Exemplo n.º 1
0
class MuHistMaker:

    def __init__(self):

        # Control output level
        self.verbose = True

        # Luminosity Channel
        self.lumiChan = 103 # Lucid_HitOR
        # self.lumiChan = 201 # BCM Event OR
        # self.lumiChan = 102 # Lucid Event OR
        # self.lumiChan = 0 # Use preferred (doesn't work?)
        
        # Stable only
        self.stableOnly = True

        # Ready only
        self.readyOnly = True
        
        # Apply deadtime
        self.deadtime = False
        
        # List of (integer) run numbers specified on the command line
        self.runList = []

        # Dict of (lblo, lbhi) pairs giving extent of StableBeams
        self.stableDict = dict()

        # Dict of (lblo, lbhi) pairs giving extent of ATLAS Ready
        self.readyDict = dict()
        
        # Utlity routine for handling COOL connections
        self.dbHandler = LumiDBHandler()

        # Data readers
        self.maskReader = None
        self.lumiReader = None
        self.caliReader = None
        self.lblbReader = None
        self.lhcReader  = None
        self.trigReader = None
        self.bgReader = None
        self.rdyReader = None
        
        # Object which stores the luminosity calibration
        self.caliObj = LumiCalib()
        
        # Object which stores the BCID information
        self.maskObj = BCIDMask()

        # Object to store the bunch group definition
        self.bgObj = BunchGroup()
        
        # Histogram parameters
        self.nbins = 500
        self.mulo = 0.
        self.muhi = 50.
        
    # Explicitly clean up our DB connections
    def __del__(self):
        self.dbHandler.closeAllDB()
        
    # Called in command-line mode
    def execute(self):

        # Handle command-line switches
        self.parseOpts()

        # Process each run in self.runList
        for run in self.runList:

            # Load all data from COOL
            self.loadBCIDData(run)

            # Skip if run doesn't exist
            if len(self.lblbReader.data) == 0: continue
            
            # Find stable beams, output goes to self.stableTime
            self.findStable()

            # Find ATLAS ready
            self.findReady()
            
            # Skip if no stable beams
            if self.stableOnly and len(self.stableTime) == 0:
                continue

            # Skip of no ATLAS ready
            if self.readyOnly and len(self.readyTime) == 0:
                continue
            
            # Open new output file
            filename = 'run%d_mu.root' % run
            rootfile = TFile(filename, 'recreate')
            
            # Precompute deadtime into dictionary
            if self.deadtime:
                self.findDeadtime()

            if self.readyOnly:
                htitle = 'readyMuDist'
            elif self.stableOnly:
                htitle = 'stableMuDist'
            else:
                htitle = 'allMuDist'
                
            hall = TH1D(htitle, htitle, self.nbins, self.mulo, self.muhi)

            delivered = 0. 
            recorded = 0.
            average = 0.
            navg = 0
            
            # Loop over lumi blocks and calibrate
            for obj in self.lumiReader.data:

                startTime = obj.since()
                endTime = obj.until()
                runlb = obj.payload()['RunLB']
                run = runlb >> 32
                lb = runlb & 0xFFFFFFFF
                valid = obj.payload()['Valid'] & 0x3FF
                dtime = (endTime-startTime)/1E9

                if self.verbose:
                    print 'Run %d LB %d ' % (run, lb),
                    
                # Check whether this is in stable beams
                if self.stableOnly:
                    
                    isStable = False
                    for stable in self.stableTime:
                        if not stable[0] <= startTime < stable[1]: continue
                        isStable = True
                        break
                
                    if not isStable: continue

                    if self.verbose:
                        print 'stable ',

                # Check whether this is in ATLAS ready
                if self.readyOnly:

                    isReady = False
                    for ready in self.readyTime:
                        if not ready[0] <= runlb < ready[1]: continue
                        isReady = True
                        break

                    if not isReady:
                        if self.verbose: print
                        continue

                    if self.verbose:
                        print 'ready',

                if run == 189610 and lb < 310:
                    if self.verbose: print ' - skipped'
                    continue

                # Global timing shift
                if run == 201494 and lb > 220 and lb < 241:
                    if self.verbose: print ' - skipped'
                    continue
                
                if self.verbose:
                    print
                    
                # Make sure lumi data is valid
                #if valid != 0:
                #    print 'Invalid data %d found in Run %d LB %d!' % (valid, run, lb)
                #    continue

                # These all change slowly, so checking them every run/lb is OK
                
                # Make sure calibration is valid
                if not self.updateCalibration(startTime):
                    print 'Error finding calibration for Run %d LB %d!' % (run, lb)
                    continue

                # Make sure BCID mask is valid
                if not self.updateBCIDMask(startTime):
                    print "Couldn't find valid BCID mask data for Run %d LB %d!" % (run, lb)
                    continue

                # Make sure bunch group is valid (keyed by run/lb)
                if not self.updateBunchGroup(runlb):
                    print "Couldn't find valid Bunch Group definition for Run %d LB %d!" % (run, lb)
                    continue
                    
                # Now we want to start extracting bunch-by-bunch information

                # Get raw lumi
                normValue = obj.payload()['AverageRawInstLum']
                blobValue = obj.payload()['BunchRawInstLum']
                bcidVec, rawLumi = unpackBCIDValues(blobValue, self.maskObj.coll, normValue)

                bcidavg = 0.
                nbcid = 0
                h = TH1D(str(lb), '', self.nbins, self.mulo, self.muhi)

                for i in range(len(rawLumi)):

                    # Check if this is in our bunch group
                    bcid = bcidVec[i]

                    # Off by one, check if *following* BCID is in bunch group
                    # If so, this previous bcid is where the actual data is
                    if run >= 189639 and run <= 189660 and bcid > 1:
                        bcid += 1

                    if run == 191933 and bcid > 1:
                        bcid += 1
                        
                    if not bcid in self.bgObj.bg: continue
                    
                    ldel = self.caliObj.calibrate(rawLumi[i])
                    muval = ldel / self.caliObj.muToLumi
                    lumi = ldel * dtime
                    
                    delivered += lumi
                    
                    if self.deadtime:
                        
                        lrec = ldel * self.liveFrac[runlb][bcid]
                        lumi = lrec * dtime
                        recorded += lumi
                        bcidavg += self.liveFrac[runlb][bcid]
                        nbcid += 1
                        
