Exemplo n.º 1
0
    def __init__(self):
        self.dataSetFile = ''
        self.successLogger = Logger(
            os.path.join(FACE_DETECTION_ROOT, 'faceDetection.success'))
        self.errorLogger = Logger(
            os.path.join(FACE_DETECTION_ROOT, 'faceDetection.error'))
        self.boundingboxFile = Logger(
            os.path.join(FACE_DETECTION_ROOT, 'boundingbox.list'))

        self.cc = cv2.CascadeClassifier(
            os.path.join(FACE_DETECTION_ROOT,
                         'haarcascade_frontalface_alt.xml'))
Exemplo n.º 2
0
def detectLandmarks(boundingboxList):
    """
        detect landmarks in `src` and store the result in `dst`
    """

    #bboxes = []
    #landmarks = []
    fl = Landmarker()
    logger = Logger(os.path.join(FACE_ALIGNMENT_ROOT, 'landmark.list'))

    # create bbox list
    fid = open(boundingboxList, 'r');
    fLines = fid.read().splitlines()
    fid.close()

    for line in fLines:
        word = line.split()
        filename = word[0]
        img = cv2.imread(filename)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        bbox = BBox([int(word[1]), int(word[2]), int(word[3]), int(word[4])])\
                .subBBox(0.1, 0.9, 0.2, 1)

        landmark, status = fl.detectLandmark(gray, bbox)

        '''
        get real landmark position
        '''
        landmark = bbox.reprojectLandmark(landmark)

        logger.writeMsg("%s" % filename)
        for x, y in landmark:
            logger.writeMsg(" %s %s" % (str(x), str(y)))
        logger.writeMsg('\n')

        '''
        free memory: force the Garbage Collector to release 
        '''
        gc.collect()
Exemplo n.º 3
0
        "transition":
        namedtuple('transition',
                   ('state', 'action', 'reward', 'next_state', 'done'))
    })

    print(f"Environment: {params['env_name']}\n"
          f"Number of actions: {params['n_actions']}")

    if params["do_intro_env"]:
        intro_env()

    env = make_atari(params["env_name"], params["seed"])

    agent = Agent(**params)
    experiment = Experiment()
    logger = Logger(agent, experiment=experiment, **params)

    if not params["train_from_scratch"]:
        chekpoint = logger.load_weights()
        agent.online_model.load_state_dict(
            chekpoint["online_model_state_dict"])
        agent.hard_update_target_network()
        params.update({"beta": chekpoint["beta"]})
        min_episode = chekpoint["episode"]

        print("Keep training from previous run.")
    else:
        min_episode = 0
        print("Train from scratch.")

    if params["do_train"]: