Exemplo n.º 1
0
def main():
    # Set up file names and locations.
    DATA_PATH = Path('./intermediate_datafiles/')
    DATASET_FNAME = sys.argv[1] if len(sys.argv) > 1 else 'chapter2_result.csv'
    RESULT_FNAME = sys.argv[2] if len(
        sys.argv) > 2 else 'chapter3_result_outliers.csv'

    # Next, import the data from the specified location and parse the date index.
    try:
        dataset = pd.read_csv(Path(DATA_PATH / DATASET_FNAME), index_col=0)
        dataset.index = pd.to_datetime(dataset.index)

    except IOError as e:
        print(
            'File not found, try to run the preceding crowdsignals scripts first!'
        )
        raise e

    # We'll create an instance of our visualization class to plot the results.
    DataViz = VisualizeDataset(__file__)

    # Compute the number of milliseconds covered by an instance using the first two rows.
    milliseconds_per_instance = (dataset.index[1] -
                                 dataset.index[0]).microseconds / 1000

    # Step 1: Let us see whether we have some outliers we would prefer to remove.

    # Determine the columns we want to experiment on.
    outlier_columns = [
        'acc_phone_X',
        'acc_phone_Y',
        'acc_phone_Z',
        'gyr_phone_X',
        'gyr_phone_Y',
        'gyr_phone_Z',
        'mag_phone_X',
        'mag_phone_Y',
        'mag_phone_Z',
    ]

    # Create the outlier classes.
    OutlierDistr = DistributionBasedOutlierDetection()
    OutlierDist = DistanceBasedOutlierDetection()

    # And investigate the approaches for all relevant attributes.
    for col in outlier_columns:

        print(f"Applying outlier criteria for column {col}")

        # And try out all different approaches. Note that we have done some optimization
        # of the parameter values for each of the approaches by visual inspection.
        dataset = OutlierDistr.chauvenet(dataset, col)
        DataViz.plot_binary_outliers(dataset, col, col + '_outlier')
        dataset = OutlierDistr.mixture_model(dataset, col)
        DataViz.plot_dataset(dataset, [col, col + '_mixture'],
                             ['exact', 'exact'], ['line', 'points'])
        # This requires:
        # n_data_points * n_data_points * point_size =
        # 31839 * 31839 * 32 bits = ~4GB available memory

        try:
            dataset = OutlierDist.simple_distance_based(
                dataset, [col], 'euclidean', 0.10, 0.99)
            DataViz.plot_binary_outliers(dataset, col, 'simple_dist_outlier')
        except MemoryError as e:
            print(
                'Not enough memory available for simple distance-based outlier detection...'
            )
            print('Skipping.')

        try:
            dataset = OutlierDist.local_outlier_factor(dataset, [col],
                                                       'euclidean', 5)
            DataViz.plot_dataset(dataset, [col, 'lof'], ['exact', 'exact'],
                                 ['line', 'points'])
            DataViz.plot_dataset_boxplot(dataset, ['lof'])
            # print(col, dataset['lof'].describe())
            qtls = list(dataset['lof'].quantile([0.01, 0.25, 0.5, 0.75, 0.99]))
            # print(col, qtls)
            #print(col, qtls[4])

            dataset['lof_outliers'] = False
            dataset.loc[(dataset['lof'] > qtls[4]), 'lof_outliers'] = True

            DataViz.plot_binary_outliers(dataset, col, 'lof_outliers')
        except MemoryError as e:
            print('Not enough memory available for lof...')
            print('Skipping.')

        # Remove all the stuff from the dataset again.
        cols_to_remove = [
            col + '_outlier', col + '_mixture', 'simple_dist_outlier', 'lof',
            'lof_outliers'
        ]
        for to_remove in cols_to_remove:
            if to_remove in dataset:
                del dataset[to_remove]

    # We take Chauvenet's criterion and apply it to all but the label data...
    for col in [c for c in dataset.columns if not 'label' in c]:
        print(f'Measurement is now: {col}')
        if col.startswith('mag'):
            dataset = OutlierDist.simple_distance_based(
                dataset, [col], 'euclidean', 0.10,
                0.99).rename(columns={'simple_dist_outlier': f'{col}_outlier'})
        else:
            dataset = OutlierDistr.chauvenet(dataset, col)

        dataset.loc[dataset[f'{col}_outlier'] == True, col] = np.nan
        DataViz.plot_binary_outliers(dataset, col, f'{col}_outlier')
        del dataset[col + '_outlier']

    dataset.to_csv(DATA_PATH / RESULT_FNAME)
Exemplo n.º 2
0
def main():
    # Set up file names and locations.
    DATA_PATH = Path('./intermediate_datafiles/')
    DATASET_FNAME = sys.argv[1] if len(
        sys.argv) > 1 else 'phoneSensorsA3_ch2.csv'
    RESULT_FNAME = sys.argv[2] if len(
        sys.argv) > 2 else 'phoneSensorsA3_outliers_ch3.csv'

