLen - row - 1
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            ourMiddle += 1

                        if checkerPiece.is_king:
                            ourKing += 1
                        else:
                            ourPawn += 1

                    elif checkerPiece.color == "W":  #their piece
                        oppRow += row
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            oppMiddle += 1

                        if checkerPiece.is_king:
                            oppKing += 1
                        else:
                            oppPawn += 1
                elif self.color == 2:
                    if checkerPiece.color == "W":  #our piece
                        ourRow += row
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            ourMiddle += 1

                        if checkerPiece.is_king:
                            ourKing += 1
                        else:
                            ourPawn += 1
                    elif checkerPiece.color == "B":  #opponent piece
                        oppRow += boardRowLen - row - 1
                        if row >= 2 and row <= middleRowEnd and col >= 2 and col <= middleColEnd:
                            oppMiddle += 1

                        if checkerPiece.is_king:
                            oppKing += 1
                        else:
                            oppPawn += 1

        return (80 * ((ourPawn - oppPawn) + 2.5 * (ourKing - oppKing))) + (
            40 * (ourRow - oppRow)) + (20 * (ourMiddle - oppMiddle))
Exemplo n.º 22
0
class StudentAI():
    
    def __init__(self,col,row,p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col,row,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2

    def get_move(self,move):
        if len(move) != 0:
            self.board.make_move(move,self.opponent[self.color])
        else:
            self.color = 1

        bestVal = -999
        bestMove = None

        # if there is only one move to make, just make the move without evaluating
        possible_moves = self.board.get_all_possible_moves(self.color)
        if len(possible_moves) == 1 and len(possible_moves[0]) == 1:
            self.board.make_move(possible_moves[0][0], self.color)
            return possible_moves[0][0]

        for moves in possible_moves:
            for move in moves:
                self.board.make_move(move, self.color)
                val = self.search(1, StudentAI.switchColors(self.color), MIN, MAX)
                self.board.undo()

                if val > bestVal:
                    bestVal = val
                    bestMove = move

        self.board.make_move(bestMove, self.color)
        return bestMove

    def search(self, depth, currentColor, alpha, beta):
        if depth == 4 or self.board.is_win('B') or self.board.is_win('W'):
            return self.evaluate(currentColor)

        best = MIN if currentColor == self.color else MAX

        for moves in self.board.get_all_possible_moves(currentColor):
            for move in moves:
                self.board.make_move(move, currentColor)
                val = self.search(depth+1, StudentAI.switchColors(currentColor), alpha, beta)
                self.board.undo()
                
                if currentColor == self.color:
                    best = max(best, val)
                    alpha = max(alpha, best)

                elif currentColor != self.color:
                    best = min(best, val)
                    beta = min(beta, best)

                if beta <= alpha:
                    return best

        return best

    def piece_differential(self, currentColor):
        if currentColor == 'B':
            return self.board.black_count - self.board.white_count
        return self.board.white_count - self.board.black_count

    def evaluate(self, currentColor):
        currentColor = 'B' if currentColor == 1 else 'W'
        oppColor = 'W' if currentColor == 'B' else 'B'
        # if we win in this game state, prefer to choose this path
        # if the opponent wins in this game state, stay away from this path
        if self.board.is_win(currentColor):
            return 500
        elif self.board.is_win(oppColor):
            return -500

        piece_location, kings = 0, 0

        for i in range(self.board.row):
            for j in range(self.board.col):
                if (self.board.board[i][j].color == currentColor):
                    if self.board.board[i][j].is_king:
                        kings += 1
                        # we prefer the king to be in the middle of the board
                        if i <= self.row / 2:
                            piece_location += 7 + i
                        else:
                            piece_location += 7 + (self.board.row - i - 1)
                    else:
                        # we prefer the pawns to go to the opponent's side of the board
                        if self.board.board[i][j].color == 'B':
                            piece_location += 5 + i
                        else:
                            piece_location += 5 + (self.board.row - i - 1)
                elif (self.board.board[i][j].color == oppColor):
                    if self.board.board[i][j].is_king:
                        kings -= 1
                        # we prefer the opponent's king to not be in the middle of the board
                        if i <= self.row / 2:
                            piece_location -= 7 + i
                        else:
                            piece_location -= 7 + (self.board.row - i - 1)
                    else:
                        # we prefer the opponent's pawns to not be on our side of the board
                        if self.board.board[i][j].color == 'B':
                            piece_location -= 5 + i
                        else:
                            piece_location -= 5 + (self.board.row - i - 1)

        # if we have more kings, we prefer to play more aggressive
        if kings > 0:
            return piece_location + self.board.row * self.piece_differential(currentColor)
        else:
            return piece_location + self.piece_differential(currentColor)

    @staticmethod
    def switchColors(color):
        if color == 1:
            return 2
        return 1
Exemplo n.º 23
0
class StudentAI():
    INITIAL_DEPTH_LIMIT = 2
    EARLY_GAME_TURNS = 10
    TURN_COLOR_MAP = {1: "B", 2: "W"}

    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        self.depth = 0
        self.turn = 0
        self.control = asyncio.get_event_loop()
        self.iterative_depth_limit = self.INITIAL_DEPTH_LIMIT
        self.time_left = TimeFlags.UNDER
        self.time_used = 0
        self.upper_depth_limit = float('inf')

    # Timer, which can to have set values based on total used time. Min sleep must be > 1
    async def timer(self, state):
        # our_count = self.countOurPieces(state)
        # if self.time_used < 120:          # Use this sleep before two minute mark
        #     if our_count <= self.p*self.row/2*0.4:
        #         self.upper_depth_limit = 12
        #         await asyncio.sleep(20)
        #     else:
        #         self.upper_depth_limit = 2
        #         await asyncio.sleep(1)
        if self.time_used < 120:  # Use this sleep before two minute mark
            self.upper_depth_limit = 3
            await asyncio.sleep(20)

        elif self.time_used < 240:  # Four minute mark
            self.upper_depth_limit = 6
            await asyncio.sleep(10)

        elif self.time_used < 360:  # Six minute mark
            self.upper_depth_limit = 5
            await asyncio.sleep(8)

        elif self.time_used < 420:  # Seven minute mark
            self.upper_depth_limit = 5
            await asyncio.sleep(5)

        else:  # Anything longer than above
            self.upper_depth_limit = 4
            await asyncio.sleep(1)

        # After waiting, set time to over time
        self.time_left = TimeFlags.OVER

    async def min_max_start(self):
        # Create tasks which will be ran concurrently
        self.task_timer = asyncio.Task(self.timer(self.board))
        self.task_minmax = asyncio.Task(self.minMaxSearch(self.board))

        # Run tasks together at the same time, returns minimax moves, hence [0]
        chosen_move = await asyncio.gather(self.task_minmax, self.task_timer)
        return chosen_move[0]

    def get_move(self, move):
        start_time = self.control.time()
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
        self.turn += 1

        # Start the asynchronous minmax timer search
        move = self.control.run_until_complete(self.min_max_start())
        self.board.make_move(move, self.color)

        # Add to our ongoing used time, 8 minute time limit
        self.time_used += self.control.time() - start_time
        return move
        # moves = self.board.get_all_possible_moves(self.color)
        # index = randint(0,len(moves)-1)
        # inner_index =  randint(0,len(moves[index])-1)
        # move = moves[index][inner_index]
        # self.board.make_move(move,self.color)
        # return move

    async def minMaxSearch(self, state):
        # Get all of our moves
        ourMoves = state.get_all_possible_moves(self.color)
        maxVal = float('-inf')

