def test_make_fmu(self, test_sim_config, building_model):
        """test that make_fmu produces fmu file"""
        dc = DataClient(
            source=LocalSource(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            destination=LocalDestination(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )
        dc.sim_config = test_sim_config
        dc.get_data()

        fmu = building_model.create_model_fmu(
            sim_config=test_sim_config,
            weather_channel=dc.weather,
            datetime_channel=dc.datetime,
        )
        assert os.path.exists(fmu)

        # @pytest.mark.usefixtures("building_model")
        # def test_fmu_compliance(self, building_model):
        """test that fmu file is compliant with FMI."""
        output_path = os.path.join(os.environ.get("OUTPUT_DIR"),
                                   "compliance_check_output.csv")
        # use `bash expect` to run non-interactive
        # Note: if this test fails check ./Output_EPExport_Slave/Furnace_prep.err
        cmd = (
            "expect 'Press enter to continue.' {{ send '\r' }} |"
            f' {os.environ.get("EXT_DIR")}/FMUComplianceChecker/fmuCheck.linux64'
            f" -h {self.step_size}"
            " -s 172800"
            f" -o {output_path} {building_model.fmu_path}")
        logger.info("FMU compliance checker command:")
        logger.info(cmd)
        # shlex causes FMUComplianceChecker to run with options, use cmd string
        out = subprocess.run(cmd,
                             shell=True,
                             capture_output=False,
                             text=True,
                             input="\n")

        assert out.returncode == 0
Exemplo n.º 2
0
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times

        cls.sim_config = Config.make_sim_config(
            identifier=[
                "DYD_dummy_data",
            ],  # test file
            latitude=33.481136,
            longitude=-112.078232,
            start_utc=[
                "2018-01-01 00:00:00",
            ],
            end_utc=[
                "2018-12-31 23:55:00",
            ],
            min_sim_period="3D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_client = DataClient(
            source=LocalSource(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            destination=LocalDestination(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
        )
        cls.data_client.sim_config = cls.sim_config.iloc[0]

        cls.data_client.get_data()
Exemplo n.º 3
0
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times
        cls.sim_config = Config.make_sim_config(
            identifier=[
                os.environ.get("TEST_FLATFILES_IDENTIFIER_MISSING"),  # missing
                os.environ.get("TEST_FLATFILES_IDENTIFIER_FULL"),  # full
                "9999999",  # file not found
            ],
            latitude=33.481136,
            longitude=-112.078232,
            start_utc="2018-01-01 00:00:00",
            end_utc="2018-12-31 00:00:00",
            min_sim_period="7D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_clients = []

        # set local_cache=None to test connection with GCS
        cls.data_client = DataClient(
            source=GCSFlatFilesSource(
                gcp_project=os.environ.get("FLATFILE_GOOGLE_CLOUD_PROJECT"),
                gcs_uri_base=os.environ.get("FLATFILES_GCS_URI_BASE"),
                local_cache=None,
            ),
            destination=LocalDestination(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=FlatFilesSpec(),
            ),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_dir=os.environ.get("ARCHIVE_TMY3_DIR"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )
        for _idx, _sim_config in cls.sim_config.iterrows():
            dc = copy.deepcopy(cls.data_client)
            dc.sim_config = _sim_config

            if _sim_config["identifier"] in [
                    "9999999",
            ]:
                with pytest.raises(ValueError):
                    dc.get_data()
            else:
                dc.get_data()

            cls.data_clients.append(dc)
Exemplo n.º 4
0
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times
        cls.sim_config = Config.make_sim_config(
            identifier=[
                "d310f1c1f600c374d8975c753f7c0fb8de9c96b1",
                "8c00c9bb17bfcca53809cb1b2d033a448bc017df",  # has full data periods
                "6773291da5427ae87d34bb75022ee54ee3b1fc17",  # file not found
            ],
            latitude=33.481136,
            longitude=-112.078232,
            start_utc=[
                "2018-01-01 00:00:00",
                "2018-01-01 00:00:00",
                "2018-01-01 00:00:00",
            ],
            end_utc=[
                "2018-12-31 23:55:00",
                "2018-12-31 23:55:00",
                "2018-12-31 23:55:00",
            ],
            min_sim_period="7D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_clients = []