                    # Note, mu only depends on delivered
                    # Weighting of recorded data depends on recorded
                    h.Fill(muval, lumi)
                    hall.Fill(muval, lumi)

                if nbcid > 0:
                    bcidavg /= nbcid
                    average += bcidavg
                    navg += 1

                h.Write()
                
            # Close output file
            hall.Write()
            rootfile.Close()

            print 'Lumi Delivered:', delivered
            print 'Lumi Recorded:', recorded
            if delivered > 0.:
                print 'True live fraction:', recorded/delivered
            else:
                print 'True live fraction: 0.0'

            if navg > 0:
                print 'BCID average frac: ', average/navg
            else:
                print 'BCID average frac: 0.0'
                
    # Load all data necessary to make bunch-by-bunch lumi for a single run
    def loadBCIDData(self, runnum):
        print 'MuHistMaker.loadBCIDData(%s) called' % runnum

        # Many folders are indexed by time stamp.  Load RunLB -> time conversion here
        self.loadLBLB(runnum)

        # Check if this run exists
        if len(self.lblbReader.data) == 0: return
        
        # Determine start and end time of this run
        startTime = self.lblbReader.data[0].payload()['StartTime']
        endTime =  self.lblbReader.data[-1].payload()['EndTime']
        iov = (startTime, endTime)
        
        # Read LHC Data (for stable beams)
        self.loadLHCData(iov)

        # Read ATLAS ready data
        self.loadReadyData(runnum)
        
        # Read the bunch group (so we sum over the right thing)
        self.loadBGData(runnum)
        
        # Read BCID Data
        self.loadBCIDMask(iov)
        self.loadBCIDCali(iov)
        self.loadBCIDLumi(iov)

        # Read turn counters (for livetime)
        if self.deadtime:
            self.loadTrigData(runnum)

    def loadLBLB(self, run):
        if self.verbose: print 'Loading LBLB data'

        # Instantiate new COOL data reader if not already done
        if self.lblbReader == None:
            self.lblbReader = CoolDataReader('COOLONL_TRIGGER/COMP200', '/TRIGGER/LUMI/LBLB')

        self.lblbReader.setIOVRangeFromRun(run)
        self.lblbReader.readData()

        if self.verbose:
            print 'Read %d LBLB records' % len(self.lblbReader.data)
            if len(self.lblbReader.data) > 0:
                print 'First LB %d/%d' % (self.lblbReader.data[0].since() >> 32, self.lblbReader.data[0].since() & 0xFFFFFFFF) 
            if len(self.lblbReader.data) > 1:
                print 'Last  LB %d/%d' % (self.lblbReader.data[-1].since() >> 32, self.lblbReader.data[-1].since() & 0xFFFFFFFF)
            
    def loadTrigData(self, run):
        if self.verbose: print 'Loading Trigger data'

        # Instantiate new COOL data reader if not already done
        if self.trigReader == None:
            self.trigReader = CoolDataReader('COOLONL_TRIGGER/COMP200', '/TRIGGER/LUMI/PerBcidDeadtime')

        self.trigReader.setIOVRangeFromRun(run)
        self.trigReader.readData()

        if self.verbose:
            print 'Read %d Trig records' % len(self.trigReader.data)

    def loadBGData(self, run):
        if self.verbose: print 'Loading Bunch group data'

        # Instantiate new COOL reader if not already done
        if self.bgReader == None:
            self.bgReader = CoolDataReader('COOLONL_TRIGGER/COMP200', '/TRIGGER/LVL1/BunchGroupContent')

        self.bgReader.setIOVRangeFromRun(run)
        self.bgReader.readData()

        if self.verbose:
            print 'Read %d bunch group records' % len(self.bgReader.data)
            
    def loadBCIDMask(self, iov):
        if self.verbose: print 'Loading BCID masks'

        # Instantiate new COOL data reader if not already done
        if self.maskReader == None:
            self.maskReader = CoolDataReader('COOLONL_TDAQ/COMP200', '/TDAQ/OLC/LHC/FILLPARAMS')
            
        self.maskReader.setIOVRange(iov[0], iov[1])
        self.maskReader.readData()

        if self.verbose:
            print 'Read %d BCID Mask records' % len(self.maskReader.data)

    def loadBCIDCali(self, iov):
        if self.verbose: print 'Loading BCID luminosity calibrations'

        # Instantiate new COOL data reader if not already done
        if self.caliReader == None:
            self.caliReader = CoolDataReader('COOLONL_TDAQ/COMP200', '/TDAQ/OLC/CALIBRATIONS')
            
        self.caliReader.setIOVRange(iov[0], iov[1])
        self.caliReader.setChannel([self.lumiChan])
        self.caliReader.readData()

        if self.verbose:
            print 'Read %d Calibration records' % len(self.caliReader.data)
            
    def loadBCIDLumi(self, iov):
        if self.verbose: print 'Loading BCID luminosity values'

        # Instantiate new COOL data reader if not already done
        if self.lumiReader == None:
            # self.lumiReader = CoolDataReader('COOLONL_TDAQ/MONP200', '/TDAQ/OLC/BUNCHLUMIS')
            self.lumiReader = CoolDataReader('COOLONL_TDAQ/COMP200', '/TDAQ/OLC/BUNCHLUMIS')

        self.lumiReader.setIOVRange(iov[0], iov[1])
        self.lumiReader.setChannel([self.lumiChan])
        self.lumiReader.readData()

        if self.verbose:
            print 'Read %d Lumi records' % len(self.lumiReader.data)
            
    # Information about stable beams
    def loadLHCData(self, iov):
        if self.verbose: print 'Loading LHC information'

        # Instantiate new COOL data reader if not already done
        if self.lhcReader == None:
            self.lhcReader = CoolDataReader('COOLOFL_DCS/COMP200', '/LHC/DCS/FILLSTATE')
            
        self.lhcReader.setIOVRange(iov[0], iov[1])
        self.lhcReader.readData()
            
        if self.verbose:
            print 'Read %d LHC records' % len(self.lhcReader.data)
        
    # Information about ATLAS ready
    def loadReadyData(self, run):
        if self.verbose: print 'Loading ATLAS ready information'

