Exemplo n.º 1
0
 def check(cls, code, start_date, end_date):
     table = 'kline_min5'
     table2 = 'tmp_kline_min5'
     path = 'f:/zjf/data/check6/'
     data = KlineData.read_data(code=code,
                                start_date=start_date,
                                end_date=end_date,
                                kline=table,
                                timemerge=True)
     if len(data) <= 0:
         return
     data = data.sort_values(by=['date'], ascending=True)
     data = data[data.time <= 955]
     data2 = KlineData.read_data(code=code,
                                 start_date=start_date,
                                 end_date=end_date,
                                 kline=table2,
                                 timemerge=True)
     if len(data2) <= 0:
         return
     data2 = data2.sort_values(by=['date'], ascending=True)
     data2 = data2[data2.time <= 955]
     print('start draw.......')
     # fig, ax = plt.subplots()
     # fig.subplots_adjust(bottom=0.2)
     ax = plt.subplot(211)
     # plt.title('本地')
     ax.set_xticks([])
     candlestick2_ohlc(ax,
                       data.open,
                       data.high,
                       data.low,
                       data.close,
                       width=1,
                       colorup='red',
                       colordown='green')
     plt.title(table + '--' + code)
     ax = plt.subplot(212)
     # plt.title('远程')
     plt.title(table2 + '--' + code)
     candlestick2_ohlc(ax,
                       data2.open,
                       data2.high,
                       data2.low,
                       data2.close,
                       width=1,
                       colorup='red',
                       colordown='green')
     File.check_file(path=path)
     ax.set_xticks([])
     plt.savefig(path + code + '.png', transparent=True)
     plt.close()
Exemplo n.º 2
0
 def unreplenishment(cls, data, method='local'):
     """
     将XDXR_day复权后的价格更新至现价
     :param method:获取现价的方法:net表示从网络接口获取最新价作为现价
      local表示从本地数据库获取。
      目前反复权操作指针对中国A股XDXR_day 表,将其close-->现价
     :param data:
     :return:
     """
     try:
         if method == 'net':
             from Calf.data import RealData as rd
             real_data = rd.get_stocks_data(list(data.stock_code))
             data.drop('close', axis=1, inplace=True)
             data = pd.merge(data,
                             real_data.loc[:, ['stock_code', 'price']],
                             on='stock_code')
             data.rename(columns={'price': 'open_price'}, inplace=True)
         if method == 'local':
             # 注意使用的是open_date
             from Calf.data import KlineData as kd
             data['open_price'] = data.apply(lambda r: kd.read_one(
                 r['stock_code'], r['open_date'], 'kline_day')['close'],
                                             axis=1)
         return data
     except Exception as e:
         ExceptionInfo(e)
         return pd.DataFrame()
Exemplo n.º 3
0
 def get_data(self):
     data = KlineData.read_data(code='000001',
                                kline='kline_day',
                                start_date=dt.datetime(2015, 1, 1),
                                end_date=dt.datetime(2018, 9, 3))
     # print(data.loc[:,['date']])
     return data
Exemplo n.º 4
0
 def get_data(self, stockno, start_date, end_date, kline):
     data = KlineData.read_data(code=stockno,
                                start_date=start_date,
                                end_date=end_date,
                                kline=kline,
                                timemerge=True)
     data = data[::-1]
     return data
Exemplo n.º 5
0
def deal_data(code):
    data = KlineData.read_data(code=code, start_date=dt.datetime(2016, 1, 1), end_date=dt.datetime(2018, 9, 18),
                               kline='index_min5',timemerge=True)
    if len(data):
        data = n_KDJ(data, 9, 3)
        # t1 = time.clock()
        # print(t1-t)
        # t = time.clock()
        data = n_MA(data)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_MACD(data, 12, 26, 9)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_RSI(data, 6, 12, 24)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_DMI(data, 14, 6)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_BRAR(data, 26)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_CR(data, 26, 10, 20, 40)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_VR(data, 26)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_WR(data, 10, 6)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_CCI(data, 14)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_BOLL(data, 20)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_PSY(data, 12)


        data.dropna(inplace=True)
        data=data[data.time==955]

