Exemplo n.º 1
0
 def patch_prediction(self, patch_point):
     # normalize the point clouds
     patch_point, centroid, furthest_distance = pc_util.normalize_point_cloud(patch_point)
     patch_point = np.expand_dims(patch_point, axis=0)
     pred = self.sess.run([self.pred_pc], feed_dict={self.inputs: patch_point})
     pred = np.squeeze(centroid + pred * furthest_distance, axis=0)
     return pred
Exemplo n.º 2
0
    def test(self):

        self.inputs = tf.placeholder(tf.float32,
                                     shape=[1, self.opts.patch_num_point, 3])
        is_training = tf.placeholder_with_default(False,
                                                  shape=[],
                                                  name='is_training')
        Gen = Generator(self.opts, is_training, name='generator')
        self.pred_pc = Gen(self.inputs)
        for i in range(round(math.pow(self.opts.up_ratio, 1 / 4)) - 1):
            self.pred_pc = Gen(self.pred_pc)

        saver = tf.train.Saver()
        print("****** phrase test ******")

        ##restore_epoch, checkpoint_path = model_utils.pre_load_checkpoint(self.opts.log_dir)
        ##to use pretrained model comment the line above
        checkpoint_path = "/home/alitokur/Softwares/PU-GAN/model/model-100"
        print(checkpoint_path)
        saver.restore(self.sess, checkpoint_path)

        samples = glob(self.opts.test_data)
        point = pc_util.load(samples[0])
        self.opts.num_point = point.shape[0]
        out_point_num = int(self.opts.num_point * self.opts.up_ratio)

        for point_path in samples:
            logging.info(point_path)
            start = time()
            pc = pc_util.load(point_path)[:, :3]
            pc, centroid, furthest_distance = pc_util.normalize_point_cloud(pc)

            if self.opts.jitter:
                pc = pc_util.jitter_perturbation_point_cloud(
                    pc[np.newaxis, ...],
                    sigma=self.opts.jitter_sigma,
                    clip=self.opts.jitter_max)
                pc = pc[0, ...]

            input_list, pred_list = self.pc_prediction(pc)

            end = time()
            print("total time: ", end - start)
            pred_pc = np.concatenate(pred_list, axis=0)
            pred_pc = (pred_pc * furthest_distance) + centroid

            pred_pc = np.reshape(pred_pc, [-1, 3])
            path = os.path.join(self.opts.out_folder,
                                point_path.split('/')[-1][:-4] + '.ply')
            idx = farthest_point_sample(out_point_num, pred_pc[np.newaxis,
                                                               ...]).eval()[0]
            pred_pc = pred_pc[idx, 0:3]
            np.savetxt(path[:-4] + '.xyz', pred_pc, fmt='%.6f')
Exemplo n.º 3
0
    def test(self):
        self.opts.batch_size = 1
        final_ratio = self.opts.final_ratio
        step_ratio = 4
        self.opts.up_ratio = step_ratio
        self.build_model_test(final_ratio=self.opts.final_ratio,
                              step_ratio=step_ratio)

        saver = tf.train.Saver()
        restore_epoch, checkpoint_path = model_utils.pre_load_checkpoint(
            self.opts.log_dir)
        print(checkpoint_path)
        self.saver.restore(self.sess, checkpoint_path)
        #self.restore_model(self.opts.log_dir, epoch=self.opts.restore_epoch, verbose=True)

        samples = glob(self.opts.test_data)
        point = pc_util.load(samples[0])
        self.opts.num_point = point.shape[0]
        out_point_num = int(self.opts.num_point * final_ratio)

        for point_path in samples:
            logging.info(point_path)
            start = time()
            pc = pc_util.load(point_path)[:, :3]
            pc, centroid, furthest_distance = pc_util.normalize_point_cloud(pc)

            input_list, pred_list, coarse_list = self.pc_prediction(pc)

            end = time()
            print("total time: ", end - start)
            pred_pc = np.concatenate(pred_list, axis=0)
            pred_pc = (pred_pc * furthest_distance) + centroid

            pred_pc = np.reshape(pred_pc, [-1, 3])
            idx = farthest_point_sample(
                out_point_num, pred_pc[np.newaxis,
                                       ...]).eval(session=self.sess)[0]
            pred_pc = pred_pc[idx, 0:3]
            # path = os.path.join(self.opts.out_folder, point_path.split('/')[-1][:-4] + '.ply')
            # np.savetxt(path[:-4] + '.xyz',pred_pc,fmt='%.6f')
            in_folder = os.path.dirname(self.opts.test_data)
            path = os.path.join(
                self.opts.out_folder,
                point_path.split('/')[-1][:-4] + '_X%d.xyz' % final_ratio)
            np.savetxt(path, pred_pc, fmt='%.6f')