        # Iterate through all of our moves to find the max of them
        self.time_left = TimeFlags.UNDER
        self.iterative_depth_limit = self.INITIAL_DEPTH_LIMIT
        while self.time_left != TimeFlags.OVER:
            for moves in ourMoves:
                for ourMove in moves:
                    # If we're over time, just return our current best
                    if self.time_left == TimeFlags.OVER:
                        return lastBest
                    state.make_move(ourMove, self.color)
                    tempMax = await self.minValue(state, 1, float('-inf'),
                                                  float('inf'))
                    if maxVal < tempMax:
                        maxVal = tempMax
                        chosenMove = ourMove
                    state.undo()
            lastBest = chosenMove
            # Upon each iteration, increase depth limit by 1
            self.iterative_depth_limit += 1

            # If we reached out set max, stop iterating and just return what we have
            if self.iterative_depth_limit > self.upper_depth_limit:
                break

            # Context switch back to the timer, to check if it's ran out
            await asyncio.sleep(0)

        # Return depth limit back to what it was originally
        self.iterative_depth_limit = self.INITIAL_DEPTH_LIMIT
        return lastBest

    async def maxValue(self, state, depth, alpha, beta):
        #Check if this state is a win state
        isWin = state.is_win(self.TURN_COLOR_MAP[self.opponent[self.color]])
        if isWin != 0:
            if isWin == self.color:
                return 999999999
            elif isWin == self.opponent[self.color]:
                return -999999999
        await asyncio.sleep(0)
        #Get all of our moves and check if we have hit depth limit. If we have, run eval function
        ourMoves = state.get_all_possible_moves(self.color)
        if (depth >= self.iterative_depth_limit
            ) or len(ourMoves) == 0 or self.time_left == TimeFlags.OVER:
            return self.evalFunction(state)

        v = float('-inf')
        depth += 1
        for moves in ourMoves:
            for ourMove in moves:
                state.make_move(ourMove, self.color)
                v = max(v, await self.minValue(state, depth, alpha, beta))
                state.undo()
                if v >= beta:
                    return v
                alpha = max(alpha, v)
        return v

    async def minValue(self, state, depth, alpha, beta):
        isWin = state.is_win(self.TURN_COLOR_MAP[self.color])
        if isWin != 0:
            if isWin == self.color:
                return 999999999
            elif isWin == self.opponent[self.color]:
                return -999999999
        await asyncio.sleep(0)
        oppMoves = state.get_all_possible_moves(self.opponent[self.color])
        if (depth >= self.iterative_depth_limit
            ) or len(oppMoves) == 0 or self.time_left == TimeFlags.OVER:
            return self.evalFunction(state)

        v = float('inf')
        depth += 1
        for moves in oppMoves:
            for oppMove in moves:
                state.make_move(oppMove, self.opponent[self.color])
                v = min(v, await self.maxValue(state, depth, alpha, beta))
                state.undo()
                if v <= alpha:
                    return v
                beta = min(beta, v)
        return v

    def evalFunction(self, state):
        if self.turn < self.EARLY_GAME_TURNS:
            return self.pieceAndRowEval(state)

        earlyLateList = self.getEarlyOrLate(state)

        if earlyLateList[0] == -1:  #In this state, we have no pieces
            return -999999999

        if earlyLateList[0] == 1:  # late game heuristic
            return self.lateGameKingEval(state, earlyLateList[1],
                                         earlyLateList[2])
        else:  # Early game heuristic
            return self.pieceAndRowEval(state)

    def countOurPieces(self, state):
        ongoing = 0
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":
                        ongoing += 1
                elif self.color == 2:
                    if checkerPiece.color == "W":
                        ongoing += 1
        return ongoing

    def getEarlyOrLate(self, state):
        #return list of gameboard state [0 or 1 (early or lategame), ourKings, oppKings]
        #return 0 if early, or 1 if late
        totalCheckers = 0
        numOurCheckers = 0
        numOurKings = 0
        numOppCheckers = 0
        numOppKings = 0
        ourKings = []
        oppKings = []
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":
                        totalCheckers += 1
                        numOurCheckers += 1
                        if checkerPiece.is_king:
                            numOurKings += 1
                            ourKings.append((row, col))
                    elif checkerPiece.color == "W":
                        totalCheckers += 1
                        numOppCheckers += 1
                        if checkerPiece.is_king:
                            numOppKings += 1
                            oppKings.append((row, col))
                elif self.color == 2:
                    if checkerPiece.color == "W":
                        totalCheckers += 1
                        numOurCheckers += 1
                        if checkerPiece.is_king:
                            numOurKings += 1
                            ourKings.append((row, col))
                    elif checkerPiece.color == "B":
                        totalCheckers += 1
                        numOppCheckers += 1
                        if checkerPiece.is_king:
                            numOppKings += 1
                            oppKings.append((row, col))

        if numOurCheckers == 0:
            return [-1, ourKings, oppKings]

        if numOurKings > numOppKings or numOurKings / numOurCheckers == 1:
            return [1, ourKings, oppKings]
        else:
            return [0, ourKings, oppKings]

    def lateGameKingEval(self, state, ourKings, oppKings):
        ourDistance = 0
        for ourKing in ourKings:
            for oppKing in oppKings:
                ourDistance += abs(ourKing[0] - oppKing[0]) + abs(ourKing[1] -
                                                                  oppKing[1])

        if len(ourKings) > len(oppKings):  #attack
            return -1 * ourDistance
        else:  #run away
            return ourDistance

    #black always starts from 0,0 while white starts on the other side
    def pieceAndRowEval(self, state):
        ourCount = 0
        oppCount = 0
        boardLen = len(state.board)
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":  #our piece
                        if checkerPiece.is_king:
                            ourCount += 5 + (row + 1) + 2
                        else:  #in our half
                            ourCount += 5 + (row + 1)

                    elif checkerPiece.color == "W":  #their piece
                        if checkerPiece.is_king:
                            oppCount += 5 + (boardLen - row) + 2
                        else:
                            oppCount += 5 + (boardLen - row)

                elif self.color == 2:
                    if checkerPiece.color == "W":  #our piece
                        if checkerPiece.is_king:
                            ourCount += 5 + (boardLen - row) + 2
                        else:
                            ourCount += 5 + (boardLen - row)
                    elif checkerPiece.color == "B":  #opponent piece
                        if checkerPiece.is_king:
                            oppCount += 5 + (row + 1) + 2
                        else:
                            oppCount += 5 + (row + 1)

        return ourCount - oppCount
Exemplo n.º 24
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2

        # ---------- What we added -----------

        self.calc_time = datetime.timedelta(seconds=3)
        self.max_moves = 35
        self.wins = {}
        self.plays = {}
        self.max_depth = 0
        self.C = 1.4
        self.colors = {1: "B", 2: "W"}
        self.letters = {"B": 1, "W": 2}
        self.states = []

    def run_sim(self, board):
        player = self.colors[self.color]
        number = self.letters[player]
        visited_states = set()

        expand = True

        for i in range(self.max_moves):

            moves = board.get_all_possible_moves(number)

            if len(moves) == 0:
                return

            if all(
                    self.plays.get((player, x)) for move in moves
                    for x in move):
                max_move = self.selection(moves, player)
            else:
                index = randint(0, len(moves) - 1)
                inner_index = randint(0, len(moves[index]) - 1)
                max_move = moves[index][inner_index]

            board.make_move(max_move, number)

            if expand == True and (player, max_move) not in self.plays:
                expand = False
                self.expand(player, max_move)

            visited_states.add((player, max_move))

            winner = board.is_win("W")
            if winner == 1 or winner == 2 or winner == -1:
                break

            if player == "W":
                player = "B"
                number = 1
            else:
                player = "W"
                number = 2

        if winner == 0:
            return
        elif winner == -1:
            winner == self.colors[self.color]
        else:
            winner = self.colors[winner]

        self.back_propagate(visited_states, winner)

    def selection(self, moves, player):
        max = -100000
        max_move = ""
        sum_plays = 0
        for g in moves:
            for x in g:
                sum_plays = sum_plays + self.plays.get((player, x), 0)
        for g in moves:
            for x in g:
                try:
                    one = self.wins[(player, x)] / self.plays[(player, x)]
                    score = one + self.C * sqrt(
                        log(sum_plays) / self.plays[(player, x)])
                except:
                    score = -100000
                if score > max:
                    max = score
                    max_move = x
        return max_move

