Exemplo n.º 1
0
def func(x, ivc):
    """
    This function calculate scores for parameters of swarms and need curve
    :param x: population of swarms
    :return: array of score
    """
    # global c
    # c += 1
    global time_func_0, time_func_1
    # time_func_0 = time.clock()
    result = []
    for i in range(len(x)):
        # ivc_1 = get_ivc("3_win")
        time_func_0 = time.clock()
        create_cir('test', x[i])
        logger = Logging.setup_logging()
        circuit = spice.LoadFile('test.cir')
        input_data = spice.Init_Data(1000, 0.3)
        analysis = spice.CreateCVC(circuit, input_data, 100)
        # spice.SaveFile(analysis, "test.csv")
        # plot(i+c)
        ivc_2 = [analysis.input_dummy, analysis.VCurrent]
        result.append(compare_ivc(ivc, ivc_2))
        time_func_1 = time.clock()

    return result
Exemplo n.º 2
0
def f(x):
    global ivc
    _x = copy.copy(x)
    # for i in range(len(x)):
    #     _x[i] = x[i] * (1e-6 - 1e-12) + 1e-12 if i < 5 else x[i] * 10e6
    create_cir('test', _x)
    circuit = spice.LoadFile('test.cir')
    input_data = spice.Init_Data(1000, 0.3, SNR=10**6)
    analysis = spice.CreateCVC(circuit, input_data, 100)
    # spice.SaveFile(analysis, "test.csv")
    ivc_2 = [analysis.input_dummy, analysis.VCurrent]
    return compare_ivc(ivc, ivc_2)
Exemplo n.º 3
0
def func(x, ivc):
    """
    This function calculate scores for parameters of swarms and need curve
    :param x: population of swarms
    :return: array of score
    """
    global time_func_0, time_func_1
    # time_func_0 = time.clock()
    result = []
    for i in range(len(x)):
        time_func_0 = time.clock()
        create_cir('test', x[i])
        circuit = spice.LoadFile('test.cir')
        input_data = spice.Init_Data(1000, 0.3, SNR=10**6)
        analysis = spice.CreateCVC(circuit, input_data, 100)
        ivc_2 = [analysis.input_dummy, analysis.VCurrent]
        result.append(compare_ivc(ivc, ivc_2))
        time_func_1 = time.clock()

    return result
Exemplo n.º 4
0
def func_x(x):
    """
    This function calculate scores for parameters of swarms and need curve
    :param x: population of swarms
    :return: array of score
    """
    global _x, _y, ivc_1
    _x = x
    # _y = y
    result = []
    for i in range(30):
        z = []
        z.extend(x[i])
        z.extend(_y[i])
        create_cir('test', z)
        # logger = Logging.setup_logging()
        circuit = spice.LoadFile('test.cir')
        input_data = spice.Init_Data(1000, 0.3)
        analysis = spice.CreateCVC(circuit, input_data, 100)
        ivc_2 = [analysis.input_dummy, analysis.VCurrent]
        result.append(compare_ivc(ivc_1, ivc_2))
    return result
def func_x(x, y=None,  ivc=None):
    """
    This function calculate scores for parameters of swarms and need curve
    :param x: population of swarms
    :return: array of score
    """
    global time_func_0, time_func_1, _x, _y
    _x = x
    # time_func_0 = time.clock()
    result = []
    for i in range(len(x)):
        time_func_0 = time.clock()

        create_cir('test', x[i][:]*y[i][:])
        logger = Logging.setup_logging()
        circuit = spice.LoadFile('test.cir')
        input_data = spice.Init_Data(1000, 0.3)
        analysis = spice.CreateCVC(circuit, input_data, 100)
        ivc_2 = [analysis.input_dummy, analysis.VCurrent]
        result.append(compare_ivc(ivc, ivc_2))
        time_func_1 = time.clock()

    return result
Exemplo n.º 6
0
options = {'c1': 0.8, 'c2': 0.6, 'w': 0.6}

logger = Logging.setup_logging()