        # set local_cache=None to avoid caching locally and always testing connection with GCS
        cls.data_client = DataClient(
            source=GCSDYDSource(
                gcp_project=os.environ.get("DYD_GOOGLE_CLOUD_PROJECT"),
                gcs_uri_base=os.environ.get("DYD_GCS_URI_BASE"),
                local_cache=None,
            ),
            destination=LocalDestination(data_spec=DonateYourDataSpec(), ),
        )

        for _idx, _sim_config in cls.sim_config.iterrows():
            dc = copy.deepcopy(cls.data_client)
            dc.sim_config = _sim_config

            if _sim_config["identifier"] in [
                    "6773291da5427ae87d34bb75022ee54ee3b1fc17",
            ]:
                with pytest.raises(ValueError):
                    dc.get_data()
            else:
                dc.get_data()

            cls.data_clients.append(dc)
Exemplo n.º 5
0
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times
        cls.sim_config = Config.make_sim_config(
            identifier=[
                "DYD_dummy_data",
            ],  # test file
            latitude=33.481136,
            longitude=-112.078232,
            start_utc=[
                "2018-01-01 00:00:00",
            ],
            end_utc=[
                "2018-12-31 23:55:00",
            ],
            min_sim_period="3D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_clients = []
        cls.data_client = DataClient(
            source=LocalSource(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            destination=LocalDestination(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_dir=os.environ.get("ARCHIVE_TMY3_DIR"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )

        for _idx, _sim_config in cls.sim_config.iterrows():
            dc = copy.deepcopy(cls.data_client)
            dc.sim_config = _sim_config

            dc.get_data()

            cls.data_clients.append(dc)
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times
        cls.sim_config = Config.make_sim_config(
            identifier=["9958f46d13419344ec0c21fb60f9b0b3990ac0ef"],
            latitude=33.481136,
            longitude=-112.078232,
            start_utc=[
                "2018-01-01 00:00:00",
            ],
            end_utc=[
                "2018-12-31 23:55:00",
            ],
            min_sim_period="7D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_clients = []
        cls.data_client = DataClient(
            source=GCSDYDSource(
                gcp_project=os.environ.get("DYD_GOOGLE_CLOUD_PROJECT"),
                gcs_uri_base=os.environ.get("DYD_GCS_URI_BASE"),
            ),
            destination=LocalDestination(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_dir=os.environ.get("ARCHIVE_TMY3_DIR"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )

        for _idx, _sim_config in cls.sim_config.iterrows():
            dc = copy.deepcopy(cls.data_client)
            dc.sim_config = _sim_config

            dc.get_data()

            cls.data_clients.append(dc)
Exemplo n.º 7
0
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times
        cls.sim_config = Config.make_sim_config(
            identifier=[
                "DYD_dummy_data",  # test file
            ],
            latitude=33.481136,
            longitude=-112.078232,
            start_utc=[
                "2018-01-01 00:00:00",
            ],
            end_utc=[
                "2018-12-31 23:55:00",
            ],
            min_sim_period="3D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_client = DataClient(
            source=LocalSource(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            destination=GCSDestination(
                gcp_project=os.environ.get("BCS_GOOGLE_CLOUD_PROJECT"),
                gcs_uri_base=os.environ.get("BCS_OUTPUT_GCS_URI_BASE"),
                data_spec=DonateYourDataSpec(),
                local_cache=None,
            ),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_dir=os.environ.get("ARCHIVE_TMY3_DIR"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )
        cls.data_client.sim_config = cls.sim_config.iloc[0]