    def back_propagate(self, visited_states, winner):
        for player, move in visited_states:
            if (player, move) not in self.plays:
                continue
            self.plays[(player, move)] += 1
            if player == winner:
                self.wins[(player, move)] += 1

    def expand(self, player, move):
        self.plays[(player, move)] = 0
        self.wins[(player, move)] = 0

    def get_move(self, move):
        first = False
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
            first = True

        player = self.colors[self.color]
        moves = self.board.get_all_possible_moves(self.color)
        index = randint(0, len(moves) - 1)
        inner_index = randint(0, len(moves[index]) - 1)
        move = moves[index][inner_index]

        if first:
            self.board.make_move(move, self.color)
            return move

        games = 0
        begin = datetime.datetime.utcnow()
        new_board = deepcopy(self.board)
        while datetime.datetime.utcnow() - begin < self.calc_time:
            self.run_sim(new_board)
            games += 1

        max_move = self.selection(moves, player)
        if max_move == "":
            max_move = move

        self.board.make_move(max_move, self.color)
        if max_move == "":
            return move

        return max_move
Exemplo n.º 25
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        self.movecount = 0
        self.simulate_times = 100
        # self.file = f"{self.col}-{self.row}-{self.color}-data.txt"
        # self.file = open(f"{self.col}-{self.row}-data.txt", "a")

    def get_move(self, move):
        self.movecount += 1
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1
        self.file = f"{self.col}-{self.row}-{self.color}-data.txt"
        moves = self.get_moves(self.board, self.color)
        move = self.monte_carlo_tree(moves, self.simulate_times)
        self.board.make_move(move, self.color)
        return move

    def monte_carlo_tree(self, moves: [], simulate_times: int):
        s_parent = simulate_times * len(moves)
        best_uct = -math.inf
        best_move = 0
        for move in moves:
            wins = self.simulate(move, simulate_times)
            uct = wins / simulate_times + math.sqrt(
                2 * math.log(s_parent) / simulate_times)
            if uct > best_uct:
                best_move = move
        index = randint(0, len(moves) - 1)
        move = moves[index]
        return move

    def simulate(self, move, simulate_times):
        win = 0
        self.board.make_move(move, self.color)
        for _ in range(simulate_times):
            curr_turn = self.opponent[self.color]
            t = 0
            moves = self.get_moves(self.board, curr_turn)
            while len(moves) > 0 and t < 50:
                move = self.rollout(moves)
                self.board.make_move(move, curr_turn)
                curr_turn = self.opponent[curr_turn]
                moves = self.get_moves(self.board, curr_turn)
                t += 1
            win += 1 if curr_turn != self.color else 0 if t != 50 else 0.5
            self.undo(self.board, t)
        print(win / simulate_times * 100)
        bf, wf = self.board_to_feature(self.board, self.color)
        self.write_to_file(bf, wf, win / simulate_times * 100)
        self.board.undo()
        return win

    def board_to_feature(self, board, color):

        # result = ""
        # result += f"{board.white_count/self.total} {board.black_count/self.total} "
        #
        # wking,bking  = self.wking_bking(board)
        # result += f"{wking/self.total} {bking/self.total} "
        #
        # wback, bback = self.wback_bback(board)
        # result += f"{wback/self.total} {bback/self.total} "
        #
        # wedge, bedge = self.wedge_bedge(board)
        # result += f"{wedge/self.total} {bedge/self.total} "
        #
        # wdiagonal, bdiagonal = self.wdiagonal_bdiagonal(board)
        # result += f"{wdiagonal/self.total} {bdiagonal/self.total} "
        #
        # wdis, bdis = self.wdis_bdis(board)
        # result += f"{wdis/self.total} {bdis/self.total} "
        #
        # result += str(self.movecount)

        wking, bking = self.wking_bking(board)
        wcount, bcount = self.wcount_bcount(board)
        wdis, bdis = self.wdis_bdis(board)
        wedge, bedge = self.wedge_bedge(board)
        wcenter, bcenter = self.wcenter_bcenter(board)
        wback, bback = self.wback_bback(board)

        wdiag, bdiag = self.wdiag_bdiag(board)
        wdog, bdog = self.wdog_bdog(board)
        wbridge, bbridge = self.wbridge_bbridge(board)
        wuptriangle, buptriangle = self.wuptriangle_buptriangle(board)
        wdowntriangle, bdowntriangle = self.wdowntriangle_bdowntriangle(board)
        woreo, boreo = self.woreo_boreo(board)

        if self.color == 1:
            wmoveable, weatable = self.moveables(board, 2)
            bmoveable, beatable = 0, 0
        else:
            wmoveable, weatable = 0, 0
            bmoveable, beatable = self.moveables(board, 1)

        return [wcount, wking, wdis, wback, wedge,
                wcenter, wdiag, wdog, wbridge, wuptriangle,
                wdowntriangle, woreo, wmoveable, weatable],\
                [bcount, bking, bdis, bback, bedge,
                 bcenter, bdiag, bdog, bbridge, buptriangle,
                 bdowntriangle, boreo, bmoveable, beatable]

    def wcount_bcount(self, board):
        return board.white_count, board.black_count

    def wking_bking(self, board):
        bking, wking = 0, 0
        for r in range(self.board.row):
            for c in range(self.board.col):
                if self.board.board[r][c].color == "B":
                    bking += self.board.board[r][c].is_king
                elif self.board.board[r][c].color == "W":
                    wking += self.board.board[r][c].is_king
        return wking, bking

    def moveables(self, board, color):
        moves = [
            m for chess in board.get_all_possible_moves(color) for m in chess
        ]
        eatable = 0
        for m in moves:
            if len(m.seq) > 2:
                eatable += (len(m.seq) - 1)
                continue
            if math.sqrt((m.seq[0][0] - m.seq[1][0])**2 +
                         (m.seq[0][1] - m.seq[1][1])**2) > 1:
                eatable += 1
        # print(f"len(moves): {len(moves)}, eatable: {eatable}")
        return len(moves), eatable

    def wback_bback(self, board):
        bback = sum(board.board[0][i].color == "B" for i in range(board.col))
        wback = sum(board.board[board.row - 1][i].color == "W"
                    for i in range(board.col))
        return wback, bback

    def wedge_bedge(self, board):
        bedge = sum((board.board[i][0].color == "B") +
                    (board.board[i][board.col - 1].color == "B")
                    for i in range(board.row))
        wedge = sum((board.board[i][0].color == "W") +
                    (board.board[i][board.col - 1].color == "W")
                    for i in range(board.row))
        # print(f"wedge: {wedge}, bedge: {bedge}")
        return wedge, bedge

    def wcenter_bcenter(self, board):
        wcenter = sum((board.board[int(board.row/2)][i].color =="W")+ \
                      (board.board[int(board.row/2)+1][i].color =="W") for i in range(board.col))
        bcenter = sum((board.board[int(board.row/2)][i].color == "B")+ \
                      (board.board[int(board.row/2)+1][i].color =="B") for i in range(board.col))
        # print(f"wcenter: {wcenter}, bcenter: {bcenter}")
        return wcenter, bcenter

    def wdiagonal_bdiagonal(self, board):
        bdiagonal = sum(board.board[i][i].color == "B"  for i in range(board.row//4, 3*board.row//4)) + \
                    sum(board.board[board.row - 1 - i][board.row - 1 - i].color == "B"  for i in range(board.row))
        wdiagonal = sum(board.board[i][i].color == "W"  for i in range(board.row)) + \
                    sum(board.board[board.row - 1 - i][board.row - 1 - i].color == "W" for i in range(board.row))
        # print(f"wdiagonal: {wdiagonal}, bdiagonal: {bdiagonal}")
        return wdiagonal, bdiagonal

    def wdiag_bdiag(self, board):
        bc, wc = 0, 0
        for r in range(board.row - 1):
            bc += (board.board[r][r].color == "B") + (board.board[r+1][r].color == "B") + (board.board[r][r+1].color == "B") \
                + (board.board[r][board.col-1-r].color == "B") + (board.board[r+1][board.col-1-r].color == "B") +\
                   (board.board[r][board.col-2-r].color == "B")

            wc += (board.board[r][r].color == "W") + (board.board[r + 1][r].color == "W") + (board.board[r][r + 1].color == "W")\
                + (board.board[r][board.col-1-r].color == "W") + (board.board[r+1][board.col-1-r].color == "W") +\
                   (board.board[r][board.col-2-r].color == "W")
        bc += (board.board[board.row - 1][0].color == "B") + (
            board.board[board.row - 1][board.row - 1].color == "B")
        wc += (board.board[board.row - 1][0].color == "W") + (
            board.board[board.row - 1][board.row - 1].color == "W")