        # Instantiate new COOL data reader if not already done
        if self.rdyReader == None:
            self.rdyReader = CoolDataReader('COOLONL_TDAQ/COMP200', '/TDAQ/RunCtrl/DataTakingMode')
            
        self.rdyReader.setIOVRangeFromRun(run)
        self.rdyReader.readData()
            
        if self.verbose:
            print 'Read %d ATLAS ready records' % len(self.rdyReader.data)
        
    # Fill the stable beam information in the OflLumiRunData object
    def findStable(self):
        if self.verbose: print 'Finding stable beam periods'
        
        # First, fill stable beam time periods for this run
        tlo = cool.ValidityKeyMax
        thi = cool.ValidityKeyMin
        self.stableTime = []
        for obj in self.lhcReader.data:
            if obj.payload()['StableBeams'] == 0: continue

            if tlo > thi:             # First stable beams
                tlo = obj.since()
                thi = obj.until()
            elif thi == obj.since():  # Extension of existing stable beams
                thi = obj.until()
            else:                     # Not contiguous, add old to list and start again
                self.stableTime.append((tlo, thi))
                tlo = obj.since()
                thi = obj.until()

        if tlo < thi:
            self.stableTime.append((tlo, thi))

        if self.verbose:
            print 'Stable beam periods found:', self.stableTime

    # Fill the stable beam information in the OflLumiRunData object
    def findReady(self):
        if self.verbose: print 'Finding ATLAS ready beam periods'
        
        # First, fill stable beam time periods for this run
        tlo = cool.ValidityKeyMax
        thi = cool.ValidityKeyMin
        self.readyTime = []
        for obj in self.rdyReader.data:
            if obj.payload()['ReadyForPhysics'] == 0: continue

            if tlo > thi:             # First ready
                tlo = obj.since()
                thi = obj.until()
            elif thi == obj.since():  # Extension of existing ready
                thi = obj.until()
            else:                     # Not contiguous, add old to list and start again
                self.readyTime.append((tlo, thi))
                tlo = obj.since()
                thi = obj.until()

        if tlo < thi:
            self.readyTime.append((tlo, thi))

        if self.verbose:
            print 'ATLAS ready periods found:', self.readyTime

    # Precompute the deadtime for this run into a dictionary indexed by lumi block and BCID
    def findDeadtime(self):
        if self.verbose: print 'Calculating per-BCID deadtime'

        # First dictionary index is lumiblock IOV
        self.liveFrac = dict()

        # Loop over each lumi block
        for obj in self.trigReader.data:

            key = obj.since()

            run = key >> 32
            lb = key & 0xFFFFFFFF
            bloblength = obj.payload()['HighPriority'].size()

            if self.verbose:
                print '%d %d Found trigger counter blob of length %d' % (run, lb, bloblength)

            # Unpack High Priority blob here
            liveVec = unpackLiveFraction(obj.payload())
            self.liveFrac[key] = liveVec
            
            # Each BCID is one 24-bit integer
            if self.verbose:
            
                for i in range(10):
                    print 'BICD: %d Live: %f' % (i+1, liveVec[i])
                        
    
                    
    def updateBCIDMask(self, startTime):

        if not self.maskObj.isValid(startTime):

            self.maskObj.clearValidity()

            # Find the proper mask object
            maskData = None
            for mask in self.maskReader.data:
                if not mask.since() <= startTime < mask.until(): continue
                self.maskObj.setMask(mask)
                break

            if not self.maskObj.isValid(startTime):
                return False

        return True
    
    def updateCalibration(self, startTime):
    
        if not self.caliObj.isValid(startTime):

            self.caliObj.clearValidity()
                    
            # Find the proper calibration object
            for cali in self.caliReader.data:
                if not cali.since() <= startTime < cali.until(): continue
                self.caliObj.setCalibration(cali)
                break
                
            if not self.caliObj.isValid(startTime):
                return False

        return True

    def updateBunchGroup(self, runlb):

        if not self.bgObj.isValid(runlb):

            self.bgObj.clearValidity()

            # Find the proper BG object
            for bg in self.bgReader.data:
                if not bg.since() <= runlb < bg.until(): continue
                self.bgObj.setBG(bg)
                break

            if not self.bgObj.isValid(runlb):
                return False

        return True
    
    def parseOpts(self):

        parser = OptionParser(usage="usage: %prog [options]", add_help_option=False)

        parser.add_option("-?", "--usage", action="store_true", default=False, dest="help",
                          help="show this help message and exit")
        
        parser.add_option("-v", "--verbose",
                     action="store_true", default=self.verbose, dest="verbose",
                     help="turn on verbose output")

        parser.add_option("-r", "--updateRun",
                          dest="runlist", metavar="RUN",
                          help="update specific run, or comma separated list")

        (options, args) = parser.parse_args()

        if options.help:
            parser.print_help()
            sys.exit()

        self.verbose = options.verbose

        # Parse run list
        if options.runlist != None:

            # Clear the old one
            self.runList = []
            
            # Can be comma-separated list of run ranges
            runlist = options.runlist.split(',')
            if len(runlist) == 0:
                print 'Invalid run list specified!'
                sys.exit()

            # Go through and check for run ranges
            for runstr in runlist:
                subrunlist = runstr.split('-')
                
                if len(subrunlist) == 1: # Single run
                    self.runList.append(int(subrunlist[0]))
                    
                elif len(subrunlist) == 2: # Range of runs
                    for runnum in range(int(subrunlist[0]), int(subrunlist[1])+1):
                        self.runList.append(runnum)

                else: # Too many parameters
                    print 'Invalid run list segment found:', runstr
                    sys.exit()

            self.runList.sort()
            if self.verbose:
                print 'Finished parsing run list:',
                for runnum in self.runList:
                    print runnum,
                print
Exemplo n.º 2
0
class LumiDeadtimeHandler:

    # Constructor
    def __init__(self):

        self.verbose = False

        # Data readers
        self.vetoReader = None
        self.menuReader = None
        self.countsReader = None

        # Trigger channels to read for live fractions
        self.trigList = ['L1_EM30']

        # Storage of per-BCID deadtime (index by [runlb][bcid])
        self.liveFracBCID = dict()

        # Storage of L1 trigger counts deadtime (index by [runlb][trigname])
        self.liveFracTrig = dict()

        # Storage for L1 trigger name -> value mapping
        self.trigChan = dict()

    def calculateAll(self, run):
        self.loadData(run)
        self.findBCIDDeadtime()

    def loadData(self, run):
        self.loadVetoData(run)
        self.loadTrigChannels(run)
        self.loadTrigCounts(run)

    def loadVetoData(self, run):
        if self.verbose: print('Loading trigger veto data')

