Exemplo n.º 1
0
def convert_to_coverage_model():
    """Load non-coverage checkpoint, add initialized extra variables for coverage, and save as new checkpoint"""
    tf.logging.info("converting non-coverage model to coverage model..")

    # initialize an entire coverage model from scratch
    sess = tf.Session(config=util.get_config())
    print("initializing everything...")
    sess.run(tf.global_variables_initializer())

    # load all non-coverage weights from checkpoint
    saver = tf.train.Saver([
        v for v in tf.global_variables()
        if "coverage" not in v.name and "Adagrad" not in v.name
    ])
    print("restoring non-coverage variables...")
    curr_ckpt = util.load_ckpt(saver, sess)
    print("restored.")

    # save this model and quit
    new_fname = curr_ckpt + '_cov_init'
    print("saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver(
    )  # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print("saved.")
    exit()
Exemplo n.º 2
0
def restore_best_model():
    """Load bestmodel file from eval directory, add variables for adagrad, and save to train directory"""
    tf.logging.info("Restoring bestmodel for training...")

    # Initialize all vars in the model
    sess = tf.Session(config=util.get_config())
    print("Initializing all variables...")
    sess.run(tf.global_variables_initializer())

    # Restore the best model from eval dir
    saver = tf.train.Saver(
        [v for v in tf.all_variables() if "Adagrad" not in v.name])
    print("Restoring all non-adagrad variables from best model in eval dir...")
    curr_ckpt = util.load_ckpt(saver, sess, "eval")
    print("Restored %s." % curr_ckpt)

    # Save this model to train dir and quit
    new_model_name = curr_ckpt.split("/")[-1].replace("bestmodel", "model")
    new_fname = os.path.join(cf.log_root, "train", new_model_name)
    print("Saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver(
    )  # this saver saves all variables that now exist, including Adagrad variables
    new_saver.save(sess, new_fname)
    print("Saved.")
    exit()
Exemplo n.º 3
0
def run_eval(model, batcher, vocab):
    """Repeatedly runs eval iterations, logging to screen and writing summaries. Saves the model with the best loss seen so far."""
    model.build_graph()
    saver = tf.train.Saver(max_to_keep=3)
    sess = tf.Session(config=util.get_config())
    # make a subdir of the root dir for eval data
    eval_dir = os.path.join(cf.log_root, "eval")
    # this is where checkpoints of best models are saved
    bestmodel_save_path = os.path.join(eval_dir, 'bestmodel')
    summary_writer = tf.summary.FileWriter(eval_dir)
    running_avg_loss = 0  # the eval job keeps a smoother, running average loss to tell it when to implement early stopping
    best_loss = None  # will hold the best loss achieved so far

    while True:
        _ = util.load_ckpt(saver, sess)  # load a new checkpoint
        batch = batcher.next_batch()  # get the next batch

        # run eval on the batch
        t0 = time.time()
        results = model.run_eval_step(sess, batch)
        t1 = time.time()
        tf.logging.info('seconds for batch: %.2f', t1 - t0)

        # print the loss and coverage loss to screen
        loss = results['loss']
        tf.logging.info('loss: %f', loss)
        if cf.coverage:
            coverage_loss = results['coverage_loss']
            tf.logging.info("coverage_loss: %f", coverage_loss)

        # add summaries
        summaries = results['summaries']
        train_step = results['global_step']
        summary_writer.add_summary(summaries, train_step)

        # calculate running avg loss
        running_avg_loss = calc_running_avg_loss(np.asscalar(loss),
                                                 running_avg_loss,
                                                 summary_writer, train_step)

        # If running_avg_loss is best so far, save this checkpoint (early stopping).
        # These checkpoints will appear as bestmodel-<iteration_number> in the eval dir
        if best_loss is None or running_avg_loss < best_loss:
            tf.logging.info(
                'Found new best model with %.3f running_avg_loss. Saving to %s',
                running_avg_loss, bestmodel_save_path)
            saver.save(sess,
                       bestmodel_save_path,
                       global_step=train_step,
                       latest_filename='checkpoint_best')
            best_loss = running_avg_loss

        # flush the summary writer every so often
        if train_step % 100 == 0:
            summary_writer.flush()
Exemplo n.º 4
0
    def __init__(self, model, batcher, vocab):
        """Initialize decoder.