for i in range(215):
    array_of_resistor = np.random.randint(0, 10**6, 8)
    array_of_capacitor = np.random.randint(0, 6, 5) + 6
    init_pos[i][:5] = 1/(10 ** array_of_capacitor[:])
    init_pos[i][5:] = array_of_resistor[:] * cases[i][5:]
    for j in range(5):
        init_pos[i][j] = init_pos[i][j] if cases[i][j] == 1 else 10 ** -12
best_cost = 1
for i in range(5):
    clamp = gen_velocity_clamps(12-i, 0)
    print(clamp)
    optimizer = ps.single.GlobalBestPSO(n_particles=215, dimensions=13, bounds=bounds,
                                        options=options, velocity_clamp=clamp,
                                        init_pos=init_pos)
    cost, pos = optimizer.optimize(func, iters=12, ivc=ivc_1)
    if cost < best_cost:
        best_cost = cost
        best_pos = pos
print("\n", best_cost, best_pos)
create_cir('test', pos)
logger = Logging.setup_logging()
circuit = spice.LoadFile('test.cir')
input_data = spice.Init_Data(1000, 0.3, SNR=10**6)
analysis = spice.CreateCVC(circuit, input_data, 100)
spice.SaveFile(analysis, "test.csv")
plot('result', '3_win')
_y = gen_init_pos(30,array_of_resistor, array_of_capacitor)
_x[:] = 1
_x[5] = 0
while True:
    if iter == 0:
        optimizer_disc = ps.discrete.binary.BinaryPSO(n_particles=30, dimensions=13, options=options)
    else:
        optimizer_disc = ps.discrete.binary.BinaryPSO(n_particles=30, dimensions=13, options=options, init_pos=_x)
    cost, pos_d = optimizer_disc.optimize(func_x, iters=1, ivc=ivc_1, y=_y)
    optimizer_cont = ps.single.GlobalBestPSO(n_particles=30, dimensions=13, options=options, bounds=bounds, init_pos=_y,
                                             #velocity_clamp=clamp
                                             )
    cost, pos_c = optimizer_cont.optimize(func_y, iters=1, ivc=ivc_1, x=_x)
    iter += 1
    print(cost, pos_d, pos_c)
    create_cir('test', pos_d * pos_c)
    logger = Logging.setup_logging()
    circuit = spice.LoadFile('test.cir')
    input_data = spice.Init_Data(1000, 0.3)
    analysis = spice.CreateCVC(circuit, input_data, 100)
    spice.SaveFile(analysis, "test.csv")
    plot('result'+str(iter), '3_win')
    none_error += 1 if (cost-prev_cost) ** 2 < 10 ** -12 else 0
    if none_error > 5 or iter > 1000:

        break
# time_opt_1 = time.clock()
#
# print(time_func_1 - time_func_0)
# print("all optimization")
# print((time_opt_1 - time_opt_0)/60)
Exemplo n.º 8
0
    _y[i] = np.random.randint(0, 10**5, 8)
    _x[i] = np.random.uniform(10**-12, 10**-6, 5)
while True:
    optimizer_x = ps.single.GlobalBestPSO(n_particles=30, dimensions=5, options=options,
                                          init_pos=_x, bounds=bounds_x)
    cost, pos_x = optimizer_x.optimize(func_x, iters=1)
    optimizer_y = pyswarms.discrete.binary.BinaryPSO(n_particles=30, dimensions=8, options=options,
                                          init_pos=_y)
                                                     # bounds=bounds_y)
    cost, pos_y = optimizer_y.optimize(func_y, iters=1)
    iter += 1
    print(cost, pos_x, pos_y)
    z = []
    z.extend(pos_x)
    z.extend(pos_y)
    create_cir('test', z)
    logger = Logging.setup_logging()
    circuit = spice.LoadFile('test.cir')
    input_data = spice.Init_Data(1000, 0.3)
    analysis = spice.CreateCVC(circuit, input_data, 100)
    spice.SaveFile(analysis, "test.csv")
    plot('result'+str(iter), '3_win')
    none_error += 1 if (cost-prev_cost) ** 2 < 10 ** -12 else 0
    if none_error > 5 or iter > 1000:
        break
# time_opt_1 = time.clock()
#
# print(time_func_1 - time_func_0)
# print("all optimization")
# print((time_opt_1 - time_opt_0)/60)
# y = []
Exemplo n.º 9
0
clamp = gen_velocity_clamps(cases)
logger = Logging.setup_logging()
for step in range(2):
    init_pos = gen_init_pos(cases, array_of_resistor, array_of_capacitor, step)

    optimizer = ps.single.GlobalBestPSO(n_particles=2 * len(cases),
                                        dimensions=13,
                                        bounds=bounds,
                                        options=options,
                                        velocity_clamp=clamp,
                                        init_pos=init_pos)
    cost, pos = optimizer.optimize(func, iters=28, ivc=ivc_1)
    costs.append(cost)
    poses.append(pos)
    # clamps.append(clamp)

minpos = poses[np.argmin(costs)]
# minclamp = clamps[np.argmin(costs)]
time_opt_1 = time.clock()
print(pos, cost)
print(time_func_1 - time_func_0)
print("all optimization")
print((time_opt_1 - time_opt_0) / 60)
create_cir('test', minpos)
logger = Logging.setup_logging()
circuit = spice.LoadFile('test.cir')
input_data = spice.Init_Data(1000, 0.3, SNR=10**6)
analysis = spice.CreateCVC(circuit, input_data, 100)
spice.SaveFile(analysis, "test.csv")
plot('result', '3_win')