        # Instantiate new COOL data reader if not already done
        if self.vetoReader is None:
            self.vetoReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                             '/TRIGGER/LUMI/PerBcidDeadtime')

        self.vetoReader.setIOVRangeFromRun(run)
        self.vetoReader.readData()

        if self.verbose:
            print('Read %d Trig veto records' % len(self.vetoReader.data))

    # Read trigger channel mappings
    # Fills self.trigChan based on values in self.trigList
    def loadTrigChannels(self, run):
        if self.verbose: print('Loading trigger channel data')

        self.trigChan = dict()
        for trig in self.trigList:
            self.trigChan[trig] = -1

        if self.menuReader is None:
            self.menuReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                             '/TRIGGER/LVL1/Menu')

        self.menuReader.setIOVRangeFromRun(run)
        self.menuReader.readData()

        for obj in self.menuReader.data:
            trigName = obj.payload()['ItemName']
            if trigName in self.trigList:
                self.trigChan[trigName] = int(obj.channelId())

        for trig in self.trigList:
            if self.trigChan[trig] == -1:
                print("Couldn't find", trig, "in run", run)

            if self.verbose:
                print('Found', trig, 'in channel', self.trigChan[trig])

    # Load all trigger counts for the given run
    # Fills counts for all triggers with channels found in self.trigChan
    def loadTrigCounts(self, run):

        if self.verbose:
            print('loading Trigger Counts data')

        self.liveFracTrig = dict()

        if self.countsReader is None:
            self.countsReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                               '/TRIGGER/LUMI/LVL1COUNTERS')

        self.countsReader.setIOVRangeFromRun(run)

        # Build channel list
        chanList = self.trigChan.values()
        chanList.sort()

        # Skip any trigger we didn't find
        tmpList = []
        for chan in chanList:
            if chan < 0: continue
            tmpList.append(chan)
        chanList = tmpList

        self.countsReader.setChannel(chanList)
        self.countsReader.readData()

        for obj in self.countsReader.data:

            #if self.verbose:
            #    print obj.since()>>32, '/', obj.since()&0xFFFFFFFF, obj.channelId(), obj.payload()['BeforePrescale'], obj.payload()['AfterPrescale'], obj.payload()['L1Accept']

            # use the string as the dictionary key
            ss = obj.since()

            if ss not in self.liveFracTrig:
                self.liveFracTrig[ss] = dict()

            for (trig, chan) in self.trigChan.iteritems():
                if chan != obj.channelId(): continue

                ratio = 0.
                if obj.payload()['AfterPrescale'] > 0:
                    ratio = float(obj.payload()['L1Accept']) / obj.payload(
                    )['AfterPrescale']

                self.liveFracTrig[ss][trig] = ratio

                if self.verbose:
                    print(obj.since() >> 32, '/',
                          obj.since() & 0xFFFFFFFF, trig, ratio)

    def findBCIDDeadtime(self):
        if self.verbose: print('Calculating per-BCID deadtime')

        # First dictionary index is lumiblock IOV
        self.liveFracBCID = dict()

        # Loop over each lumi block
        for obj in self.vetoReader.data:

            key = obj.since()

            if self.verbose:
                run = key >> 32
                lb = key & 0xFFFFFFFF
                bloblength = obj.payload()['HighPriority'].size()
                print('%d %d Found trigger counter blob of length %d' %
                      (run, lb, bloblength))

            # Unpack High Priority blob here
            liveVec = unpackLiveFraction(obj.payload())
            self.liveFracBCID[key] = liveVec
Exemplo n.º 3
0
class TriggerHandler:
    def __init__(self):

        # Database parameters
        self.menuReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                         '/TRIGGER/LVL1/Menu')
        self.countsReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                           '/TRIGGER/LUMI/LVL1COUNTERS')
        self.lbtimeReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                           '/TRIGGER/LUMI/LBTIME')
        self.lblbReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                         '/TRIGGER/LUMI/LBLB')

        self.verbose = False
        #self.verbose = True

        # Dict of all TrigL1Data objects for the given time interval (keyed by RunLB IOV)
        self.trigL1Dict = dict()

        self.allL1Triggers = False

        # List of all trigger items to read
        self.trigList = ['L1_MBTS_2', 'L1_EM30']

        # Dictionary of trigger channel number keyed by trigger name
        self.trigChan = dict()
        self.chanTrig = dict()  # reverse order

        # Store the lumi block times
        self.lblbDict = dict()

    # Clear all data
    def clear(self):

        # Clear trigger dict
        self.trigL1Dict.clear()

    # Find trigger information in iovrange by time
    def loadData(self, startIOV, endIOV):

        self.clear()

        # Runlist holds specific runs in this time range
        self.runlist = []

        if self.verbose:
            print 'Searching for trigger information for max IOVRange', timeString(
                startIOV), timeString(endIOV)

        # Load the run based information as we fundamentally need to do this by run number

        # Prepare the lbtime reader
        self.lbtimeReader.setIOVRange(startIOV, endIOV)
        self.lbtimeReader.readData()

        for obj in self.lbtimeReader.data:

            runnum = int(obj.payload()['Run'])

            if not runnum in self.runlist:
                self.runlist.append(runnum)

        # Loop over each run, getting the trigger counts/Lumi
        # Must do this by run, as trigger menu can change
        # Here we are storing this in a separate list
        for runnum in self.runlist:
            self.loadDataByRun(runnum, clear=False)

    # Find trigger information by run
    def loadDataByRun(self, runnum, clear=True):

        if self.verbose:
            print 'TriggerHandler.loadDataByRun(%d) called' % runnum

        if clear:
            self.clear()