        Args:
            model: a Seq2SeqAttentionModel object.
            batcher: a Batcher object.
            vocab: Vocabulary object
        """
        self._model = model
        self._model.build_graph()
        self._batcher = batcher
        self._vocab = vocab
        self._saver = tf.train.Saver()
        self._sess = tf.Session(config=util.get_config())

        # Load an initial checkpoint to use for decoding
        ckpt_path = util.load_ckpt(self._saver, self._sess)

        if cf.single_pass:
            # Make a descriptive decode directory name
            # this is something of the form "ckpt-123456"
            ckpt_name = "ckpt-" + ckpt_path.split('-')[-1]
            self._decode_dir = os.path.join(cf.log_root,
                                            get_decode_dir_name(ckpt_name))
            if os.path.exists(self._decode_dir):
                raise Exception(
                    "single_pass decode directory %s should not already exist"
                    % self._decode_dir)

        else:  # Generic decode dir name
            self._decode_dir = os.path.join(cf.log_root, "decode")

        # Make the decode dir if necessary
        if not os.path.exists(self._decode_dir): os.mkdir(self._decode_dir)

        if cf.single_pass:
            # Make the dirs to contain output written in the correct format for pyrouge
            self._rouge_ref_dir = os.path.join(self._decode_dir, "reference")
            if not os.path.exists(self._rouge_ref_dir):
                os.mkdir(self._rouge_ref_dir)
            self._rouge_dec_dir = os.path.join(self._decode_dir, "decoded")
            if not os.path.exists(self._rouge_dec_dir):
                os.mkdir(self._rouge_dec_dir)
Exemplo n.º 5
0
    def decode(self):
        """
        Decode examples until data is exhausted (if cf.single_pass) and return,
        or decode indefinitely, loading latest checkpoint at regular intervals
        """
        t0 = time.time()
        start_time = t0
        counter = 0
        while True:
            # 1 example repeated across batch
            batch = self._batcher.next_batch()
            if batch is None:  # finished decoding dataset in single_pass mode
                assert cf.single_pass, "Dataset exhausted, but we are not in single_pass mode"
                tf.logging.info(
                    "Decoder has finished reading dataset for single_pass, using %d seconds.",
                    time.time() - start_time)
                tf.logging.info(
                    "Output has been saved in %s and %s. Now starting ROUGE eval...",
                    self._rouge_ref_dir, self._rouge_dec_dir)
                #todo: need to update for rouge
                # results_dict = rouge_eval(self._rouge_ref_dir,
                #                           self._rouge_dec_dir)
                # rouge_log(results_dict, self._decode_dir)
                return

            original_context = batch.original_contexts[0]  # string
            original_query = batch.original_querys[0]
            original_summarization = batch.original_summarizations[0]  # string
            #original_abstract_sents = batch.original_abstracts_sents[
            #    0]  # list of strings

            context_withunks = data.show_art_oovs(original_context, self._vocab)
            abstract_withunks = data.show_abs_oovs(
               original_summarization, self._vocab,
               (batch.art_oovs[0] if cf.pointer_gen else None))  # string

            # Run beam search to get best Hypothesis
            best_hyp = beam_search.run_beam_search(self._sess, self._model,
                                                   self._vocab, batch)

          #  export_path = os.path.join(cf.export_dir,str(cf.export_version))
            # Extract the output ids from the hypothesis and convert back to words
            output_ids = [int(t) for t in best_hyp.tokens[1:]]
            decoded_words = data.outputids2words(
                output_ids, self._vocab, (batch.art_oovs[0]
                                          if cf.pointer_gen else None))

            # Remove the [STOP] token from decoded_words, if necessary
            try:
                # index of the (first) [STOP] symbol
                fst_stop_idx = decoded_words.index(data.MARK_EOS)
                decoded_words = decoded_words[:fst_stop_idx]
            except ValueError:
                decoded_words = decoded_words
            decoded_output = ''.join(decoded_words)  # single string

            if cf.single_pass:
                #todo: need to check
                # write ref summary and decoded summary to file, to eval with pyrouge later
                self.write_result(original_context, original_summarization,
                                  decoded_words, counter)
                # self.write_for_eval(original_summarization, output_ids,
                #                     counter)
                counter += 1  # this is how many examples we've decoded
            else:
                # log output to screen
                print_results(context_withunks, abstract_withunks,
                              decoded_output)
                # write info to .json file for visualization tool
                self.write_for_attnvis(context_withunks, abstract_withunks,
                                       decoded_words, best_hyp.attn_dists)

                # Check if SECS_UNTIL_NEW_CKPT has elapsed;
                # if so return so we can load a new checkpoint
                t1 = time.time()
                if t1 - t0 > SECS_UNTIL_NEW_CKPT:
                    tf.logging.info(
                        'We\'ve been decoding with same checkpoint for %i seconds. Time to load new checkpoint',
                        t1 - t0)
                    _ = util.load_ckpt(self._saver, self._sess)
                    t0 = time.time()