        cls.data_client.get_data()
Exemplo n.º 8
0
 def test_generate_dummy_data(self):
     _sim_config = Config.make_sim_config(
         identifier=[
             "generated_dummy_data",
         ],  # test file
         latitude=33.481136,
         longitude=-112.078232,
         start_utc=[
             "2018-01-01 00:00:00",
         ],
         end_utc=[
             "2018-12-31 23:55:00",
         ],
         min_sim_period="3D",
         min_chunk_period="30D",
         sim_step_size_seconds=300,
         output_step_size_seconds=300,
     )
     _df = DataClient.generate_dummy_data(sim_config=_sim_config,
                                          spec=DonateYourDataSpec())
     assert len(_df) == 105120
     assert all(_df["Schedule"].value_counts().values == [74460, 30660])
    def test_simulator(self, test_params):
        _config_params = test_params["config"]
        test_sim_config = Config.make_sim_config(
            identifier=_config_params["identifier"],
            latitude=_config_params["latitude"],
            longitude=_config_params["longitude"],
            start_utc=_config_params["start_utc"],
            end_utc=_config_params["end_utc"],
            min_sim_period=_config_params["min_sim_period"],
            sim_step_size_seconds=_config_params["sim_step_size_seconds"],
            output_step_size_seconds=_config_params[
                "output_step_size_seconds"
            ],
        )

        dc = DataClient(
            source=self.get_data_source(test_params["data_client"]),
            destination=self.get_data_destination(test_params["data_client"]),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )

        # test HVAC data returns dict of non-empty pd.DataFrame
        master = Simulator(
            data_client=dc,
            sim_config=test_sim_config,
            building_models=[
                self.get_building_model(test_params["building_model"])
            ],
            controller_models=[
                self.get_controller_model(test_params["controller_model"])
            ],
            state_estimator_models=[
                self.get_state_estimator_model(
                    test_params["state_estimator_model"]
                )
            ],
        )
        master.simulate(local=True, preprocess_check=False)

        # read back stored output and check it
        sim_name = master.simulations[0].sim_name
        _fpath = os.path.join(
            master.simulations[0].data_client.destination.local_cache,
            master.simulations[0].data_client.destination.operator_name,
            sim_name
            + "."
            + master.simulations[0].data_client.destination.file_extension,
        )
        r_df = pd.read_parquet(_fpath)
        t_ctrl_name = [
            _k
            for _k, _v in master.simulations[
                0
            ].data_client.destination.data_spec.full.spec.items()
            if _v["internal_state"] == STATES.TEMPERATURE_CTRL
        ][0]
        humidity_name = [
            _k
            for _k, _v in master.simulations[
                0
            ].data_client.destination.data_spec.full.spec.items()
            if _v["internal_state"] == STATES.THERMOSTAT_HUMIDITY
        ][0]

        mean_thermostat_temperature = (
            master.simulations[0].output[STATES.THERMOSTAT_TEMPERATURE].mean()
        )
        mean_thermostat_humidity = (
            master.simulations[0].output[STATES.THERMOSTAT_HUMIDITY].mean()
        )

        output_format_mean_thermostat_temperature = r_df[t_ctrl_name].mean()
        output_format_mean_thermostat_humidity = r_df[humidity_name].mean()

        assert (
            pytest.approx(
                test_params["expected_result"]["mean_thermostat_temperature"]
            )
            == mean_thermostat_temperature
        )
        assert (
            pytest.approx(
                test_params["expected_result"]["mean_thermostat_humidity"]
            )
            == mean_thermostat_humidity
        )
        assert (
            pytest.approx(
                test_params["expected_result"][
                    "output_format_mean_thermostat_temperature"
                ]
            )
            == output_format_mean_thermostat_temperature
        )
        assert (
            pytest.approx(
                test_params["expected_result"][
                    "output_format_mean_thermostat_humidity"
                ]
            )
            == output_format_mean_thermostat_humidity
        )
    def setup_class(cls):
        # initialize with data to avoid pulling multiple times
        cls.sim_config = Config.make_sim_config(
            identifier=[
                "d310f1c1f600c374d8975c753f7c0fb8de9c96b1",
                "8c00c9bb17bfcca53809cb1b2d033a448bc017df",  # has full data periods
                "6773291da5427ae87d34bb75022ee54ee3b1fc17",  # file not found
            ],
            latitude=33.481136,
            longitude=-112.078232,
            start_utc=[
                "2018-01-01 00:00:00",
                "2018-01-01 00:00:00",
                "2018-01-01 00:00:00",
            ],
            end_utc=[
                "2018-12-31 23:55:00",
                "2018-12-31 23:55:00",
                "2018-12-31 23:55:00",
            ],
            min_sim_period="7D",
            min_chunk_period="30D",
            sim_step_size_seconds=300,
            output_step_size_seconds=300,
        )