        # Figure out the channel mappings for the L1 trigger items
        self.loadTrigChannels(runnum)

        # Get the LB durations
        self.loadLBLBData(runnum)

        # Third, get the trigger counts
        self.loadTrigCounts(runnum)

    # Read LBLB data
    def loadLBLBData(self, runnum):

        if self.verbose:
            print 'TriggerHandler.loadLBLBData(%d) called' % runnum

        self.lblbDict.clear()
        self.lblbReader.setIOVRangeFromRun(runnum)
        self.lblbReader.readData()

        for obj in self.lblbReader.data:
            self.lblbDict[obj.since()] = (obj.payload()['StartTime'],
                                          obj.payload()['EndTime'])

    # Read trigger channel mappings
    # Fills self.trigChan based on values in self.trigList
    def loadTrigChannels(self, runnum):

        if self.verbose:
            print 'TriggerHandler.loadTrigChannels(%d) called' % runnum

        # Trigger channels keyed by name
        self.trigChan = dict()

        # Trigger name keyed by channel
        self.chanTrig = dict()

        for trig in self.trigList:
            self.trigChan[trig] = -1

        self.menuReader.setIOVRangeFromRun(runnum)
        self.menuReader.readData()

        for obj in self.menuReader.data:

            if self.verbose or True:
                print int(obj.channelId()), obj.payload()['ItemName']

            trigName = obj.payload()['ItemName']
            trigChan = int(obj.channelId())

            if self.allL1Triggers or self.trigList.count(trigName) > 0:
                self.trigChan[trigName] = trigChan
                self.chanTrig[trigChan] = trigName

        for trig in self.trigList:
            if self.trigChan[trig] == -1:
                print "Couldn't find", trig, "in run", str(runnum)

        if self.verbose:
            for (trig, chan) in self.trigChan.iteritems():
                print 'Found', trig, 'in channel', chan

    # Load all trigger counts for the given run
    # Fills counts for all triggers with channels found in self.trigChan
    def loadTrigCounts(self, runnum):

        if self.verbose:
            print 'TriggerHandler.loadTrigCounts(%d) called' % runnum

        self.countsReader.setIOVRangeFromRun(runnum)

        # Build channel list
        chanList = self.trigChan.values()
        chanList.sort()

        nMaxChan = 50
        nChanBlock = 0
        chanBlock = []
        nChannels = 0

        # Skip any trigger we didn't find
        tmpList = []
        for chan in chanList:
            if chan < 0: continue
            tmpList.append(chan)
        chanList = tmpList

        if self.verbose:
            print 'breaking up', len(
                chanList), 'into', nMaxChan, 'for run', runnum

        # There is a 50 item limit somehow hardcoded into browseObjects.
        # Use this code from Elliot to get around the limitation.

        # Break up list of indices into blocks:
        for x in range(0, len(chanList), nMaxChan):
            top = min([x + nMaxChan, len(chanList)])

            if self.verbose:
                print 'Initializing block [%d] from %d to %d' % (nChanBlock, x,
                                                                 top)

            chanBlock.append(chanList[x:top])
            nChanBlock += 1

        for x in range(nChanBlock):
            if self.verbose: print 'Channel Selector', chanBlock[x]
            self.countsReader.setChannel(chanBlock[x])
            self.countsReader.readData()

            for obj in self.countsReader.data:

                since = obj.since()
                until = obj.until()
                if self.verbose:
                    print runLBString(since), runLBString(
                        until), obj.channelId(), obj.payload(
                        )['BeforePrescale'], obj.payload(
                        )['AfterPrescale'], obj.payload()['L1Accept']

                # use the string as the dictionary key
                ss = since
                chan = int(obj.channelId())
                trig = self.chanTrig.get(chan, "")
                if len(trig) == 0:
                    print 'TriggerHandler.loadTrigCounts(%d) - found unknown channel %d in %s!' % (
                        runnum, chan, runLBString(ss))
                    continue

                if ss not in self.trigL1Dict:
                    self.trigL1Dict[ss] = TriggerL1Data()
                    self.trigL1Dict[ss].runlb = obj.since()
                    self.trigL1Dict[ss].startTime = self.lblbDict.get(
                        ss, (0., 0.))[0]
                    self.trigL1Dict[ss].endTime = self.lblbDict.get(
                        ss, (0., 0.))[1]
                    self.trigL1Dict[ss].dtime = (
                        self.trigL1Dict[ss].endTime -
                        self.trigL1Dict[ss].startTime) / 1.E9

                self.trigL1Dict[ss].TBP[trig] = obj.payload()['BeforePrescale']
                self.trigL1Dict[ss].TAP[trig] = obj.payload()['AfterPrescale']
                self.trigL1Dict[ss].TAV[trig] = obj.payload()['L1Accept']
Exemplo n.º 4
0
class CompareLumi:
    def __init__(self):

        # Control output level
        self.verbose = False

        # Channels for comparision
        self.lumi1Channel = 0
        self.lumi2Channel = 261
        self.lumi1Tag = 'OflLumi-7TeV-002'
        self.lumi2Tag = 'OflLumi-7TeV-003'

        # Difference (in percent) to complain about
        self.threshold = 5.

        # Stable only
        self.stableOnly = True

        # List of IOVRanges with stable beams
        self.stableTime = []

        # ATLAS Ready only
        self.readyOnly = True

        #Dict of (runlblo, runlblbhi) pairs giving extent of ATLAS ready
        self.readyTime = []

        # List of (integer) run numbers specified on the command line
        self.runList = []

        # Utlity routine for handling COOL connections
        self.dbHandler = LumiDBHandler()

        # Data readers
        self.lumi1Reader = None
        self.lumi2Reader = None
        self.lblbReader = None
        self.lhcReader = None
        self.rdyReader = None

    # Explicitly clean up our DB connections
    def __del__(self):
        self.dbHandler.closeAllDB()

    # Called in command-line mode
    def execute(self):

        # Handle command-line switches
        self.parseOpts()

        lumi1Sum = dict()
        lumi2Sum = dict()

        # Process each run in self.runList
        for run in self.runList:

            # Load all data from COOL
            self.loadCOOLData(run)

            # Skip if run doesn't exist
            if len(self.lblbReader.data) == 0: continue

            # Find stable beams, output goes to self.stableTime
            self.findStable()

            # Find ATLAS ready, result goes to self.readyTime
            self.findReady()

            if self.stableOnly and len(self.stableTime) == 0: continue
            if self.readyOnly and len(self.readyTime) == 0: continue

            # Storage objects keyed by [lb]
            lumi1Dict = dict()
            lumi2Dict = dict()

            lumi1Sum[run] = 0.
            lumi2Sum[run] = 0.