        # print(f"wdiag: {wc}, bdiag: {bc}")
        return wc, bc

    def wdog_bdog(self, board):
        wc = (board.board[board.row-1][board.col-1].color == "." and board.board[board.row-1][board.col-2].color == "W" \
            and board.board[board.row-2][board.col-1].color == "B") +\
             (board.board[board.row-1][0].color == "." and board.board[board.row-1][1].color == "W"\
            and board.board[board.row-2][0].color == "B")

        bc = (board.board[0][0].color == "." and board.board[0][1].color == "B" \
             and board.board[1][0].color == "W") + \
              (board.board[0][board.col-1].color == "." and board.board[0][board.col-2].color == "B" \
             and board.board[1][board.col-1].color == "W")
        # print(f"wdog: {wc}, bdog: {bc}")
        return wc, bc

    def wbridge_bbridge(self, board):
        bc = sum(
            board.board[0][c].color == "B" and board.board[0][c +
                                                              2].color == "B"
            for c in range(1, board.col - 3))
        wc = sum(board.board[board.row - 1][c].color == "W"
                 and board.board[board.row - 1][c + 2].color == "W"
                 for c in range(1, board.col - 3))
        # print(f"wbridge: {wc}, bbridge: {bc}")
        return wc, bc

    def wuptriangle_buptriangle(self, board):
        bcount, wcount = 0, 0
        for r in range(1, board.row - 1):
            for c in range(board.col - 2):
                if board.board[r][c].color == "B" and board.board[r - 1][
                        c + 1].color == "B" and board.board[r][c +
                                                               2].color == "B":
                    bcount += 1
                if board.board[r][c].color == "W" and board.board[r - 1][
                        c + 1].color == "W" and board.board[r][c +
                                                               2].color == "W":
                    wcount += 1
        # print(f"wuptriangle: {wcount}, buptriangle: {bcount}")
        return wcount, bcount

    def wdowntriangle_bdowntriangle(self, board):
        bcount, wcount = 0, 0
        for r in range(board.row - 1):
            for c in range(board.col - 2):
                if board.board[r][c].color == "B" and board.board[r + 1][
                        c + 1].color == "B" and board.board[r][c +
                                                               2].color == "B":
                    bcount += 1
                if board.board[r][c].color == "W" and board.board[r + 1][
                        c + 1].color == "W" and board.board[r][c +
                                                               2].color == "W":
                    wcount += 1
        # print(f"wdowntriangle: {wcount}, bdowntriangle: {bcount}")
        return wcount, bcount

    def woreo_boreo(self, board):
        '''
        :param board:
        :return: triangle pattern in the last row
        '''
        boreo = sum(board.board[0][c].color == "B" and board.board[1][c+1].color == "B" \
                    and board.board[0][c+2].color == "B" for c in range(0, board.col-2))
        woreo = sum(board.board[board.row-1][c].color == "W" and board.board[board.row-2][c+1].color == "W" \
                    and board.board[board.row-1][c+2].color == "W" for c in range(0, board.col-2))
        # print(f"woreo: {woreo}, boreo: {boreo}")
        return woreo, boreo

    def wdis_bdis(self, board):
        wdis = sum(board.row - 1 - i for i in range(board.row)
                   for j in range(board.col) if board.board[i][j].color == "W")
        bdis = sum(i for i in range(board.row) for j in range(board.col)
                   if board.board[i][j].color == "B")
        return wdis, bdis

    ######### help function #########
    def rollout(self, moves):
        '''Random roll a move from moves'''
        return moves[randint(0, len(moves) - 1)]

    def get_moves(self, board, turn):
        return [
            m for chess in board.get_all_possible_moves(turn) for m in chess
        ]

    def undo(self, board, times):
        for _ in range(times):
            board.undo()

    def write_to_file(self, wfeatures, bfeatures, win_rate):
        with open(self.file, "a") as f:
            w = ' '.join(str(x) for x in wfeatures)
            b = ' '.join(str(x) for x in bfeatures)
            f.write(w + ' ' + b + ' ' + str(win_rate) + '\n')
Exemplo n.º 26
0
class StudentAI():

    DEPTH_LIMIT = 4
    EARLY_GAME_TURNS = 5
    TURN_COLOR_MAP = {1: "B", 2: "W"}

    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        self.depth = 0
        self.turn = 0

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1

        self.turn += 1
        move = self.minMaxSearch(self.board)
        self.board.make_move(move, self.color)

        return move
        # moves = self.board.get_all_possible_moves(self.color)
        # index = randint(0,len(moves)-1)
        # inner_index =  randint(0,len(moves[index])-1)
        # move = moves[index][inner_index]
        # self.board.make_move(move,self.color)
        # return move

    def minMaxSearch(self, state):
        ourMoves = state.get_all_possible_moves(self.color)
        maxVal = float('-inf')
        for moves in ourMoves:
            for ourMove in moves:
                state.make_move(ourMove, self.color)
                tempMax = self.minValue(state, 0)
                if maxVal < tempMax:
                    maxVal = tempMax
                    chosenMove = ourMove
                state.undo()

        return chosenMove

    def maxValue(self, state, depth):
        isWin = state.is_win(self.TURN_COLOR_MAP[self.opponent[self.color]])
        if isWin != 0:
            if isWin == self.color:
                return 999999999
            elif isWin == self.opponent[self.color]:
                return -999999999

        depth += 1
        ourMoves = state.get_all_possible_moves(self.color)
        if (depth >= self.DEPTH_LIMIT) or len(ourMoves) == 0:
            return self.evalFunction(state)

        maxVal = float('-inf')
        for moves in ourMoves:
            for ourMove in moves:
                state.make_move(ourMove, self.color)
                maxVal = max(maxVal, self.minValue(state, depth))
                state.undo()
        return maxVal

    def minValue(self, state, depth):
        isWin = state.is_win(self.TURN_COLOR_MAP[self.color])
        if isWin != 0:
            if isWin == self.color:
                return 999999999
            elif isWin == self.opponent[self.color]:
                return -999999999

        depth += 1
        oppMoves = state.get_all_possible_moves(self.opponent[self.color])
        if (depth >= self.DEPTH_LIMIT) or len(oppMoves) == 0:
            return self.evalFunction(state)

        minVal = float('inf')
        for moves in oppMoves:
            for oppMove in moves:
                state.make_move(oppMove, self.opponent[self.color])
                minVal = min(minVal, self.maxValue(state, depth))
                state.undo()
        return minVal

    def evalFunction(self, state):
        if self.turn < self.EARLY_GAME_TURNS:
            return self.pieceAndRowEval(state)

        earlyLateList = self.getEarlyOrLate(state)

        if earlyLateList[0] == -1:  #In this state, we have no pieces
            return -999999999