        BaseModel('features_index_min5').insert_batch(data.to_dict(orient='records'))
Exemplo n.º 6
0
def get(code, table='kline_tick'):
    print(code)
    start_date = dt.datetime(2018, 6, 12)
    end_date = dt.datetime(2018, 6, 12)
    data = KlineData.read_data(code=code,
                               start_date=start_date,
                               end_date=end_date,
                               kline=table,
                               timemerge=True)

    if len(data) <= 0:
        return {}
    data = data.sort_values(by=['_id'])
    data['pre_price'] = data.price.shift(-1)
    data['change'] = data.pre_price - data.price
    data['amount'] = data.price * data.volume
    data0 = data[data.price == data.price.max()]
    max_price_amount = data0.amount.sum()

    data1 = data[data.price == data.price.min()]
    min_price_amount = data1.amount.sum()

    up = (data[data.change > 0])
    down = data[data.change < 0]
    ping = data[data.change == 0]
    up_volume = up['amount'].sum()
    down_volume = down['amount'].sum()
    ping_volume = ping['amount'].sum()
    up_max_amount = up['amount'].max()
    down_max_amount = down['amount'].max()
    return dict(code=code,
                date=start_date,
                up_amount=up_volume,
                down_amount=down_volume,
                ping_amount=ping_volume,
                up_max_amount=up_max_amount,
                down_max_amount=down_max_amount,
                max_price_amount=max_price_amount,
                min_price_amount=min_price_amount)
Exemplo n.º 7
0
def get_result(sc, kline, start, end, table_name):
    data = KlineData.read_data(code=sc,
                               start_date=start,
                               end_date=end,
                               kline=kline,
                               timemerge=True)
    data = cal_ma(data)
    data = data.dropna()
    while len(data) >= 64:
        last_one = data.iloc[-1]
        if last_one.time != 1500:
            break
        elif abs(last_one.profit_self) >= 0.097:
            continue
        else:
            date = last_one.date
            data = data[data.date <= dt.datetime(date.year, date.month,
                                                 date.day, 9, 55)]
            if len(data) >= 64:
                profit = data.iloc[-1].profit
                date = data.iloc[-1].date
                idata = data.tail(64)

                data = data[
                    data.date < dt.datetime(date.year, date.month, date.day)]

                idata = idata.loc[:, [
                    'close', 'open', 'high', 'low', 'ma5', 'ma10', 'ma20',
                    'ma60', 'ma120', 'ma200'
                ]]
                idata = np.array(idata)
                amin, amax = idata.min(), idata.max()  # 求最大最小值
                idata = (idata - amin) / (amax - amin)
                BaseModel(table_name).insert_batch({
                    'stock_code': sc,
                    'profit': profit,
                    'date': date,
                    'value': idata.tolist()
                })
Exemplo n.º 8
0
def get_result(sc, kline, start, end, table_name):
    data = KlineData.read_data(code=sc,
                               start_date=start,
                               end_date=end,
                               kline=kline,
                               timemerge=True)
    data = cal_macd(data)
    data = data.dropna()
    while len(data) >= 64:
        last_one = data.iloc[-1]
        if last_one.time != 1500:
            break
        elif abs(last_one.profit_self) >= 0.097:
            continue
        else:
            date = last_one.date
            data = data[data.date <= dt.datetime(date.year, date.month,
                                                 date.day, 9, 55)]
            if len(data) >= 64:
                profit = data.iloc[-1].profit
                date = data.iloc[-1].date
                idata = data.tail(64)
                idata = idata.loc[:, ['macd', 'dif', 'dea']]

                data = data[
                    data.date < dt.datetime(date.year, date.month, date.day)]
                idata = np.array(idata)
                amin, amax = idata.min(), idata.max()  # 求最大最小值
                max = -amax if abs(amax) > abs(amin) else amin
                idata = idata * (64 / 2 - 1) / max
                idata = idata + 64 / 2
                BaseModel(table_name).insert_batch({
                    'stock_code': sc,
                    'profit': profit,
                    'date': date,
                    'value': idata.tolist()
                })
Exemplo n.º 9
0
import numpy as np