            # Keep track of LB range
            lbLo = 99999
            lbHi = 0

            # Loop over all objects and sort by runlb and algo
            for obj in self.lumi1Reader.data:
                runlb = obj.since()
                lumi1Dict[runlb] = obj.payload()

            for obj in self.lumi2Reader.data:
                runlb = obj.since()
                lumi2Dict[runlb] = obj.payload()

                # if self.verbose:
                #     run = runlb >> 32
                #     lb = runlb & 0xFFFFFFFF
                #     print 'Found Run %d LB %d chan %d' % (run, lb, channel)

            # Loop over defined data
            for obj in self.lblbReader.data:

                runlb = obj.since()
                run = runlb >> 32
                lb = runlb & 0xFFFFFFFF

                startTime = obj.payload()['StartTime']
                endTime = obj.payload()['EndTime']
                dtime = (endTime - startTime) / 1E9

                # Check whether this is in stable beams
                isStable = False
                for stable in self.stableTime:
                    if not stable[0] <= startTime < stable[1]: continue
                    isStable = True
                    break

                if self.stableOnly and not isStable: continue

                # Check whether this in in ATLAS ready
                isReady = False
                for ready in self.readyTime:
                    if not ready[0] <= runlb < ready[1]: continue
                    isReady = True
                    break

                #if self.verbose:
                #    print 'Found stable Run %d LB %d' % (run, lb)

                if lb < lbLo: lbLo = lb
                if lb > lbHi: lbHi = lb

                # Check if lumi record exists
                missing1 = False
                missing2 = False
                if runlb not in lumi1Dict:
                    missing1 = True

                if runlb not in lumi2Dict:
                    missing2 = True

                if missing1 and missing2:
                    if isStable:
                        print 'Run: %d LB: %4d does not have any luminosity record in stable beams!' % (
                            run, lb)
                    else:
                        print 'Run: %d LB: %4d does not have any luminosity record!' % (
                            run, lb)
                    continue

                elif missing1:
                    if isStable:
                        print 'Run: %d LB: %4d does not have first lumi record in stable beams!' % (
                            run, lb)
                    else:
                        print 'Run: %d LB: %4d does not have first lumi record!' % (
                            run, lb)

                elif missing2:
                    if isStable:
                        print 'Run: %d LB: %4d does not have second lumi record in stable beams!' % (
                            run, lb)
                    else:
                        print 'Run: %d LB: %4d does not have second lumi record!' % (
                            run, lb)

                # Get lumi
                lumi1 = 0.
                valid1 = 999
                chan1 = self.lumi1Channel

                lumi2 = 0.
                valid2 = 999
                chan2 = self.lumi2Channel

                if not missing1:
                    lumi1 = lumi1Dict[runlb]['LBAvInstLumi']
                    valid1 = lumi1Dict[runlb]['Valid'] & 0x3FF
                    if chan1 == 0:
                        chan1 = lumi1Dict[runlb]['Valid'] >> 22
                    lumi1Sum[run] += (lumi1 * dtime) / 1.E6

                if not missing2:
                    lumi2 = lumi2Dict[runlb]['LBAvInstLumi']
                    valid2 = lumi2Dict[runlb]['Valid'] & 0x3FF
                    if chan2 == 0:
                        chan2 = lumi2Dict[runlb]['Valid'] >> 22
                    lumi2Sum[run] += (lumi2 * dtime) / 1.E6

                try:
                    ratio = 100 * (lumi2 / lumi1 - 1.)
                except ZeroDivisionError:
                    ratio = -99.

                if self.verbose:
                    print 'Run: %6d LB: %4d Lumi1: %6.1f Chan1: %d Valid1: %d Lumi2: %6.1f Chan2: %d Valid2: %d  Ratio: %.3f%%' % (
                        run, lb, lumi1, chan1, valid1, lumi2, chan2, valid2,
                        ratio)

                # Compare
                if (abs(ratio) > self.threshold
                        and (lumi1 > 1.
                             or lumi2 > 1.)):  # or valid1 != 0 or valid2 != 0:
                    print '>>> Run: %6d LB: %4d dTime: %f Lumi1: %6.1f Chan1: %d Valid1: %d Lumi2: %6.1f Chan2: %d Valid2: %d  Ratio: %.3f%%' % (
                        run, lb, dtime, lumi1, chan1, valid1, lumi2, chan2,
                        valid2, ratio)

            # End of loop over LBs

            try:
                ratio = 100 * (lumi2Sum[run] / lumi1Sum[run] - 1.)
            except ZeroDivisionError:
                ratio = -99.

            print 'Run: %6d LBLo: %4d LBHi: %4d IntLumi1: %8.3f IntLumi2: %8.3f Ratio: %.3f%%' % (
                run, lbLo, lbHi, lumi1Sum[run], lumi2Sum[run], ratio)

        # End of loop over runs
        totalLumi1 = 0.
        totalLumi2 = 0.
        for lumi in lumi1Sum.itervalues():
            totalLumi1 += lumi

        for lumi in lumi2Sum.itervalues():
            totalLumi2 += lumi

        try:
            ratio = 100 * (totalLumi2 / totalLumi1 - 1.)
        except ZeroDivisionError:
            ratio = -99.

        print 'Total Luminosity1: %8.3f Luminosity2: %8.3f => 2/1 = %.3f%%' % (
            totalLumi1, totalLumi2, ratio)

    # Load all data necessary to make bunch-by-bunch lumi for a single run
    def loadCOOLData(self, runnum):
        if self.verbose:
            print 'LumiChecker.loadCOOLData(%s) called' % runnum

        # Many folders are indexed by time stamp.  Load RunLB -> time conversion here
        self.loadLBLB(runnum)

        if len(self.lblbReader.data) == 0: return

        # Determine start and end time of this run
        startTime = self.lblbReader.data[0].payload()['StartTime']
        endTime = self.lblbReader.data[-1].payload()['EndTime']
        iov = (startTime, endTime)