        cls.data_clients = []

        # set local_cache=None to test connection with GCS
        cls.data_client = DataClient(
            source=GCSDYDSource(
                gcp_project=os.environ.get("DYD_GOOGLE_CLOUD_PROJECT"),
                gcs_uri_base=os.environ.get("DYD_GCS_URI_BASE"),
                local_cache=None,
            ),
            destination=LocalDestination(
                local_cache=os.environ.get("LOCAL_CACHE_DIR"),
                data_spec=DonateYourDataSpec(),
            ),
            nrel_dev_api_key=os.environ.get("NREL_DEV_API_KEY"),
            nrel_dev_email=os.environ.get("NREL_DEV_EMAIL"),
            archive_tmy3_dir=os.environ.get("ARCHIVE_TMY3_DIR"),
            archive_tmy3_meta=os.environ.get("ARCHIVE_TMY3_META"),
            archive_tmy3_data_dir=os.environ.get("ARCHIVE_TMY3_DATA_DIR"),
            ep_tmy3_cache_dir=os.environ.get("EP_TMY3_CACHE_DIR"),
            simulation_epw_dir=os.environ.get("SIMULATION_EPW_DIR"),
        )

        for _idx, _sim_config in cls.sim_config.iterrows():
            dc = copy.deepcopy(cls.data_client)
            dc.sim_config = _sim_config

            if _sim_config["identifier"] in [
                "6773291da5427ae87d34bb75022ee54ee3b1fc17",
            ]:
                with pytest.raises(ValueError):
                    dc.get_data()
            else:
                dc.get_data()

            cls.data_clients.append(dc)
Exemplo n.º 11
0
    def test_simulator(self, test_params):
        _config_params = test_params["config"]
        test_sim_config = Config.make_sim_config(
            identifier=_config_params["identifier"],
            latitude=_config_params["latitude"],
            longitude=_config_params["longitude"],
            start_utc=_config_params["start_utc"],
            end_utc=_config_params["end_utc"],
            min_sim_period=_config_params["min_sim_period"],
            sim_step_size_seconds=_config_params["sim_step_size_seconds"],
            output_step_size_seconds=_config_params["output_step_size_seconds"],
        )
        _epw_path = None
        if test_params["data_client"].get("epw_name"):
            _epw_path = self.get_epw_path(test_params["data_client"].get("epw_name"))

        # do not use NREL data in test cases in case it changes or becomes unavailable
        dc = DataClient(
            source=self.get_data_source(test_params["data_client"]),
            destination=self.get_data_destination(test_params["data_client"]),
            nrel_dev_api_key=None,
            epw_path=_epw_path,
        )