def normal(employment):
    mean = employment.mean()  # 计算平均数
    deviation = employment.std()  # 计算标准差
    # 标准化数据的公式: (数据值 - 平均数) / 标准差
    standardized_employment = (employment - mean) / deviation
    return standardized_employment


if __name__ == '__main__':

    data = KlineData.read_data(code='880302',
                               start_date=dt.datetime(2018, 9, 10),
                               end_date=dt.datetime(2018, 9, 18),
                               kline='index_min5',
                               timemerge=True)
    name = data.columns.values.tolist()
    if len(data):
        data = data.drop(['_id', 'classtype', 'market'], axis=1)
        data = n_KDJ(data, 9, 3)
        # t1 = time.clock()
        # print(t1-t)
        # t = time.clock()

        data = n_MA(data)
        # t1 = time.clock()
        # print(t1 - t1)
        # t = time.clock()
Exemplo n.º 10
0
def deal_data(code):
    data = KlineData.read_data(code=code,
                               start_date=dt.datetime(2015, 1, 1),
                               end_date=dt.datetime(2018, 9, 17),
                               kline='kline_day',
                               timemerge=True)

    name = data.columns.values.tolist()
    if len(data):
        data = data.drop(['_id', 'classtype', 'market'], axis=1)
        data = n_KDJ(data, 9, 3)
        # t1 = time.clock()
        # print(t1-t)
        # t = time.clock()
        data = n_MA(data)
        # t1 = time.clock()
        # print(t1 - t1)
        # t = time.clock()
        data = n_MACD(data, 12, 26, 9)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_RSI(data, 6, 12, 24)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_DMI(data, 14, 6)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_BRAR(data, 26)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_CR(data, 26, 10, 20, 40)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_VR(data, 26)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_WR(data, 10, 6)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_CCI(data, 14)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_BOLL(data, 20)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_PSY(data, 12)
        columns = data.columns.values.tolist()
        data = data.replace(to_replace=np.Infinity, value=np.NaN)

        fund_data = pd.DataFrame(
            list(BaseModel('jq_fund_data').query({'code': code})))
        jq_name = [
            'capitalization', 'circulating_cap', 'circulating_market_cap',
            'market_cap', 'pb_ratio', 'pcf_ratio', 'pe_ratio', 'pe_ratio_lyr',
            'ps_ratio', 'turnover_ratio'
        ]
        for i in jq_name:
            data[i] = 0
        # data['circulating_market_cap'] = 0

        for i in columns:
            if i not in name and 'change_r_next' not in i:
                v = data[i].iloc[0]
                if type(v).__name__ != 'bool_':
                    # print(i, v, type(v))
                    if data[i].min() == 0:
                        # pass
                        # print(i, data[i].loc[0])
                        data.loc[data[i] != 0,
                                 i] = (data.loc[data[i] != 0, i] -
                                       data.loc[data[i] != 0, i].min()) / (
                                           data.loc[data[i] != 0, i].max() -
                                           data.loc[data[i] != 0, i].min())
                        # print(i,data[i].loc[0])
                    else:
                        # print(i, v, type(v))
                        data[i] = (data[i] - data[i].min()) / (data[i].max() -
                                                               data[i].min())