        # Read LHC Data (for stable beams)
        self.loadLHCData(iov)

        # Read Ready Data
        self.loadReadyData(runnum)

        # Read the luminosity
        self.loadLumi(runnum)

    def loadLBLB(self, run):
        if self.verbose: print 'Loading LBLB data'

        # Instantiate new COOL data reader if not already done
        if self.lblbReader == None:
            self.lblbReader = CoolDataReader('COOLONL_TRIGGER/COMP200',
                                             '/TRIGGER/LUMI/LBLB')

        self.lblbReader.setIOVRangeFromRun(run)
        self.lblbReader.readData()

        if self.verbose:
            print 'Read %d LBLB records' % len(self.lblbReader.data)
            if len(self.lblbReader.data) > 0:
                print 'First LB %d/%d' % (
                    self.lblbReader.data[0].since() >> 32,
                    self.lblbReader.data[0].since() & 0xFFFFFFFF)
                print 'Last  LB %d/%d' % (
                    self.lblbReader.data[-1].since() >> 32,
                    self.lblbReader.data[-1].since() & 0xFFFFFFFF)

    def loadLumi(self, runnum):
        if self.verbose: print 'Loading luminosity values'

        # Instantiate new COOL data reader if not already done
        if self.lumi1Reader == None:
            self.lumi1Reader = CoolDataReader('COOLOFL_TRIGGER/COMP200',
                                              '/TRIGGER/OFLLUMI/LBLESTOFL')

        self.lumi1Reader.setIOVRangeFromRun(runnum)
        self.lumi1Reader.setChannel([self.lumi1Channel])
        self.lumi1Reader.setTag(self.lumi1Tag)
        self.lumi1Reader.readData()

        if self.verbose:
            print 'Read %d Lumi records' % len(self.lumi1Reader.data)

        # Instantiate new COOL data reader if not already done
        if self.lumi2Reader == None:
            self.lumi2Reader = CoolDataReader('COOLOFL_TRIGGER/COMP200',
                                              '/TRIGGER/OFLLUMI/LBLESTOFL')

        self.lumi2Reader.setIOVRangeFromRun(runnum)
        self.lumi2Reader.setChannel([self.lumi2Channel])
        self.lumi2Reader.setTag(self.lumi2Tag)
        self.lumi2Reader.readData()

        if self.verbose:
            print 'Read %d Lumi records' % len(self.lumi2Reader.data)

    # Information about stable beams
    def loadLHCData(self, iov):
        if self.verbose: print 'Loading LHC information'

        # Instantiate new COOL data reader if not already done
        if self.lhcReader == None:
            self.lhcReader = CoolDataReader('COOLOFL_DCS/COMP200',
                                            '/LHC/DCS/FILLSTATE')

        self.lhcReader.setIOVRange(iov[0], iov[1])
        self.lhcReader.readData()

        if self.verbose:
            print 'Read %d LHC records' % len(self.lhcReader.data)

    # Information about ATLAS ready
    def loadReadyData(self, run):
        if self.verbose: print 'Loading ATLAS ready information'

        # Instantiate new COOL data reader if not already done
        if self.rdyReader == None:
            self.rdyReader = CoolDataReader('COOLONL_TDAQ/COMP200',
                                            '/TDAQ/RunCtrl/DataTakingMode')

        self.rdyReader.setIOVRangeFromRun(run)
        self.rdyReader.readData()

        if self.verbose:
            print 'Read %d ATLAS ready records' % len(self.rdyReader.data)

    # Fill the stable beam information in the OflLumiRunData object
    def findStable(self):
        if self.verbose: print 'Finding stable beam periods'

        # First, fill stable beam time periods for this run
        tlo = cool.ValidityKeyMax
        thi = cool.ValidityKeyMin
        self.stableTime = []
        for obj in self.lhcReader.data:
            if obj.payload()['StableBeams'] == 0: continue

            if tlo > thi:  # First stable beams
                tlo = obj.since()
                thi = obj.until()
            elif thi == obj.since():  # Extension of existing stable beams
                thi = obj.until()
            else:  # Not contiguous, add old to list and start again
                self.stableTime.append((tlo, thi))
                tlo = obj.since()
                thi = obj.until()

        if tlo < thi:
            self.stableTime.append((tlo, thi))

        if self.verbose:
            print 'Stable beam periods found:', self.stableTime

    # Fill the stable beam information in the OflLumiRunData object
    def findReady(self):
        if self.verbose: print 'Finding ATLAS ready beam periods'

        # First, fill stable beam time periods for this run
        tlo = cool.ValidityKeyMax
        thi = cool.ValidityKeyMin
        self.readyTime = []
        for obj in self.rdyReader.data:
            if obj.payload()['ReadyForPhysics'] == 0: continue

            if tlo > thi:  # First ready
                tlo = obj.since()
                thi = obj.until()
            elif thi == obj.since():  # Extension of existing ready
                thi = obj.until()
            else:  # Not contiguous, add old to list and start again
                self.readyTime.append((tlo, thi))
                tlo = obj.since()
                thi = obj.until()

        if tlo < thi:
            self.readyTime.append((tlo, thi))

        if self.verbose:
            print 'ATLAS ready periods found:', self.readyTime

    def parseOpts(self):

        parser = OptionParser(usage="usage: %prog [options]",
                              add_help_option=False)

        parser.add_option("-?",
                          "--usage",
                          action="store_true",
                          default=False,
                          dest="help",
                          help="show this help message and exit")

        parser.add_option("-v",
                          "--verbose",
                          action="store_true",
                          default=self.verbose,
                          dest="verbose",
                          help="turn on verbose output")

        parser.add_option("-r",
                          "--updateRun",
                          dest="runlist",
                          metavar="RUN",
                          help="update specific run, or comma separated list")

        parser.add_option("--tag1",
                          dest="lumi1tag",
                          metavar="TAG",
                          default=self.lumi1Tag,
                          help='first luminosity tag (default: %s)' %
                          self.lumi1Tag)

        parser.add_option("--chan1",
                          dest="lumi1chan",
                          metavar="CHAN",
                          default=self.lumi1Channel,
                          help='first luminosity channel (default: %d)' %
                          self.lumi1Channel)

        parser.add_option("--tag2",
                          dest="lumi2tag",
                          metavar="TAG",
                          default=self.lumi2Tag,
                          help='first luminosity tag (default: %s)' %
                          self.lumi2Tag)

        parser.add_option("--chan2",
                          dest="lumi2chan",
                          metavar="CHAN",
                          default=self.lumi2Channel,
                          help='second luminosity channel (default: %d)' %
                          self.lumi2Channel)

        parser.add_option(
            "--noStable",
            action="store_false",
            default=self.stableOnly,
            dest="stable",
            help="turn off stable beams requirement (default: stable only)")

        parser.add_option(
            "--noReady",
            action="store_false",
            default=self.readyOnly,
            dest="ready",
            help="turn off ATLAS ready requirement (default: ready only)")