        if earlyLateList[0] == 1:  # late game heuristic
            return self.lateGameKingEval(state, earlyLateList[1],
                                         earlyLateList[2])
        else:  # Early game heuristic
            return self.pieceAndRowEval(state)

    def getEarlyOrLate(self, state):
        #return list of gameboard state [0 or 1 (early or lategame), ourKings, oppKings]
        #return 0 if early, or 1 if late
        totalCheckers = 0
        numOurCheckers = 0
        numOurKings = 0
        numOppCheckers = 0
        numOppKings = 0
        ourKings = []
        oppKings = []
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":
                        totalCheckers += 1
                        numOurCheckers += 1
                        if checkerPiece.is_king:
                            numOurKings += 1
                            ourKings.append((row, col))
                    elif checkerPiece.color == "W":
                        totalCheckers += 1
                        numOppCheckers += 1
                        if checkerPiece.is_king:
                            numOppKings += 1
                            oppKings.append((row, col))
                elif self.color == 2:
                    if checkerPiece.color == "W":
                        totalCheckers += 1
                        numOurCheckers += 1
                        if checkerPiece.is_king:
                            numOurKings += 1
                            ourKings.append((row, col))
                    elif checkerPiece.color == "B":
                        totalCheckers += 1
                        numOppCheckers += 1
                        if checkerPiece.is_king:
                            numOppKings += 1
                            oppKings.append((row, col))

        if numOurCheckers == 0:
            return [-1, ourKings, oppKings]

        if numOurKings / numOurCheckers == 1:
            return [1, ourKings, oppKings]
        else:
            return [0, ourKings, oppKings]

    def lateGameKingEval(self, state, ourKings, oppKings):
        ourDistance = 0
        for ourKing in ourKings:
            for oppKing in oppKings:
                ourDistance += abs(ourKing[0] - oppKing[0]) + abs(ourKing[1] -
                                                                  oppKing[1])

        if len(ourKings) > len(oppKings):  #attack
            return -1 * ourDistance
        else:  #run away
            return ourDistance

    #black always starts from 0,0 while white starts on the other side
    def pieceAndRowEval(self, state):
        ourCount = 0
        oppCount = 0
        boardLen = len(state.board)
        for row in range(0, len(state.board)):
            for col in range(0, len(state.board[row])):
                checkerPiece = state.board[row][col]

                if self.color == 1:
                    if checkerPiece.color == "B":  #our piece
                        if checkerPiece.is_king:
                            ourCount += 5 + (row + 1) + 2
                        else:  #in our half
                            ourCount += 5 + (row + 1)

                    elif checkerPiece.color == "W":  #their piece
                        if checkerPiece.is_king:
                            oppCount += 5 + (boardLen - row) + 2
                        else:
                            oppCount += 5 + (boardLen - row)

                elif self.color == 2:
                    if checkerPiece.color == "W":  #our piece
                        if checkerPiece.is_king:
                            ourCount += 5 + (boardLen - row) + 2
                        else:
                            ourCount += 5 + (boardLen - row)
                    elif checkerPiece.color == "B":  #opponent piece
                        if checkerPiece.is_king:
                            oppCount += 5 + (row + 1) + 2
                        else:
                            oppCount += 5 + (row + 1)

        return ourCount - oppCount
Exemplo n.º 27
0
class StudentAI():

    def __init__(self,col,row,p):
        self.row = row
        self.col = col
        self.p = p
        self.board = Board(col,row,p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1:2,2:1}
        self.color = 2
        self.turn_color = {1: "B", 2: "W"}

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1

        moves = self.board.get_all_possible_moves(self.color)

        curr_distance = self.king_distance(self.board, self.turn_color[self.color])
        aggressive = False
        late_game = False
        if self.board.black_count + self.board.white_count <= 8:
            late_game = True

        if self.color == 1 and self.board.black_count >= self.board.white_count:
            aggressive = True
        if self.color == 2 and self.board.white_count >= self.board.black_count:
            aggressive = True

        depth = 4
        alpha = -math.inf
        beta = math.inf
        best_moves = []
        for row in moves:
            for move in row:
                board_copied = copy.deepcopy(self.board)
                board_copied.make_move(move, self.color)
                curr = self.MinValue(board_copied, depth-1, alpha, beta)

                if late_game:
                    distance_diff = self.king_distance(board_copied, self.turn_color[self.color]) - curr_distance
                    if aggressive:
                        curr += distance_diff/1000
                    else:
                        curr -= distance_diff/1000

                if curr > alpha:
                    alpha = curr
                    best_moves = [move]
                elif curr == alpha:
                    best_moves.append(move)

        best_move = random.choice(best_moves)

        self.board.make_move(best_move, self.color)

        return best_move

    def MaxValue(self, board, depth, alpha, beta):
        moves = board.get_all_possible_moves(self.color)
        if depth == 0:
            # print(self.evaluate(board))
            return self.evaluate(board)
        elif len(moves) == 0:
            if self.checkWinner(board.board, self.color):
                # print("1", self.color, depth)
                return 999
            else:
                # print("2", self.color, depth)
                return -999

        val = -math.inf
        for row in moves:
            for move in row:
                board_copied = copy.deepcopy(board)
                board_copied.make_move(move, self.color)
                val = max(val, self.MinValue(board_copied, depth-1, alpha, beta))
                alpha = max(alpha, val)
                if alpha >= beta:
                    return val
        return val

    def MinValue(self, board, depth, alpha, beta):
        moves = board.get_all_possible_moves(self.opponent[self.color])
        if depth == 0:
            # print(self.evaluate(board))
            return self.evaluate(board)
        if len(moves) == 0:
            if self.checkWinner(board.board, self.color):
                # print("3", self.color, depth)
                return 999
            else:
                # print("4", self.color, depth)
                return -999

        val = math.inf
        for row in moves:
            for move in row:
                board_copied = copy.deepcopy(board)
                board_copied.make_move(move, self.opponent[self.color])
                val = min(val, self.MaxValue(board_copied, depth-1, alpha, beta))
                beta = min(beta, val)
                if alpha >= beta:
                    return val
        return val

    def evaluate(self,board):
        if self.color == 1:
            return board.black_count - board.white_count + self.boardEval1(board, "b")/100
        else:
            return board.white_count - board.black_count + self.boardEval1(board, "w")/100

    def boardEval1(self, board, color):
        val = 0
        for i, row in enumerate(board.board):
            for j, col in enumerate(row):

                extra = 0
                if j == 0 or j == len(row):
                    extra = 4

                if color == "b":
                    pawn_val = 5 + i + extra
                    king_val = 5 + len(board.board) + 2 + extra
                    if i == 0:
                        pawn_val = 10 + extra
                else:
                    pawn_val = 5 + (len(board.board) - 1 - i) + extra
                    king_val = 5 + len(board.board) + 2 + extra
                    if i == len(board.board) - 1:
                        pawn_val = 10 + extra

                curr_color = board.board[i][j].get_color().lower()
                if curr_color != '.':
                    if curr_color == color:
                        king = board.board[i][j].is_king
                        if king:
                            val += king_val
                        else:
                            val += pawn_val

                    else:
                        king = board.board[i][j].is_king
                        if king:
                            val -= king_val
                        else:
                            val -= pawn_val

        return val

    def checkWinner(self, board, color):
        my_color = self.turn_color[color]
        oppo_color = self.turn_color[self.opponent[color]]
        for row in range(self.row):
            for col in range(self.col):
                checker = board[row][col]
                if checker.color == my_color:
                    return True
                elif checker.color == oppo_color:
                    return False


    def king_distance(self, board, color):
        k1 = []
        k2 = []
        min_distance = 100
        for row in range(board.row):
            for col in range(board.col):
                checker = board.board[row][col]
                if checker.color != ".":
                    if checker.is_king and checker.color == color:
                        k1.append([row, col])
                    elif checker.color != color:
                        k2.append([row, col])
        for i in k1:
            for j in k2:
                d = self.cal_distance(i,j)
                if self.cal_distance(i,j) < min_distance:
                    min_distance = d
        # print(k1, k2, min_distance)
        return min_distance