        # data['up'] = data['up'] / (data['up'] + data['down'])
        # data['down'] = data['down'] / (data['up'] + data['down'])
        data.loc[
            (data.date >= dt.datetime(2015, 12, 31)) & (data.date < dt.datetime(2016, 3, 31)), jq_name] = \
            fund_data[fund_data.day == '2015-12-31'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2016, 3, 31)) & (data.date <= dt.datetime(2016, 6, 30)), jq_name] = \
            fund_data[fund_data.day == '2016-03-31'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date < dt.datetime(2016, 9, 30)) & (data.date >= dt.datetime(2016, 6, 30)), jq_name] = \
            fund_data[fund_data.day == '2016-06-30'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2016, 9, 30)) & (data.date < dt.datetime(2016, 12, 30)), jq_name] = \
            fund_data[fund_data.day == '2016-09-30'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date < dt.datetime(2017, 3, 31)) & (data.date >= dt.datetime(2016, 12, 30)), jq_name] = \
            fund_data[fund_data.day == '2016-12-30'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2017, 3, 31)) & (data.date < dt.datetime(2017, 6, 30)), jq_name] = \
            fund_data[fund_data.day == '2017-03-31'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2017, 6, 30)) & (data.date < dt.datetime(2017, 9, 29)), jq_name] = \
            fund_data[fund_data.day == '2017-06-30'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2017, 9, 29)) & (data.date < dt.datetime(2017, 12, 29)), jq_name] = \
            fund_data[fund_data.day == '2017-09-29'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2017, 12, 29)) & (data.date < dt.datetime(2018, 3, 30)), jq_name] = \
            fund_data[fund_data.day == '2017-12-29'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2018, 3, 30)) & (data.date < dt.datetime(2018, 6, 29)), jq_name] = \
            fund_data[fund_data.day == '2018-03-30'].loc[:,jq_name].iloc[0].tolist()
        data.loc[
            (data.date >= dt.datetime(2018, 6, 29)), jq_name] = \
            fund_data[fund_data.day == '2018-06-29'].loc[:,jq_name].iloc[0].tolist()
        name = ['open', 'close', 'high', 'low', 'amount', 'volume']
        data['turnover_ratio'] = data.volume / (data.circulating_cap * 10000)
        for i in name:
            data[i] = (data[i] - data[i].min()) / (data[i].max() -
                                                   data[i].min())
        data = data[::-1]

        data = data.reset_index(drop=True)
        # data['count'] = data.index.tolist()
        curror = BaseModel('LaunchDate').query(sql={'stock_code': code})
        data['count'] = 0
        if curror.count():
            launchdate = list(curror)[0]['date']
            data['count'] = data.date.map(lambda x: (x - launchdate).days)

        data = data[data.date >= dt.datetime(2016, 1, 1)]
        BaseModel('features_kline_day').insert_batch(
            data.to_dict(orient='records'))
Exemplo n.º 11
0
from Calf.data import KlineData
import datetime as dt
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
from Calf.models.base_model import BaseModel
import pandas as pd
import numpy as np
data = KlineData.read_data(code='000001',
                           start_date=dt.datetime(2016, 1, 1),
                           end_date=dt.datetime(2018, 9, 2),
                           kline='index_min5',
                           timemerge=True)
data = data.loc[:, ['date', 'close', 'open', 'high', 'low', 'volume']]
data['close2'] = data.close.shift(-48)
data['profit'] = data.close / data.close2 - 1
data = data.drop(['close2'], axis=1)
data = data.dropna()
y = data.loc[:, ['profit']]
X = data.loc[:, ['close', 'open', 'low', 'high', 'volume']]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
print(X_train.shape)
print(y_test.shape)
from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)
a = (linreg.intercept_)
print(a)
print((linreg.coef_))
# 模型拟合测试集
y_pred = linreg.predict(X_test)
from sklearn import metrics
Exemplo n.º 12
0
from Calf.data import KlineData
import datetime as dt
import matplotlib.pyplot as plt
from Visual.DMI.caculate import Caculate

data=KlineData().read_data(code='001979',start_date=dt.datetime(2018,5,1),end_date=dt.datetime(2018,9,1),kline='kline_day')
data=data.sort_values(by=['date'],ascending=True)
data=Caculate.n_DMI(data)
data=data[::-1]
print(data.date.tolist())
fig=plt.figure(figsize=(9,6))
plt.plot(data.date,data['PDI'])
plt.plot(data.date,data['MDI'])
plt.plot(data.date,data['ADX'])
plt.show()
Exemplo n.º 13
0
from Calf.data import KlineData
import datetime as dt


def deal(data):
    columns = data.columns.values.tolist()

    for i in columns:
        if i not in ['_id', 'classtype']:
            v = data[i].iloc[0]
            if type(v).__name__ not in ['bool_', 'str']:
                data[i] = (data[i] - data[i].min()) / (data[i].max() -
                                                       data[i].min())
    return data