        # test HVAC data returns dict of non-empty pd.DataFrame
        master = Simulator(
            data_client=dc,
            sim_config=test_sim_config,
            building_models=[self.get_building_model(test_params["building_model"])],
            controller_models=[
                self.get_controller_model(test_params["controller_model"])
            ],
            state_estimator_models=[
                self.get_state_estimator_model(test_params["state_estimator_model"])
            ],
        )
        logger.info("calling master.simulate ... ")
        master.simulate(local=True, preprocess_check=False)
        logger.info("done master.simulate")
        # read back stored output and check it
        sim_name = master.simulations[0].sim_name
        _fpath = os.path.join(
            master.simulations[0].data_client.destination.local_cache,
            master.simulations[0].data_client.destination.operator_name,
            sim_name
            + "."
            + master.simulations[0].data_client.destination.file_extension,
        )
        r_df = pd.read_parquet(_fpath)
        t_ctrl_name = [
            _k
            for _k, _v in master.simulations[
                0
            ].data_client.destination.data_spec.full.spec.items()
            if _v["internal_state"] == STATES.TEMPERATURE_CTRL
        ][0]
        humidity_name = [
            _k
            for _k, _v in master.simulations[
                0
            ].data_client.destination.data_spec.full.spec.items()
            if _v["internal_state"] == STATES.THERMOSTAT_HUMIDITY
        ][0]

        mean_thermostat_temperature = (
            master.simulations[0].output[STATES.THERMOSTAT_TEMPERATURE].mean()
        )
        mean_thermostat_humidity = (
            master.simulations[0].output[STATES.THERMOSTAT_HUMIDITY].mean()
        )

        output_format_mean_thermostat_temperature = r_df[t_ctrl_name].mean()
        output_format_mean_thermostat_humidity = r_df[humidity_name].mean()

        # print out values in case of slight divergence to avoid re-running tests
        logger.info(
            f"\nmean_thermostat_temperature= {mean_thermostat_temperature}\n"
            + f"mean_thermostat_humidity= {mean_thermostat_humidity}\n"
            + f"output_format_mean_thermostat_temperature= {output_format_mean_thermostat_temperature}\n"
            + f"output_format_mean_thermostat_humidity= {output_format_mean_thermostat_humidity}\n"
        )

        assert (
            pytest.approx(test_params["expected_result"]["mean_thermostat_temperature"])
            == mean_thermostat_temperature
        )
        assert (
            pytest.approx(test_params["expected_result"]["mean_thermostat_humidity"])
            == mean_thermostat_humidity
        )
        assert (
            pytest.approx(
                test_params["expected_result"][
                    "output_format_mean_thermostat_temperature"
                ]
            )
            == output_format_mean_thermostat_temperature
        )
        assert (
            pytest.approx(
                test_params["expected_result"]["output_format_mean_thermostat_humidity"]
            )
            == output_format_mean_thermostat_humidity
        )
Exemplo n.º 12
0
    def test_upresample_to_step_size(self):
        df = self.data_client.get_full_input()
        _col = STATES.AUXHEAT1
        _sequence = np.array([
            0,
            150,
            150,
            150,
            150,
            30,
            270,
            30,
            270,
            0,
            300,
            300,
            240,
            0,
            150,
            300,
            150,
        ])
        df.loc[0:len(_sequence) - 1, _col] = _sequence

        res_df = DataClient.upsample_to_step_size(
            df, step_size_seconds=60, data_spec=self.data_client.internal_spec)
        # check sum
        res_rt = np.sum(_sequence)
        res_sum_rt = np.sum(res_df.loc[0:(len(_sequence) - 1) * 5,
                                       _col].values)
        assert res_rt == res_sum_rt

        # check exact sequence
        assert all(res_df.loc[0:(len(_sequence) - 1) * 5,
                              _col].values == np.array([
                                  0,
                                  0,
                                  0,
                                  30,
                                  60,
                                  60,
                                  60,
                                  60,
                                  30,
                                  0,
                                  0,
                                  0,
                                  0,
                                  30,
                                  60,
                                  60,
                                  60,
                                  60,
                                  30,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  30,
                                  60,
                                  60,
                                  60,
                                  60,
                                  30,
                                  0,
                                  0,
                                  0,
                                  0,
                                  30,
                                  60,
                                  60,
                                  60,
                                  60,
                                  30,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  0,
                                  30,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  60,
                                  0,
                                  0,
                                  30,
                                  60,
                                  60,
                              ]))