Exemplo n.º 1
0
def test_fast_on_real_data():
    from pandas import read_table
    from os import path as op

    k = 200
    subdir = "/home2/data/Projects/CWAS/share/nki/subinfo/40_Set1_N104"
    ffile = op.join(subdir, "short_compcor_rois_random_k%04i.txt" % k)
    fpaths = read_table(ffile, header=None)
    fpath = fpaths.ix[0, 0]

    import nibabel as nib
    img = nib.load(fpath)
    dat = img.get_data()

    import numpy as np
    from CPAC.cwas.subdist import norm_cols, ncor
    norm_dat = norm_cols(dat)
    corr_dat = norm_dat.T.dot(norm_dat)

    ref = eigenvector_centrality(corr_dat)
    comp = fast_eigenvector_centrality(norm_dat)

    diff = np.abs(ref - comp).mean()  # mean diff
    print(diff)

    ok_(diff < np.spacing(1e10))  # allow some differences
Exemplo n.º 2
0
def test_fast_on_real_data():
    from pandas import read_table
    from os import path as op
    
    k       = 200
    subdir  = "/home2/data/Projects/CWAS/share/nki/subinfo/40_Set1_N104"
    ffile   = op.join(subdir, "short_compcor_rois_random_k%04i.txt" % k)
    fpaths  = read_table(ffile, header=None)
    fpath   = fpaths.ix[0,0]

    import nibabel as nib
    img = nib.load(fpath)
    dat = img.get_data()

    import numpy as np
    from CPAC.cwas.subdist import norm_cols, ncor
    norm_dat = norm_cols(dat)
    corr_dat = norm_dat.T.dot(norm_dat)
    
    ref    = eigenvector_centrality(corr_dat)
    comp   = fast_eigenvector_centrality(norm_dat)
    
    diff = np.abs(ref-comp).mean()  # mean diff
    print(diff)
    
    ok_(diff < np.spacing(1e10)) # allow some differences
Exemplo n.º 3
0
def test_fast_eigenvector_centrality(ntpts=100, nvoxs=1000):
    print "testing fast_eigenvector_centrality"
    
    # Simulate Data
    import numpy as np
    from CPAC.cwas.subdist import norm_cols
    # Normalize Random Time-Series Data
    m = np.random.random((ntpts,nvoxs))
    m = norm_cols(m)
    # Correlation Data with Range 0-1
    mm = m.T.dot(m) # note that need to generate connectivity matrix here
    
    # Execute
    #from CPAC.network_centrality.core import fast_eigenvector_centrality,slow_eigenvector_centrality
    
    ref  = eigenvector_centrality(mm, verbose=False)  # we need to transform mm to be a distance
    comp = fast_eigenvector_centrality(m, verbose=False)
    
    diff = np.abs(ref-comp).mean()  # mean diff
    print(diff)
    
    ok_(diff < np.spacing(1e2)) # allow minimal difference
Exemplo n.º 4
0
def test_fast_eigenvector_centrality(ntpts=100, nvoxs=1000):
    print "testing fast_eigenvector_centrality"

    # Simulate Data
    import numpy as np
    from CPAC.cwas.subdist import norm_cols
    # Normalize Random Time-Series Data
    m = np.random.random((ntpts, nvoxs))
    m = norm_cols(m)
    # Correlation Data with Range 0-1
    mm = m.T.dot(m)  # note that need to generate connectivity matrix here

    # Execute
    #from CPAC.network_centrality.core import fast_eigenvector_centrality,slow_eigenvector_centrality

    ref = eigenvector_centrality(
        mm, verbose=False)  # we need to transform mm to be a distance
    comp = fast_eigenvector_centrality(m, verbose=False)

    diff = np.abs(ref - comp).mean()  # mean diff
    print(diff)

    ok_(diff < np.spacing(1e2))  # allow minimal difference
Exemplo n.º 5
0
def get_centrality_by_thresh(timeseries,
                             template,
                             method_option,
                             weight_options,
                             threshold,
                             r_value,
                             memory_allocated):
    """
    Method to calculate degree and eigen vector centrality. 
    This method takes into consideration the amount of memory
    allocated by the user to calculate degree centrality.
    
    Parameters
    ----------
    timeseries_data : numpy array
        timeseries of the input subject
    template : numpy array
        Mask/ROI template for timeseries of subject
    method_option : integer
        0 - degree centrality calculation, 1 - eigenvector centrality calculation, 2 - lFCD calculation
    weight_options : string (list of boolean)
        list of two booleans for binarize and weighted options respectively
    threshold : float
        p-value threshold for the correlation values (ignored if the r_value option is specified)
    r_value : float
        threshold value in terms of the correlation (this will override the threshold option)
    memory_allocated : a string
        amount of memory allocated to degree centrality
        
    Returns
    -------
    out_list : string (list of tuples)
        list of tuple containing output name to be used to store nifti image
        for centrality and centrality matrix 
    