data = KlineData.read_data(code='000001',
                           start_date=dt.datetime(2018, 9, 1),
                           end_date=dt.datetime(2018, 10, 10),
                           kline='kline_day')
data = deal(data)
print(data.head(10))
Exemplo n.º 14
0
def deal_data(code):
    data = KlineData.read_data(code=code, start_date=dt.datetime(2015, 1, 1), end_date=dt.datetime(2018, 9, 17),
                               kline='index_day', timemerge=True)

    name = data.columns.values.tolist()
    if len(data):
        data = data.drop(['_id', 'classtype', 'market'], axis=1)
        data = n_KDJ(data, 9, 3)
        # t1 = time.clock()
        # print(t1-t)
        # t = time.clock()
        data = n_MA(data)
        # t1 = time.clock()
        # print(t1 - t1)
        # t = time.clock()
        data = n_MACD(data, 12, 26, 9)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_RSI(data, 6, 12, 24)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_DMI(data, 14, 6)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_BRAR(data, 26)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_CR(data, 26, 10, 20, 40)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_VR(data, 26)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_WR(data, 10, 6)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_CCI(data, 14)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_BOLL(data, 20)
        # t1 = time.clock()
        # print(t1 - t)
        # t = time.clock()
        data = n_PSY(data, 12)
        columns = data.columns.values.tolist()
        data = data.replace(to_replace=np.Infinity, value=np.NaN)
        for i in columns:
            if i not in name and 'change_r_next' not in i:
                v = data[i].iloc[0]
                if type(v).__name__ != 'bool_':
                    # print(i, v, type(v))
                    if data[i].min() == 0:
                        # pass
                        # print(i, data[i].loc[0])
                        data.loc[data[i] != 0, i] = (data.loc[data[i] != 0, i] - data.loc[data[i] != 0, i].min()) / (
                            data.loc[data[i] != 0, i].max() - data.loc[data[i] != 0, i].min())
                        # print(i,data[i].loc[0])
                    else:
                        # print(i, v, type(v))
                        data[i] = (data[i] - data[i].min()) / (data[i].max() - data[i].min())

        data['up'] = data['up'] / (data['up'] + data['down'])
        data['down'] = data['down'] / (data['up'] + data['down'])
        name = ['open', 'close', 'high', 'low', 'amount', 'volume']

        for i in name:
            data[i] = (data[i] - data[i].min()) / (data[i].max() - data[i].min())
        data = data[::-1]

        data = data.reset_index(drop=True)
        data['count'] = data.index.tolist()

        data = data[data.date >= dt.datetime(2016, 1, 1)]
        BaseModel('features_index_day').insert_batch(data.to_dict(orient='records'))
Exemplo n.º 15
0
    def KScheduler(cls, action, tz=None, deep_sleep=list()):
        """
        适用于A股的信号采集实时任务,适用于跨时区任务
        :param tz:
        :param deep_sleep:
        :param action: 模型的运行管理对象
        :return:
        """
        if not isinstance(action, type(ModelAction)):
            raise TypeError('Object action must be a subclass of ModelAction')
        if tz is not None:
            if tz not in pytz.all_timezones:
                raise ValueError('this tz: %s not in pytz time zones' % tz)
            else:
                tz = pytz.timezone(tz)
        profit_probe_period = dt.timedelta(minutes=1)
        profit_probe_next = dt.datetime.now(
        ) if tz is None else dt.datetime.now(tz=tz).replace(tzinfo=None)
        _f = False  # 记录当天是否收盘
        klines = action.klines  # 需要跟踪的bar周期
        _id = cls.open_kline_update_log()  # 记录bar更新
        from Calf.data import KlineData as kd
        while 1:
            try:
                crt = dt.datetime.now() if tz is None else dt.datetime.now(
                    tz=tz).replace(tzinfo=None)
                if not action.is_trade_day(
                        dt.datetime(crt.year, crt.month, crt.day)):
                    print('{0} today is not in business'.format(crt))
                    time.sleep(60 * 60 * 2)  # sleep two hours
                    continue
                if action.trade_day_end(crt) and _f:
                    print(fontcolor.F_GREEN + '-' * 80)
                    print('# %s Today Overview #' % action.name)
                    print('Signal:')
                    action.signals_summary()
                    print('Order:')
                    action.orders_summary()
                    print(fontcolor.F_GREEN + '-' * 80 + fontcolor.END)
                    sound_notice('close.wav').start()
                    _f = False
                # open_am <= crt <= close_am or open_pm <= crt < close_pm
                if action.trade_date(crt):
                    # 交易日盘中
                    s_d = crt - dt.timedelta(minutes=3)
                    e_d = crt + dt.timedelta(minutes=3)
                    log = kd.read_log(start_date=s_d, end_date=e_d, status=200)
                    if len(log):
                        log['_id'] = log['_id'].astype('str')
                        for i, r in log.iterrows():
                            if r.kline in klines and r['_id'] != _id[r.kline]:
                                print('this kline %s find update' % r.kline)
                                action.real(r.kline)
                                print(r.kline + ' id update:' + _id[r.kline] +
                                      '-->' + r['_id'])
                                _id[r.kline] = r['_id']
                                cls.set_kline_update_log(_id)