    def cal_distance(self, p1, p2):
        return math.sqrt(math.pow(p1[0]-p2[0], 2) + math.pow(p1[1]-p2[1], 2))
Exemplo n.º 28
0
class StudentAI():
    col = 0
    row = 0
    k = 0
    g = 0
    moves = 0
    player_number = 2
    opponent_number = 1
    valid_moves = PriorityQueue()
    moves_generated = False

    def __init__(self,col,row,k,g):
        self.g = g
        self.col = col
        self.row = row
        self.k = k
        self.board = Board(col,row,k,g)

    def get_move(self,move):
        start = time.time()
        if move.col == -1 and move.row == -1:
            self.player_number = 1
            self.opponent_number = 2
        else:
            self.board = self.board.make_move(move, self.opponent_number)
            self.moves += 1
        self.moves_generated = False
        my_move = self.iterative_deepening()
        # my_move = self.greedy_search()
        self.board = self.board.make_move(my_move, self.player_number)
        self.moves += 1
        end = time.time()
        # print("Time elapsed: {} seconds".format(end - start))
        return my_move

    # def greedy_search(self) -> Move:
    #     children = self.expand_node(self.board)
    #     best_state = None
    #     for child in children:
    #         result_board = copy.deepcopy(self.board)
    #         result_board.make_move(child)
    #         child.heuristic = self.evaluate_board(result_board, self.player_number)
    #         if best_move is None or child.heuristic > best_move.heuristic:
    #             best_move = child
    #     return best_move

    def iterative_deepening(self) -> MoveWithAnalysis:
        best_state = None
        start_time = time.time()
        for i in range(0, (self.col * self.row) - self.moves):
            state = self.alpha_beta_negamax(self.board, 0, i, -math.inf, math.inf, start_time)
            if state is not None:
                best_state = state
                # print(i)
                # print("Best Move:({}, {}): {}".format(best_state.col, best_state.row, best_state.heuristic))
                # for valid_move in self.valid_moves.queue:
                #     print("({}, {}): {}".format(valid_move.col, valid_move.row, valid_move.heuristic))
                # self.valid_moves.sort(reverse=True)
            else:
                break
        # best_state = self.alpha_beta_negamax(self.board, 0, 1, -math.inf, math.inf, start_time)
        # self.valid_moves.sort(reverse=True)
        # for valid_move in self.valid_moves.queue:
        #     print("({}, {}): {}".format(valid_move.col, valid_move.row, valid_move.heuristic))
        self.valid_moves.queue.clear()
        return best_state

    def alpha_beta_negamax(self, board: Board, depth: int, max_depth: int, alpha: int, beta: int, start_time: int) -> MoveWithAnalysis:
        if time.time() - start_time > TIME_LIMIT:
            # print("Depth: {}".format(depth))
            return None
        if board.is_win() or depth > max_depth:
            # print("Depth: {}".format(depth))
            if depth % 2 == 0:
                heuristic = self.evaluate_board(board, self.player_number)
                current_move = MoveWithAnalysis(None, None, heuristic)
                return current_move
            else:
                heuristic = self.evaluate_board(board, self.opponent_number)
                current_move = MoveWithAnalysis(None, None, -heuristic)
                return current_move
        best_move = None
        if self.valid_moves.empty() and not self.moves_generated:
            children = self.expand_node(board)
            for child in children:
                result_board = copy.deepcopy(board)
                result_board = result_board.make_move(child, self.player_number)
                current_move = MoveWithAnalysis(child.col, child.row, 0)
                current_move.heuristic = self.evaluate_board(result_board, self.player_number)
                self.valid_moves.put(current_move)
            self.moves_generated = True
            # self.valid_moves.sort(reverse=True)
        if depth == 0:
            temp_queue = PriorityQueue()
            while not self.valid_moves.empty():
                valid_move = self.valid_moves.get()
                result_board = copy.deepcopy(board)
                result_board = result_board.make_move(valid_move, self.player_number)
                current_move = self.alpha_beta_negamax(result_board, depth + 1, max_depth, -beta, -alpha, start_time)
                if current_move is None:
                    return None
                current_move.col = valid_move.col
                current_move.row = valid_move.row
                current_move.heuristic = -current_move.heuristic
                valid_move.heuristic = current_move.heuristic
                temp_queue.put(valid_move)
                # print("({}, {}): {}".format(valid_move.col, valid_move.row, valid_move.heuristic))
                if best_move is None or current_move.heuristic > best_move.heuristic:
                    best_move = current_move
                if current_move.heuristic > alpha:
                    alpha = current_move.heuristic
                if alpha >= beta:
                    # print("PRUNED")
                    return best_move
            self.valid_moves = temp_queue
        else:
            children = self.expand_node(board)
            for child in children:
                result_board = copy.deepcopy(board)
                if depth % 2 == 0:
                    result_board = result_board.make_move(child, self.player_number)
                else:
                    result_board = result_board.make_move(child, self.opponent_number)
                current_move = self.alpha_beta_negamax(result_board, depth + 1, max_depth, -beta, -alpha, start_time)
                if current_move is None:
                    return None
                current_move.col = child.col
                current_move.row = child.row
                current_move.heuristic = -current_move.heuristic
                if best_move is None or current_move.heuristic > best_move.heuristic:
                    best_move = current_move
                if current_move.heuristic > alpha:
                    alpha = current_move.heuristic
                if alpha >= beta:
                    # print("PRUNED")
                    return best_move
        return best_move
        # children = self.expand_node(board)
        # for child in children:
        #     result_board = copy.deepcopy(board)
        #     if depth % 2 == 0:
        #         result_board = result_board.make_move(child, self.player_number)
        #     else:
        #         result_board = result_board.make_move(child, self.opponent_number)
        #     current_move = self.alpha_beta_negamax(result_board, depth + 1, max_depth, -beta, -alpha, start_time)
        #     if current_move is None:
        #         return None
        #     current_move.col = child.col
        #     current_move.row = child.row
        #     current_move.heuristic = -current_move.heuristic
        #     child.heuristic = current_move.heuristic
        #     if best_move is None or current_move.heuristic > best_move.heuristic:
        #         best_move = current_move
        #     if current_move.heuristic > alpha:
        #         alpha = current_move.heuristic
        #     if alpha >= beta:
        #         # print("PRUNED")
        #         return best_move
        # if depth == 0:
        #     for child in children:
        #         print("({}, {}): {}".format(child.col, child.row, child.heuristic))
        # return best_move