    Raises
    ------
    Exception
    """
    
    
    import numpy as np
    import os
    from CPAC.network_centrality import calc_blocksize,\
                                        cluster_data,\
                                        convert_pvalue_to_r,\
                                        degree_centrality,\
                                        eigenvector_centrality
    from CPAC.cwas.subdist import norm_cols
    
    try:                         
        # Init variables for use
        out_list = []
        nvoxs = timeseries.shape[0]
        ntpts = timeseries.shape[1]
        
        r_matrix = None             # init correlation matrix
        calc_degree = False         # init degree measure flag to false
        calc_eigen = False          # init eigen measure flag to false
        calc_lfcd= False            # init lFCD measure flag to false
        
        # Select which method we're going to perform
        if method_option == 0:
            calc_degree = True
        elif method_option == 1:
            calc_eigen = True
        elif method_option == 2:
            calc_lfcd = True
        
        # Set weighting parameters
        out_binarize = weight_options[0]
        out_weighted = weight_options[1]
        
        # Calculate the block size (i.e., number of voxels) to compute part of the
        # connectivity matrix at once.
        if calc_eigen:
            # We still use a block size to calculate the whole correlation matrix
            # because of issues in numpy that lead to extra memory usage when
            # computing the dot product.
            # See https://cmi.hackpad.com/Numpy-Memory-Issues-BlV9Pg5nRDM.
            block_size = calc_blocksize(timeseries, memory_allocated, include_full_matrix=True)
        else:
            block_size = calc_blocksize(timeseries, memory_allocated)
        
        if r_value == None:
            print "Calculating threshold"
            r_value = convert_pvalue_to_r(ntpts, threshold)
            print "...%s -> %s" % (threshold, r_value)
        
        print "Setup Intermediates/Outputs"
        # Degree matrix init
        if calc_degree:
            print "...degree"
            if out_binarize:
                degree_binarize = np.zeros(nvoxs, dtype=timeseries.dtype)
                out_list.append(('degree_centrality_binarize', degree_binarize))
            if out_weighted:
                degree_weighted = np.zeros(nvoxs, dtype=timeseries.dtype)
                out_list.append(('degree_centrality_weighted', degree_weighted))
        # Eigen matrix init
        if calc_eigen:
            print "...eigen"
            r_matrix = np.zeros((nvoxs, nvoxs), dtype=timeseries.dtype)
            if out_binarize:
                eigen_binarize = np.zeros(nvoxs, dtype=timeseries.dtype)
                out_list.append(('eigenvector_centrality_binarize', eigen_binarize))
            if out_weighted:
                eigen_weighted = np.zeros(nvoxs, dtype=timeseries.dtype)
                out_list.append(('eigenvector_centrality_weighted', eigen_weighted))
        # lFCD matrix init
        if calc_lfcd:
            print "...degree"
            if out_binarize:
                lfcd_binarize = np.zeros(nvoxs, dtype=timeseries.dtype)
                out_list.append(('lFCD_binarize', lfcd_binarize))
            if out_weighted:
                lfcd_weighted = np.zeros(nvoxs, dtype=timeseries.dtype)
                out_list.append(('lFCD_weighted', lfcd_weighted))
        
        # Normalize the timeseries columns for simple correlation calc via dot product later..
        print "Normalize TimeSeries"
        timeseries = norm_cols(timeseries.T)
        
        # Init blocking indices for correlation matrix calculation
        print "Computing centrality across %i voxels" % nvoxs
        i = block_size
        j = 0
        # Calculate correlation matrix in blocks while loop
        while i <= nvoxs:
            print "running block ->", i, j
           
            try:
                print "...correlating"
                corr_matrix = np.dot(timeseries[:,j:i].T, timeseries)
            except:
                raise Exception("Error in calcuating block wise correlation for the block %i,%i"%(j,i))
                      
            if calc_eigen:
                print "...storing correlation matrix"
                r_matrix[j:i] = corr_matrix
            
            if calc_degree:
                if out_binarize:
                    print "...calculating binarize degree"
                    degree_centrality(corr_matrix, r_value, method="binarize", out=degree_binarize[j:i])
                if out_weighted:
                    print "...calculating weighted degree"
                    degree_centrality(corr_matrix, r_value, method="weighted", out=degree_weighted[j:i])
            
            if calc_lfcd:
                xyz_a = np.argwhere(template)
                krange = corr_matrix.shape[0]
                print "...iterating through seeds in block - lfcd"
                for k in range (0,krange):
                    corr_seed = corr_matrix[k,:]
                    labels = cluster_data(corr_seed,r_value,xyz_a)
                    seed_label = labels[j+k]
                    if out_binarize:
                        if seed_label > 0:
                            lfcd = np.sum(labels==seed_label)
                        else:
                            lfcd = 1
                        lfcd_binarize[j+k] = lfcd
                    if out_weighted:
                        if seed_label > 0:
                            lfcd = np.sum(corr_seed*(labels==seed_label))
                        else:
                            lfcd = 1
                        lfcd_weighted[j+k] = lfcd
                            
            print "...removing temporary correlation matrix"
            del corr_matrix
           
            j = i
            if i == nvoxs:
                break
            elif (i+block_size) > nvoxs:
                i = nvoxs
            else:
                i += block_size
        
