Exemplo n.º 1
0
	def __init__(self, root, forbidden):
		self.root = Node(root, None)
		self.forbidden = forbidden
		self.currentNode = self.root
		
		self.root.setChildren(self.forbidden)
		self.appendList.append(self.currentNode)


		for i in self.currentNode.children:
			i.setChildren(self.forbidden)

		self.fringe+= self.currentNode.children
Exemplo n.º 2
0
def input_bfs(batteries, houses, command):
    """
    Only neighbourhood 4 should be tried, because the state space of the other
    neighbourhoods is too big.
    """

    node = Node()
    best = Node()
    dist, distdict, lowbprice = distancearr(batteries, houses)
    best.price = 100000
    best = bfs(node, batteries, houses, distdict, best)
    nodetoclasses(batteries, houses, best)
    price = price_calc(batteries, distdict)
    print(f"Best price found: {price}")
    visualize(batteries, houses, argv[1], command)
Exemplo n.º 3
0
def input_greedy(batteries, houses, command):
    """
    This algorithm chooses randomly a house and connects it to a battery based
    on best (shortest) distance. It asks for number of repeats to run the
    algorithm. It saves all solutions to one .csv file and it writes the
    best price of all repeats to another .csv file. The best price is
    also visualized.
    """

    dist, distdict, lowbprice = distancearr(batteries, houses)
    print("run how many times?")
    repeats = int(input("> "))
    best = Node()
    best.price = 100000
    for i in range(0, repeats):
        greedy(dist, batteries, houses)
        price = price_calc(batteries, distdict)
        if price < best.price:
            best.batts = [[], [], [], [], []]
            best.fillnode(batteries, houses, price)
        write_to_csv(argv[1], command, price)
        reset(batteries, houses)
    savefig = bestplot(argv[1], command, best.price)
    print(f"Best price found: {best.price}")
    if savefig is True:
        nodetoclasses(batteries, houses, best)
        visualize(batteries, houses, argv[1], command, best.price)
Exemplo n.º 4
0
def input_hillclimber(batteries, houses, command):
    """
    Iterates over all houses and checks if an improvement can be made by
    switching the connections of 2 houses. It asks for number of repeats to run
    the algorithm. It saves all solutions to one .csv file and it writes the
    best price of all repeats to another .csv file. The best price is
    also visualized.
    """

    dist, distdict, lowbprice = distancearr(batteries, houses)
    print("base: greedy or random")
    base = (input("> ")).lower()
    if base != "greedy" and base != "random":
        return False
    command = base + "_" + command
    print("run how many times?")
    repeats = int(input("> "))
    best = Node()
    best.price = 100000
    for i in range(0, repeats):
        if base == "greedy":
            greedy(dist, batteries, houses)
        elif base == "random":
            random_alg(distdict, batteries, houses)
        hillclimber(dist, distdict, batteries, houses)
        price = price_calc(batteries, distdict)
        if price < best.price:
            best.batts = [[], [], [], [], []]
            best.fillnode(batteries, houses, price)
        write_to_csv(argv[1], command, price)
        reset(batteries, houses)
    savefig = bestplot(argv[1], command, best.price)
    print(f"Best price found: {best.price}")
    nodetoclasses(batteries, houses, best)
    if savefig is True:
        visualize(batteries, houses, argv[1], command, best.price)
        battery_optimization(batteries)
        dist, distdict, lowbprice = distancearr(batteries, houses)
        price = price_calc(batteries, distdict)
        print(f"Best price found with optimize: {price}")
        visualize(batteries, houses, argv[1], command, price)
Exemplo n.º 5
0
def input_randclimber(batteries, houses, command):
    """
    A version of hillclimber which switches 2 random houses until no
    improvements are made for the set number of times. It asks for number of
    repeats to run the algorithm. It saves all solutions to one .csv file and
    it writes the best price of all repeats to another .csv file. The best
    price is also visualized.
    """

    dist, distdict, lowbprice = distancearr(batteries, houses)
    print("base: greedy or random")
    base = (input("> ")).lower()
    if base != "greedy" and base != "random":
        return False
    print("repeat until no change for how many times?")
    repetitions = int(input("> "))
    command = base + "_" + command + str(repetitions)
    print("run how many times?")
    repeats = int(input("> "))
    best = Node()
    best.price = 100000
    for i in range(0, repeats):
        if base == "greedy":
            greedy(dist, batteries, houses)
        elif base == "random":
            random_alg(distdict, batteries, houses)
        randclimber(repetitions, distdict, batteries, houses)
        price = price_calc(batteries, distdict)
        if price < best.price:
            best.batts = [[], [], [], [], []]
            best.fillnode(batteries, houses, price)
        write_to_csv(argv[1], command, price)
        reset(batteries, houses)
    savefig = bestplot(argv[1], command, best.price)
    print(best.price)
    if savefig is True:
        nodetoclasses(batteries, houses, best)
        visualize(batteries, houses, argv[1], command, best.price)
Exemplo n.º 6
0
class Tree:

	root = None
	currentNode = None
	fringe = []
	appendList = []
	forbidden = []


	def __init__(self, root, forbidden):
		self.root = Node(root, None)
		self.forbidden = forbidden
		self.currentNode = self.root
		
		self.root.setChildren(self.forbidden)
		self.appendList.append(self.currentNode)


		for i in self.currentNode.children:
			i.setChildren(self.forbidden)

		self.fringe+= self.currentNode.children
		



	def generateChildren(self):


		if len(self.currentNode.children) == 0:

			self.currentNode.setChildren(self.forbidden)

		self.fringe+= self.currentNode.children

		for i in self.currentNode.children:
			i.setChildren(self.forbidden)

	def move(self, node):
		

		self.currentNode = node
		self.fringe.remove(self.currentNode)
		self.appendList.append(self.currentNode)

		self.generateChildren()
			
				

	def checkExpand(self, node):

		

		if node.number in self.getNumber(self.appendList):
			if self.checkSimilar(node, self.appendList):
				return True


		return False


	def moveToParent(self):
		self.currentNode = self.currentNode.parent



	def checkSimilar(self, node, nodeList):
 
		for i in nodeList:
			if node.number == i.number and self.checkParent(node, i):
				return False
 
		
 
		
		return True



	def checkParent(self, node, node2):


		if node.parent is None and node2.parent is None:
			return True

		if node.parent is None or node2.parent is None:
			return False

		num1 = [abs(int(node.number[0]) - int(node.parent.number[0])), abs(int(node.number[1]) - int(node.parent.number[1])),abs(int(node.number[2]) - int(node.parent.number[2]))]
		
		num2 = [abs(int(node2.number[0]) - int(node2.parent.number[0])), abs(int(node2.number[1]) - int(node2.parent.number[1])),abs(int(node2.number[2]) - int(node2.parent.number[2]))]

		

		if num1 == num2:
			return True

		else:
			return False






	def getNumber(self, numList):

		result = []

		for i in numList:
			result.append(i.number)

		return result