                    if profit_probe_next <= crt:
                        print('profit probing date:{0}'.format(crt))
                        action.probing()
                        profit_probe_next += profit_probe_period
                    _f = True
                    time.sleep(5)
                else:
                    print('{0} this datetime is not in business'.format(crt))
                    profit_probe_next = crt
                    _f = False
                    sleep = 60 * 5 if crt.hour in deep_sleep else 60 * 30
                    time.sleep(sleep)

            except Exception as e:
                ExceptionInfo(e)
Exemplo n.º 16
0
    def rerun(cls, action, deep_sleep, offset=None):
        """
        复盘演示
        :param action:
        :param deep_sleep:
        :param offset:
        :return:
        """
        from Calf.data import KlineData as kd
        profit_probe_period = dt.timedelta(minutes=1)
        profit_probe_next = CalfDateTime.now(offset=offset)
        _f = False  # 记录当天是否收盘
        klines = action.klines  # 需要跟踪的bar周期
        _id = cls.open_kline_update_log()  # 记录bar更新
        while 1:
            try:
                crt = CalfDateTime.now(offset=offset)
                if not trading.is_trade_day(
                        dt.datetime(crt.year, crt.month, crt.day)):
                    print('{0} today is not in business'.format(crt))
                    time.sleep(60 * 60 * 2)  # sleep two hours
                    continue
                if action.trade_day_end(crt) and _f:
                    print(fontcolor.F_GREEN + '-' * 80)
                    print('# %s Today Overview #' % action.name)
                    print('Signal:')
                    action.signals_summary()
                    print('Order:')
                    action.orders_summary()
                    print(fontcolor.F_GREEN + '-' * 80 + fontcolor.END)
                    sound_notice('close.wav').start()
                    _f = False
                # open_am <= crt <= close_am or open_pm <= crt < close_pm
                if action.trade_date(crt):
                    # 交易日盘中
                    s_d = crt - dt.timedelta(minutes=3)
                    e_d = crt + dt.timedelta(minutes=3)
                    log = kd.read_log(start_date=s_d, end_date=e_d, status=200)
                    if len(log):
                        log['_id'] = log['_id'].astype('str')
                        for i, r in log.iterrows():
                            if r.kline in klines and r['_id'] != _id[r.kline]:
                                print('this kline %s find update' % r.kline)
                                action.real(r.kline, start_time=crt)
                                print(r.kline + ' id update:' + _id[r.kline] +
                                      '-->' + r['_id'])
                                _id[r.kline] = r['_id']
                                cls.set_kline_update_log(_id)

                    if profit_probe_next <= crt:
                        print('profit probing date:{0}'.format(crt))
                        # action.probing()
                        profit_probe_next += profit_probe_period
                    _f = True
                    time.sleep(5)
                else:
                    print('{0} this datetime is not in business'.format(crt))
                    profit_probe_next = crt
                    _f = False
                    # sleep = 60 * 30
                    # if crt.hour == 9 or crt.hour == 12:
                    #     sleep = 60 * 5
                    sleep = 60 * 5 if crt.hour in deep_sleep else 60 * 30
                    time.sleep(sleep)

            except Exception as e:
                ExceptionInfo(e)