    # Next, import the data from the specified location and parse the date index.
    try:
        dataset = pd.read_csv(Path(DATA_PATH / DATASET_FNAME), index_col=0)
        dataset.index = pd.to_datetime(dataset.index)

    except IOError as e:
        print(
            'File not found, try to run the preceding crowdsignals scripts first!'
        )
        raise e

    # We'll create an instance of our visualization class to plot the results.
    DataViz = VisualizeDataset()

    # Compute the number of milliseconds covered by an instance using the first two rows.
    milliseconds_per_instance = (dataset.index[1] -
                                 dataset.index[0]).microseconds / 1000

    # Step 1: Let us see whether we have some outliers we would prefer to remove.

    # Determine the columns we want to experiment on.
    outlier_columns = [
        'acc_mobile_x', 'acc_mobile_y', 'acc_mobile_z', 'gyr_mobile_x',
        'gyr_mobile_y', 'gyr_mobile_z', 'mag_mobile_x', 'mag_mobile_y',
        'mag_mobile_z', 'prox_mobile_distance', 'loc_mobile_latitude',
        'loc_mobile_longitude', 'loc_mobile_height', 'loc_mobile_velocity',
        'loc_mobile_direction', 'loc_mobile_horizontalAccuracy',
        'loc_mobile_verticalAccuracy'
    ]

    # Create the outlier classes.
    OutlierDistr = DistributionBasedOutlierDetection()
    OutlierDist = DistanceBasedOutlierDetection()

    # And investigate the approaches for all relevant attributes.
    for col in outlier_columns:

        dataset_outliers_sdb = OutlierDist.simple_distance_based(
            copy.deepcopy(dataset), [col], 'euclidean', 0.10, 0.99)
        DataViz.plot_binary_outliers(dataset_outliers_sdb, col,
                                     'simple_dist_outlier')

        print(f"Applying outlier criteria for column {col}")

        # And try out all different approaches. Note that we have done some optimization
        # of the parameter values for each of the approaches by visual inspection.

        #dataset = OutlierDistr.chauvenet(dataset, col)
        #DataViz.plot_binary_outliers(dataset, col, col + '_outlier')
        #dataset = OutlierDistr.mixture_model(dataset, col)
        #DataViz.plot_dataset(dataset, [col, col + '_mixture'], ['exact', 'exact'], ['line', 'points'])

        # This requires:
        # n_data_points * n_data_points * point_size =
        # 31839 * 31839 * 32 bits = ~4GB available memory

        # try:
        #     dataset = OutlierDist.simple_distance_based(dataset, [col], 'euclidean', 0.10, 0.99)
        #     DataViz.plot_binary_outliers(dataset, col, 'simple_dist_outlier')
        # except MemoryError as e:
        #     print('Not enough memory available for simple distance-based outlier detection...')
        #     print('Skipping.')

        # try:
        #     dataset = OutlierDist.local_outlier_factor(dataset, [col], 'euclidean', 2)
        #     DataViz.plot_dataset(dataset, [col, 'lof'], ['exact','exact'], ['line', 'points'])
        # except MemoryError as e:
        #     print('Not enough memory available for lof...')
        #     print('Skipping.')

        # Remove all the stuff from the dataset again.
        cols_to_remove = [
            col + '_outlier', col + '_mixture', 'simple_dist_outlier', 'lof'
        ]
        for to_remove in cols_to_remove:
            if to_remove in dataset:
                del dataset[to_remove]

    # We take Chauvenet's criterion and apply it to all but the label data...

    for col in [c for c in dataset.columns if not 'label' in c]:
        print(f'Measurement is now: {col}')
        dataset = OutlierDistr.chauvenet(dataset, col)
        dataset.loc[dataset[f'{col}_outlier'] == True, col] = np.nan
        del dataset[col + '_outlier']

    dataset.to_csv(DATA_PATH / RESULT_FNAME)
Exemplo n.º 3
0
    raise e

dataset_own.index = dataset_own.index.to_datetime()
dataset_cs.index = dataset_cs.index.to_datetime()

# Compute the number of milliseconds covered by an instance based on the first two rows
milliseconds_per_instance = (dataset_own.index[1] -
                             dataset_own.index[0]).microseconds / 1000

# Step 1: Let us see whether we have some outliers we would prefer to remove.

# Determine the columns we want to experiment on.
outlier_columns = ['acc_phone_x', 'acc_phone_y']

# Create the outlier classes.
OutlierDistr = DistributionBasedOutlierDetection()
OutlierDist = DistanceBasedOutlierDetection()

# Parameters that can be played around with for different outlier detection methods
# Chauvenet
constant = 2  # given was 2
# Mixture models
NumDist = 3  # given was 3
# Simple Distance
dmin = 0.10  # given was 0.10
fmin = 0.99  # given was 0.99
# Local outlier factor
k = 5  # given was 5

##### Outlier filtering for the CS dataset #####