Exemplo n.º 1
0
    Maintenance_Rate('Shaft', 0.002, 0.007, .001, 1014. * 24. * 1,
                     1014 * 24. * 4, 3500 * 24. * 5, 1., 3 * 40.),
    Maintenance_Rate('Brake', 0.0153, 0.0325, 0.0025, 1014. * 24. * 1,
                     1014 * 24. * 4, 3500 * 24. * 5, 1., 3 * 40.),
    Maintenance_Rate('Cable', 0.225, 0.09247, 0.000002, 1014. * 24. * 1,
                     1014 * 24. * 4, 3500 * 24. * 5, 1., 3 * 40.),
    Maintenance_Rate('Control system', 0.1, 0.1, 0.0001, 1014. * 24. * 1,
                     1014 * 24. * 4, 3500 * 24. * 5, 1., 3 * 40.)
]

emergency_events = [
    maintenance.EmergencyMaintenance(e.minimal_rate,
                                     e.midlevel_rate,
                                     e.severe_rate,
                                     e.minimal_cost,
                                     e.midlevel_cost,
                                     e.severe_cost,
                                     number=e.number,
                                     labor=e.labor,
                                     partname=e.partname)
    for e in emergency_maintenance
]

runs = 200
costs = np.zeros(runs)
tracking_average = np.zeros(runs)
tracking_error = np.zeros(runs)
upper_quartile = np.zeros(runs)
lower_quartile = np.zeros(runs)

for i in range(runs):
Exemplo n.º 2
0
def LevelizedCostofElectricity(station_id, grid_location, cap_ex, lifetime, K,
                               Q, B, M, g, h_0, gravity,
                               emergency_maintentance, installation):
    '''
    This function will calculated the levelized cost of electricity given the parameters for maintenance, power generation, installation
    and lifetime
    station_id will determine the location due to the necessity to use harmonic constituents for the calculations
    grid_location is where the connections will be made
    cap_ex are the capital expenditures for the cost of the turbine and fixtures
    this function was written with a sensitivity analysis in mind
    '''

    MCT = Turbine(K, Q, B, M, g)

    tidal_station = TidalStation(station_id)

    emergency_events = [
        maintenance.EmergencyMaintenance(
            e['minimal_rate'], e['midlevel_rate'], e['severe_rate'],
            e['minimal_cost'], e['midlevel_cost'], e['severe_cost'],
            e['minimal_downtime'], e['midlevel_downtime'],
            e['severe_downtime'], e['number'], e['labor'], e['partname'])
        for e in emergency_maintentance
    ]

    #installation_cost = installation.calculateInstallation()

    ###
    # The following code is used to run the monte carlo simulation with feedback to the power generation functions
    # where the downtime requires the turbine to no longer generate an output
    ###
    time = []
    results = []
    end_loop = False
    time_tracker = 0.

    maintenance_costs = []
    maintenance_times = []

    #time to run the simulation
    while not end_loop:

        maintenance_event, uptime = monteCarlo(emergency_events)

        if time_tracker + uptime > lifetime:
            end_loop = True
            uptime = lifetime - time_tracker

        end_time = time_tracker + uptime
        results_array, time_array = calculate_power(tidal_station, MCT,
                                                    results[-1][-1],
                                                    time_tracker, end_time,
                                                    gravity, h_0)

        maintenance_costs.append(maintenance_event.event_cost)
        maintenance_times.append(time_tracker + uptime)
        time_tracker += uptime + maintenance_event.downtime
        results.append(results_array)
        time.append(time_array)

    powerGen = np.concatenate(results)
    times = np.concatenate(time)

    # Process the final costs and return the levelized cost
    total_cost = maintenance_costs[-1] + installation_cost
    total_power = powerGen[-1]
    return total_cost / total_power