Exemplo n.º 1
0
def sampleSize(data, proportion):
    denominator = power(margin_error(data, sample_size=10), 2)
    q = subtraction(1.0, proportion)
    half_numerator = product(proportion, q)
    z = normalProbabilityDensity(denominator)
    numerator = product(power(z, 2), half_numerator)
    n = division(numerator, denominator)
    return n
Exemplo n.º 2
0
def sample_size_unknown(percent, confidence, width):
    confidence_int = division(confidence, 2)
    zscore = normalProbabilityDensity(confidence_int)
    error = division(width, 2)
    p = subtraction(1, percent)
    pTimesq = product(percent, p)
    zDivideError = division(zscore, error)
    powerZdivError = power(zDivideError, 2)
    return product(pTimesq, powerZdivError)
Exemplo n.º 3
0
def sampleCorrelation(dataX, dataY):
    #dataX= []
    #dataY = []
    meanX = mean(dataX)
    meanY = mean(dataY)
    deviationX = standard_deviation(dataX)
    deviationY = standard_deviation(dataY)
    rNumerator = 0.0
    for i in range(len(dataX)):
        rNumerator += product(subtraction(dataX[i], meanX),
                              subtraction(dataY[i], meanY))
    rDenominator = product(deviationX, deviationY)
    r = division(rNumerator, rDenominator)
    return r
Exemplo n.º 4
0
def margin_error(data, sample_size):
    zscore = zScore(data)
    standardDeviation = standard_deviation(data)
    denominator = root(sample_size, 2)
    willMultiply = division(standardDeviation, denominator)
    marginOfError = product(zscore, willMultiply)
    return marginOfError
Exemplo n.º 5
0
def samplesizeKnownPop(data, confidence, error):
    z = division(confidence, 2)
    ztable_value = normalProbabilityDensity(z)
    standardDeviation = standard_deviation(data)
    ztableTimesStandard = product(ztable_value, standardDeviation)
    nextStep = division(ztableTimesStandard, error)
    sample_size = power(nextStep, 2)
    return sample_size
Exemplo n.º 6
0
def normalProbabilityDensity(x):
    constant = division(1.0, math.sqrt(2 * math.pi))
    return product(constant, math.exp((-x**2) / 2.0))