        # In case there are any zeros in lfcd matrix, set them to 1
        if calc_lfcd:
            if out_binarize:
                lfcd_binarize[np.argwhere(lfcd_binarize == 0)] = 1
            if out_weighted:
                lfcd_weighted[np.argwhere(lfcd_weighted == 0)] = 1
        
        # Perform eigenvector measures if necessary
        try:
            if calc_eigen:
                if out_binarize:
                    print "...calculating binarize eigenvector"
                    eigen_binarize[:] = eigenvector_centrality(r_matrix, r_value, method="binarize").squeeze()
                if out_weighted:
                    print "...calculating weighted eigenvector"
                    eigen_weighted[:] = eigenvector_centrality(r_matrix, r_value, method="weighted").squeeze()
        except Exception:
            print "Error in calcuating eigen vector centrality"
            raise
        
        if calc_degree:
            print "...removing effect of auto-correlation on degree"
            degree_binarize[degree_binarize!=0] = degree_binarize[degree_binarize!=0] - 1
            degree_weighted[degree_weighted!=0] = degree_weighted[degree_weighted!=0] - 1
        
        return out_list
    
    except Exception: 
        print "Error in calcuating Centrality"
        raise
Exemplo n.º 6
0
def get_centrality_by_sparsity(timeseries, 
                   method_option,
                   weight_options,
                   threshold,
                   memory_allocated):
    
    """
    Method to calculate degree and eigen vector centrality
    
    Parameters
    ----------
    timeseries : numpy array
        timeseries of the input subject
    method_options : string (list of boolean)
        list of two booleans for degree and eigen options respectively
    weight_options : string (list of boolean)
        list of two booleans for binarize and weighted options respectively
    threshold : float
        sparsity threshold for the correlation values
    memory_allocated : a string
        amount of memory allocated to degree centrality
    
    Returns
    -------
    out_list : string (list of tuples)
        list of tuple containing output name to be used to store nifti image
        for centrality and centrality matrix
    
    Raises
    ------
    Exception
    """
    
    import os
    import numpy as np
    from CPAC.network_centrality import calc_blocksize,\
                                        convert_sparsity_to_r,\
                                        degree_centrality,\
                                        eigenvector_centrality
    from CPAC.cwas.subdist import norm_cols
    
    out_list=[]
    
    try:
        # Calculate the block size (i.e., number of voxels) to compute part of the
        # connectivity matrix at once.
        # 
        # We still use a block size to calculate the whole correlation matrix
        # because of issues in numpy that lead to extra memory usage when
        # computing the dot product.
        # See https://cmi.hackpad.com/Numpy-Memory-Issues-BlV9Pg5nRDM.
        block_size  = calc_blocksize(timeseries, memory_allocated, include_full_matrix=True)
        
        nvoxs = timeseries.shape[0]
        ntpts = timeseries.shape[1]
        
        calc_degree = False         # init degree measure flag to false
        calc_eigen = False          # init eigen measure flag to false
        calc_lfcd= False            # init lFCD measure flag to false
        
        # Select which method we're going to perform
        if method_option == 0:
            calc_degree = True
        elif method_option == 1:
            calc_eigen = True
        elif method_option == 2:
            calc_lfcd = True
        
        # Set weighting parameters
        out_binarize = weight_options[0]
        out_weighted = weight_options[1]
        
        corr_matrix = np.zeros((nvoxs, nvoxs), dtype = timeseries.dtype)
        
        
        print "Normalize TimeSeries"
        timeseries  = norm_cols(timeseries.T)
        
        
        print "Computing centrality across %i voxels" % nvoxs
        j = 0
        i = block_size
        while i <= timeseries.shape[1]:
            print "running block ->", i,j
            
            print "...correlating"
            np.dot(timeseries[:,j:i].T, timeseries, out=corr_matrix[j:i])
            
            j = i
            if i == nvoxs:
                break
            elif (i+block_size) > nvoxs:
                i = nvoxs
            else:
                i += block_size
        
        
        print "Calculating threshold"
        r_value = convert_sparsity_to_r(corr_matrix, threshold, full_matrix = True)
        print "r_value ->", r_value
        
        
        if calc_degree:
            if out_binarize:
                print "...calculating binarize degree"
                degree_binarize = degree_centrality(corr_matrix, r_value, method="binarize")
                out_list.append(('degree_centrality_binarize', degree_binarize))
            if out_weighted:
                print "...calculating weighted degree"
                degree_weighted = degree_centrality(corr_matrix, r_value, method="weighted")
                out_list.append(('degree_centrality_weighted', degree_weighted))
        
        
        if calc_eigen:
            if out_binarize:
                print "...calculating binarize eigenvector"
                eigen_binarize = eigenvector_centrality(corr_matrix, r_value, method="binarize")
                out_list.append(('eigenvector_centrality_binarize', eigen_binarize))
            if out_weighted:
                print "...calculating weighted eigenvector"
                eigen_weighted = eigenvector_centrality(corr_matrix, r_value, method="weighted")
                out_list.append(('eigenvector_centrality_weighted', eigen_weighted))            
            
    except Exception:
        print "Error while calculating centrality"
        raise
    
    return out_list