Exemplo n.º 1
0
def train(opt):
    print("Training model with the following parameters:")
    print("\t number of stages: {}".format(opt.train_stages))
    print("\t number of concurrently trained stages: {}".format(opt.train_depth))
    print("\t learning rate scaling: {}".format(opt.lr_scale))
    print("\t non-linearity: {}".format(opt.activation))

    real, real2 = functions.read_two_domains(opt)
    # real = functions.read_image(opt)
    # print(0, real.shape)
    real = functions.adjust_scales2image(real, opt)
    reals = functions.create_reals_pyramid(real, opt)

    real2 = functions.adjust_scales2image(real2, opt)
    reals2 = functions.create_reals_pyramid(real2, opt)

    generator, generator2 = init_G(opt)
    fixed_noise = []
    noise_amp = []
    fixed_noise2 = []
    noise_amp2 = []
    for scale_num in range(opt.stop_scale+1):
        opt.out_ = functions.generate_dir2save(opt)
        opt.outf = '%s/%d' % (opt.out_,scale_num)
        try:
            os.makedirs(opt.outf)
        except OSError:
                print(OSError)
                pass
        functions.save_image('{}/real_scale.jpg'.format(opt.outf), reals[scale_num])

        d_curr, d_curr2 = init_D(opt)
        if scale_num > 0:
            d_curr.load_state_dict(torch.load('%s/%d/netD.pth' % (opt.out_,scale_num-1)))
            generator.init_next_stage()
            d_curr2.load_state_dict(torch.load('%s/%d/netD2.pth' % (opt.out_,scale_num-1)))
            generator2.init_next_stage()

        writer = SummaryWriter(log_dir=opt.outf)
        fixed_noise, noise_amp, generator, d_curr, fixed_noise2, noise_amp2, generator2, d_curr2 = \
            train_single_scale(d_curr, generator, reals, fixed_noise, noise_amp, d_curr2, generator2, reals2,
                               fixed_noise2, noise_amp2, opt, scale_num, writer)

        torch.save(fixed_noise, '%s/fixed_noise.pth' % (opt.out_))
        torch.save(generator, '%s/G.pth' % (opt.out_))
        torch.save(reals, '%s/reals.pth' % (opt.out_))
        torch.save(noise_amp, '%s/noise_amp.pth' % (opt.out_))
        torch.save(fixed_noise2, '%s/fixed_noise2.pth' % (opt.out_))
        torch.save(generator2, '%s/G2.pth' % (opt.out_))
        torch.save(reals2, '%s/reals2.pth' % (opt.out_))
        torch.save(noise_amp2, '%s/noise_amp2.pth' % (opt.out_))
        del d_curr, d_curr2
    writer.close()
    return
def train(opt):
    print("Training model with the following parameters:")
    print("\t number of stages: {}".format(opt.train_stages))
    print("\t number of concurrently trained stages: {}".format(
        opt.train_depth))
    print("\t learning rate scaling: {}".format(opt.lr_scale))
    print("\t non-linearity: {}".format(opt.activation))

    real = functions.read_image(opt)
    real = functions.adjust_scales2image(real, opt)
    reals = functions.create_reals_pyramid(real, opt)
    print("Training on image pyramid: {}".format([r.shape for r in reals]))
    print("")

    if opt.naive_img != "":
        naive_img = functions.read_image_dir(opt.naive_img, opt)
        naive_img_large = imresize_to_shape(naive_img, reals[-1].shape[2:],
                                            opt)
        naive_img = imresize_to_shape(naive_img, reals[0].shape[2:], opt)
        naive_img = functions.convert_image_np(naive_img) * 255.0
    else:
        naive_img = None
        naive_img_large = None

    if opt.fine_tune:
        img_to_augment = naive_img
    else:
        img_to_augment = functions.convert_image_np(reals[0]) * 255.0

    if opt.train_mode == "editing":
        opt.noise_scaling = 0.1

    generator = init_G(opt)
    if opt.fine_tune:
        for _ in range(opt.train_stages - 1):
            generator.init_next_stage()
        generator.load_state_dict(
            torch.load(
                '{}/{}/netG.pth'.format(opt.model_dir, opt.train_stages - 1),
                map_location="cuda:{}".format(torch.cuda.current_device())))

    fixed_noise = []
    noise_amp = []

    for scale_num in range(opt.start_scale, opt.train_stages):
        opt.out_ = functions.generate_dir2save(opt)
        opt.outf = '%s/%d' % (opt.out_, scale_num)
        try:
            os.makedirs(opt.outf)
        except OSError:
            print(OSError)
            pass
        functions.save_image('{}/real_scale.jpg'.format(opt.outf),
                             reals[scale_num])

        d_curr = init_D(opt)
        if opt.fine_tune:
            d_curr.load_state_dict(
                torch.load('{}/{}/netD.pth'.format(opt.model_dir,
                                                   opt.train_stages - 1),
                           map_location="cuda:{}".format(
                               torch.cuda.current_device())))
        elif scale_num > 0:
            d_curr.load_state_dict(
                torch.load('%s/%d/netD.pth' % (opt.out_, scale_num - 1)))
            generator.init_next_stage()

        writer = SummaryWriter(log_dir=opt.outf)
        fixed_noise, noise_amp, generator, d_curr = train_single_scale(
            d_curr, generator, reals, img_to_augment, naive_img,
            naive_img_large, fixed_noise, noise_amp, opt, scale_num, writer)

        torch.save(fixed_noise, '%s/fixed_noise.pth' % (opt.out_))
        torch.save(generator, '%s/G.pth' % (opt.out_))
        torch.save(reals, '%s/reals.pth' % (opt.out_))
        torch.save(noise_amp, '%s/noise_amp.pth' % (opt.out_))
        del d_curr
    writer.close()
    return