    def evaluate_board(self, board: Board, player_evaluated: int) -> int:
        score = 0
        steps = [(0,1),(1,0),(0,-1),(-1,0),(1,1),(-1,-1),(1,-1),(-1,1)]
        tie = True
        for i in range(self.row):
            for j in range(self.col):
                if board.board[i][j] == 0:
                    tie = False
                    continue
                first_player = board.board[i][j]
                row_number = self.col - j
                for step in steps:
                    is_win = True
                    temp_row = i
                    temp_col = j
                    temp_score = 0
                    for pieces in range(1, self.k):
                        temp_row += step[0]
                        temp_col += step[1]
                        temp_row_number = self.col - temp_row
                        if not board.is_valid_move(temp_col, temp_row, False):
                            is_win = False
                            if pieces < self.k:
                                temp_score = 0
                            break
                        if board.board[temp_row][temp_col] != first_player and board.board[temp_row][temp_col] != 0:
                            is_win = False
                            temp_score = 0
                            break
                        elif board.board[temp_row][temp_col] == 0:
                            is_win = False
                            temp_score += 1
                        else:
                            temp_score += pieces * 5
                        if self.g == 1:
                            if temp_row_number % 2 != 0 and first_player == 1:
                                temp_score += 40
                            elif temp_row_number % 2 == 0 and first_player == 2:
                                temp_score += 40
                    if player_evaluated == first_player:
                        score += temp_score
                    else:
                        score -= temp_score
                    if temp_score != 0 and self.g == 1:
                        if row_number % 2 != 0 and player_evaluated == first_player and first_player == 1:
                            temp_score += 40
                        elif row_number % 2 != 0 and player_evaluated != first_player and first_player == 1:
                            temp_score -= 20
                        elif row_number % 2 == 0 and player_evaluated == first_player and first_player == 2:
                            temp_score += 40
                        elif row_number % 2 == 0 and player_evaluated != first_player and first_player == 2:
                            temp_score -= 20
                    # if temp_score != 0:
                    #     if row_number % 2 != 0 and player_evaluated == first_player and first_player == 1:
                    #         temp_score += 40
                    #     elif row_number % 2 != 0 and player_evaluated != first_player and first_player == 1:
                    #         temp_score -= 20
                    #     elif row_number % 2 == 0 and player_evaluated == first_player and first_player == 2:
                    #         temp_score += 40
                    #     elif row_number % 2 == 0 and player_evaluated != first_player and first_player == 2:
                    #         temp_score -= 20
                    if is_win:
                        if first_player == self.player_number:
                            # print("Evaluated Score: {}".format(math.inf))
                            # board.show_board()
                            return math.inf
                        else:
                            # print("Evaluated Score: {}".format(-math.inf))
                            # board.show_board()
                            return -math.inf
        if tie:
            # print("Evaluated Score: {}".format(50))
            # board.show_board()
            return 50
        # print("Evaluated Score: {}".format(score))
        # board.show_board()
        return score

    def expand_node(self, board: Board) -> List:
        children = []
        if self.g == 0:
            for i in range(self.col):
                for j in range(self.row):
                    if board.board[j][i] == 0:
                        children.append(MoveWithAnalysis(i, j, 0))
        else:
            for i in range(self.col):
                if board.board[0][i] == 0:
                    children.append(MoveWithAnalysis(i, 0, 0))
        return children
Exemplo n.º 29
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2

    def get_move(self, move):
        if len(move) != 0:
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1

        moves = self.board.get_all_possible_moves(self.color)
        moveValues = []

        for i in range(len(moves)):
            for j in range(len(moves[i])):
                self.board.make_move(moves[i][j], self.color)
                moveValues.append((moves[i][j],
                                   self.minimax(self.board, 3,
                                                self.opponent[self.color],
                                                float('-inf'), float('inf'))))
                self.board.undo()

        move = max(moveValues, key=lambda x: x[1])[0]
        self.board.make_move(move, self.color)
        return move

    def static_eval(self, boardState):
        blackValue = 0
        whiteValue = 0

        for i in range(boardState.row):
            for j in range(boardState.col):
                checker = boardState.board[i][j]
                if checker.color == '.':
                    continue
                elif checker.color == 'B':
                    if checker.is_king:
                        blackValue += 7 + boardState.row
                    else:
                        blackValue += 5 + checker.row
                else:
                    if checker.is_king:
                        whiteValue += 7 + boardState.row
                    else:
                        whiteValue += 5 + (boardState.row - checker.row)

        if self.color == 1:
            return blackValue - whiteValue
        else:
            return whiteValue - blackValue

    def generate_children(self, player) -> [Board]:
        children = []
        checkers = self.board.get_all_possible_moves(player)

        for moveList in checkers:
            for move in moveList:
                boardCopy = deepcopy(self.board)
                boardCopy.make_move(move, player)
                children.append(boardCopy)
        return children

    def minimax(self, boardState, depth, max_player, alpha, beta):
        if depth == 0 or boardState.is_win(max_player):
            return self.static_eval(boardState)

        if max_player:
            best = float('-inf')
            for child in self.generate_children(self.color):
                candidate = self.minimax(child, depth - 1, False, alpha, beta)
                best = max(best, candidate)
                alpha = max(alpha, candidate)
                if alpha >= beta:
                    break
            return best
        else:
            best = float('inf')
            for child in self.generate_children(self.opponent[self.color]):
                candidate = self.minimax(child, depth - 1, True, alpha, beta)
                best = min(best, candidate)
                beta = min(beta, candidate)
                if alpha >= beta:
                    break
            return best
Exemplo n.º 30
0
class StudentAI():
    def __init__(self, col, row, p):
        self.col = col
        self.row = row
        self.p = p
        self.board = Board(col, row, p)
        self.board.initialize_game()
        self.color = ''
        self.opponent = {1: 2, 2: 1}
        self.color = 2
        # Returns optimal value for current player

    def get_move(self, move):
        alpha = -1000
        value = -1000
        beta = 1000
        bestMove = None

        if len(move) != 0:  # If the opponent started first
            self.board.make_move(move, self.opponent[self.color])
        else:
            self.color = 1

        # Make a list of all possible moves that our AI can make
        our_moves = self.board.get_all_possible_moves(self.color)

        # Iterate through list of all our moves
        for x in range(len(our_moves)):
            for y in range(len(our_moves[x])):
                # Make a move on the copy/theoretical board
                self.board.make_move(our_moves[x][y], self.color)
                currentScore = self.alphaBetaMin(alpha, beta, 1)
                self.board.undo()

                if currentScore >= value:
                    value = currentScore
                    bestMove = our_moves[x][y]
                    #print("New bestMove", bestMove, "current best score:", currentScore)
                    alpha = currentScore

        #print("Decision?", bestMove)
        self.board.make_move(bestMove, self.color)
        return bestMove

    def alphaBetaMin(self, alpha, beta, depth):
        '''
        # Check if our AI is black and we won
        #if self.color == self.board.is_win(self.color):
        if self.color == self.board.is_win("B"):
            return 1000
        # Check if our AI (black) lost
        #elif self.color == 1 and self.board.is_win(self.color) == 2:
        elif self.color == 1 and self.board.is_win("B") == 2:
            return -1000
        # Check if our AI (white) lost
        #elif self.color == 2 and self.board.is_win(self.color) == 1:
        elif self.color == 2 and self.board.is_win("W") == 1:
            return -1000
        
        # Check if opponent will tie
        #if self.board.is_win(self.color) == -1:
        if self.board.is_win("B") == -1:
            return 0
        '''
        if depth == 3:
            return self.get_heuristic_score2()
        else:
            value = 1000
            # Go through every possible move
            opponent_moves = self.board.get_all_possible_moves(
                self.opponent[self.color])
            for x in opponent_moves:
                for move in x:
                    # Make move for opponent
                    self.board.make_move(move, self.opponent[self.color])
                    value = min(value,
                                self.alphaBetaMax(alpha, beta, depth + 1))
                    self.board.undo()
                    beta = min(beta, value)
                    if alpha >= beta:
                        return value
            return value

    def alphaBetaMax(self, alpha, beta, depth):
        '''
        # Check if our AI is black and we won
        #if self.color == self.board.is_win(self.opponent[self.color]):
        if self.color == self.board.is_win("B"):
            return 1000
        # Check if our AI (black) lost
        #elif self.color == 1 and self.board.is_win(self.opponent[self.color]) == 2:
        elif self.color == 1 and self.board.is_win("B") == 2:
            return -1000
        # Check if our AI (white) lost
        #elif self.color == 2 and self.board.is_win(self.opponent[self.color]) == 1:
        elif self.color == 2 and self.board.is_win("W") == 1:
            return -1000
        
        # Check if opponent will tie
        #if self.board.is_win(self.opponent[self.color]) == -1:
        if self.board.is_win("B") == -1:
            return 0
        '''
        if depth == 3:
            return self.get_heuristic_score2()
        else:
            value = -1000
            # Go through every possible move
            our_moves = self.board.get_all_possible_moves(self.color)
            for x in our_moves:
                for move in x:
                    self.board.make_move(move, self.color)
                    value = max(value,
                                self.alphaBetaMin(alpha, beta, depth + 1))
                    self.board.undo()
                    alpha = max(alpha, value)
                    if alpha >= beta:
                        return value
            return value

    def closeToBecomingKing(self, color, row_position):
        if self.color == 1:  # Our color is black
            return row_position
        else:  # our color is white
            return (self.board.row - row_position - 1)

    def get_heuristic_score2(self):

        num_black_kings = 0
        num_white_kings = 0
        num_safe_piece_black = 0
        num_safe_piece_white = 0
        num_back_black = 0
        num_back_white = 0
        closer_black = 0
        closer_white = 0
        #score = 0
        for x in range(len(self.board.board)):
            for y in range(len(self.board.board[x])):
                # Check if it's our checker piece
                if (self.board.board[x][y].get_color() == 'B'):
                    # Check if it's a king
                    if (self.board.board[x][y].is_king == True):
                        num_black_kings += 1
                    else:  # Check how close checker piece is to becoming King
                        closer_black += self.closeToBecomingKing(self.color, x)

                    cp = self.board.board[x][y].get_location()

                    # Check if black checker piece is in the back
                    if (cp[0] == 0):
                        num_back_black += 1

                    # Check if it's an edge piece row 0, row n, col 0, col n
                    if (cp[0] == 0 or cp[0] == self.board.row - 1):
                        num_safe_piece_black += 1
                    if (cp[1] == 0 or cp[1] == self.board.col - 1):
                        num_safe_piece_black += 1
                    if (cp[0] == 0 and cp[1] == 0):
                        num_safe_piece_black -= 1
                    if (cp[0] == 0 and cp[1] == self.board.col - 1):
                        num_safe_piece_black -= 1
                    if (cp[0] == self.board.row - 1 and cp[1] == 0):
                        num_safe_piece_black -= 1
                    if (cp[0] == self.board.row - 1
                            and cp[1] == self.board.col - 1):
                        num_safe_piece_black -= 1

                    # Check for safe pieces that are not part of the edge
                    if (cp[0] != 0 and cp[0] != self.board.row - 1):
                        if (cp[1] != 0 and cp[1] != self.board.col - 1):
                            is_safe = True
                            if (self.board.board[x + 1][y -
                                                        1].get_color() == 'W'):
                                if (self.board.board[x -
                                                     1][y +
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (self.board.board[x + 1][y +
                                                        1].get_color() == 'W'):
                                if (self.board.board[x -
                                                     1][y -
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (self.board.board[x - 1][y + 1].get_color()
                                    == 'W' and
                                    self.board.board[x - 1][y + 1].is_king):
                                if (self.board.board[x +
                                                     1][y -
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (self.board.board[x - 1][y - 1].get_color()
                                    == 'W' and
                                    self.board.board[x - 1][y - 1].is_king):
                                if (self.board.board[x +
                                                     1][y +
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (is_safe == True):
                                #print("safe piece counted")
                                num_safe_piece_black += 1
                            #else:
                            #print(x, y)
                            #print("safe piece not counted")
                            #score -= 2
                    '''
                    # Check for safe pieces that are part of the edges
                    is_safe = True
                    # Check for safe piece on edge (column - 1)
                    if (cp[1] == self.board.col - 1):
                        if(self.board.board[x + 1][y - 1].get_color() == 'W'):
                            is_safe = False
                        # Check for safe piece on edge (0)
                    if (cp[1] == 0):
                        if(self.board.board[x + 1][y + 1].get_color() == 'W'):
                            is_safe = False
                    # check for safe piece on edge (column - 1) when a King
                    if (cp[1] == self.board.col - 1 and ((cp[0] > 0) or (cp[0] < self.board.row - 1))):
                        if(self.board.board[x - 1][y - 1].get_color() == 'W'):
                            is_safe = False
                        if(self.board.board[x + 1][y - 1].get_color() == 'W'):
                            is_safe = False
                        # check for safe piece on edge (0) when a King
                        if (cp[1] == 0 and ((cp[0] > 0) or (cp[0] < self.board.row - 1))):
                            if(self.board.board[x - 1][y + 1].get_color() == 'W'):
                                is_safe = False
                            if(self.board.board[x + 1][y + 1].get_color() == 'W'):
                                is_safe = False
                    
                        if (is_safe == True):
                            num_safe_piece_black += 1
                    '''

                elif (self.board.board[x][y].get_color() == 'W'):
                    if (self.board.board[x][y].is_king == True):
                        num_white_kings += 1
                    else:
                        closer_white += self.closeToBecomingKing(2, x)

                    # Check if it's a corner piece either (0, 0), (0, n), (n, 0), or (n, n)
                    cp = self.board.board[x][y].get_location()

                    # Check if white checker piece is in the back
                    if (cp[0] == self.board.row - 1):
                        num_back_white += 1
                    # Check if it's an edge piece row 0, row n, col 0, col n
                    if (cp[0] == 0 or cp[0] == self.board.row - 1):
                        num_safe_piece_white += 1
                    if (cp[1] == 0 or cp[1] == self.board.col - 1):
                        num_safe_piece_white += 1
                    if (cp[0] == 0 and cp[1] == 0):
                        num_safe_piece_white -= 1
                    if (cp[0] == 0 and cp[1] == self.board.col - 1):
                        num_safe_piece_white -= 1
                    if (cp[0] == self.board.row - 1 and cp[1] == 0):
                        num_safe_piece_white -= 1
                    if (cp[0] == self.board.row - 1
                            and cp[1] == self.board.col - 1):
                        num_safe_piece_white -= 1
                    # Check for white safe pieces that are not part of the edge
                    if (cp[0] != 0 and cp[0] != self.board.row - 1):
                        if (cp[1] != 0 and cp[1] != self.board.col - 1):
                            is_safe = True
                            if (self.board.board[x - 1][y -
                                                        1].get_color() == 'B'):
                                if (self.board.board[x +
                                                     1][y +
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (self.board.board[x - 1][y +
                                                        1].get_color() == 'B'):
                                if (self.board.board[x +
                                                     1][y -
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (self.board.board[x + 1][y + 1].get_color()
                                    == 'B' and
                                    self.board.board[x + 1][y + 1].is_king):
                                if (self.board.board[x -
                                                     1][y -
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (self.board.board[x + 1][y - 1].get_color()
                                    == 'B' and
                                    self.board.board[x + 1][y - 1].is_king):
                                if (self.board.board[x -
                                                     1][y +
                                                        1].get_color() == '.'):
                                    is_safe = False
                            if (is_safe == True):
                                num_safe_piece_white += 1
        if self.color == 1:
            score = 10 * (self.board.black_count - self.board.white_count)
            #print("Score after diff in counts:", score)
            #print('safe black:', num_safe_piece_black, 'safe white:', num_safe_piece_white, 'safe score:', num_safe_piece_black - num_safe_piece_white)
            score += 5 * (num_black_kings - num_white_kings)
            #print("Score after diff in Ks:", score)
            #score += 2*(closer_black - closer_white)
            score += 2 * (num_safe_piece_black - num_safe_piece_white)
            #print("Score after diff in safe pieces:", score)
            score += 2 * (num_back_black - num_back_white)
            #print("Score after back row pieces:", score)
        elif self.color == 2:
            score = 10 * (self.board.white_count - self.board.black_count)
            #print("Score after diff in counts:", score)
            #print('safe black:', num_safe_piece_black, 'safe white:', num_safe_piece_white, 'safe score:', num_safe_piece_black - num_safe_piece_white)
            score += 5 * (num_white_kings - num_black_kings)
            #print("Score after diff in Ks:", score)
            #score += 2*(closer_black - closer_white)
            score += 2 * (num_safe_piece_white - num_safe_piece_black)
            #print("Score after diff in safe pieces:", score)
            score += 2 * (num_back_white - num_back_black)
            #print("Score after back row pieces:", score)
        return score