        (options, args) = parser.parse_args()

        if options.help:
            parser.print_help()
            sys.exit()

        self.verbose = options.verbose
        self.lumi1Tag = options.lumi1tag
        self.lumi2Tag = options.lumi2tag
        self.stableOnly = options.stable
        self.readyOnly = options.ready
        self.lumi1Channel = int(options.lumi1chan)
        self.lumi2Channel = int(options.lumi2chan)

        # Parse run list
        if options.runlist != None:

            # Clear the old one
            self.runList = []

            # Can be comma-separated list of run ranges
            runlist = options.runlist.split(',')
            if len(runlist) == 0:
                print 'Invalid run list specified!'
                sys.exit()

            # Go through and check for run ranges
            for runstr in runlist:
                subrunlist = runstr.split('-')

                if len(subrunlist) == 1:  # Single run
                    self.runList.append(int(subrunlist[0]))

                elif len(subrunlist) == 2:  # Range of runs
                    for runnum in range(int(subrunlist[0]),
                                        int(subrunlist[1]) + 1):
                        self.runList.append(runnum)

                else:  # Too many parameters
                    print 'Invalid run list segment found:', runstr
                    sys.exit()

            self.runList.sort()
            if self.verbose:
                print 'Finished parsing run list:',
                for runnum in self.runList:
                    print runnum,
                print
Exemplo n.º 5
0
class CalibNtupleMaker:
    def __init__(self):

        # Control output level
        self.verbose = False

        # Luminosity Channels
        self.lumiChanList = []

        # Luminosity Channel Map
        self.lumiChanNames = dict()

        self.lumiMapFile = 'defaultChannels.txt'

        # Stable only
        self.stableOnly = False

        # Write output ntuple
        self.ntuple = True

        # Write extra current information
        self.writeExtraCurrents = True

        # List of (integer) run numbers specified on the command line
        self.runList = []

        # Dict of (lblo, lbhi) pairs giving extent of StableBeams
        self.stableDict = dict()

        # Utlity routine for handling COOL connections
        self.dbHandler = LumiDBHandler()

        # Data readers
        self.maskReader = None
        self.lumiReader = None
        self.caliReader = None
        self.lblbReader = None
        self.currReader = None
        self.lhcReader = None
        self.bgReader = None
        self.pmtReader = None
        self.lbdataReader = None

        # Object which stores the BCID information
        self.maskObj = BCIDMask()

        # Object to store the bunch group definition
        self.bgObj = BunchGroup()

        self.currentRun = 0

        self.nBCID = 3564

        self.outdir = '.'

    # Explicitly clean up our DB connections
    def __del__(self):
        self.dbHandler.closeAllDB()

    # Called in command-line mode
    def execute(self):

        # Handle command-line switches
        self.parseOpts()

        # Fill channel list
        self.fillChannelList()

        # Process each run in self.runList
        for run in self.runList:

            # Load all data from COOL
            self.loadBCIDData(run)

            # Skip if run doesn't exist
            if len(self.lblbReader.data) == 0: continue

            # Find stable beams, output goes to self.stableTime
            self.findStable()

            if self.stableOnly and len(self.stableTime) == 0: continue

            # Open new output file and init ntuple
            if self.ntuple:
                nt = NtupleHandler()
                nt.chanMap = self.lumiChanNames

                nt.writeExtraCurrents = self.writeExtraCurrents

                nt.fileName = '%s/r%d.root' % (self.outdir, run)
                nt.open()
                nt.init()

            # Storage objects keyed by [runlb][algo]
            objDict = dict()
            runlbList = []

            # Loop over all objects and sort by runlb and algo
            for obj in self.lumiReader.data:
                channel = obj.channelId()
                runlb = obj.payload()['RunLB']
                if runlb not in objDict:
                    objDict[runlb] = dict()
                    runlbList.append(runlb)
                objDict[runlb][channel] = obj

                # if self.verbose:
                #     run = runlb >> 32
                #     lb = runlb & 0xFFFFFFFF
                #     print 'Found Run %d LB %d chan %d' % (run, lb, channel)

            # LHC Current objects keyed by [runlb]
            currDict = dict()
            for obj in self.currReader.data:
                runlb = obj.payload()['RunLB']
                if runlb not in currDict:
                    currDict[runlb] = dict()
                currDict[runlb][obj.channelId()] = obj

            #if self.writeExtraCurrents:
            lbdataDict = dict()
            for obj in self.lbdataReader.data:
                runlb = obj.payload()['RunLB']
                if runlb not in lbdataDict:
                    lbdataDict[runlb] = dict()
                lbdataDict[runlb][obj.channelId()] = obj

            # Loop over all lumi blocks and calibrate each algorithm
            runlbList.sort()
            for runlb in runlbList:

                run = runlb >> 32
                lb = runlb & 0xFFFFFFFF

                self.currentRun = run

                # Make sure bunch group is valid (keyed by run/lb)
                if not self.updateBunchGroup(runlb):
                    print "Couldn't find valid Bunch Group definition for Run %d LB %d!" % (
                        run, lb)
                    continue

                # Get integer to make average mu value below
                nBunch = len(self.bgObj.bg)
                if nBunch < 1: nBunch = 1

                # Zero all storage locations
                nt.clearBCIDData()

                first = True
                lbSum = dict()
                for chan in self.lumiChanList:

                    if chan not in objDict[runlb]:
                        print "Can't find channel", chan, "in run/lb", run, '/', lb
                        continue

                    obj = objDict[runlb][chan]

                    if chan != obj.channelId():
                        print 'Channel', chan, '!=', obj.channelId(), '!'
                        continue

                    if runlb != obj.payload()['RunLB']:
                        print 'RunLB', runlb, '!=', obj.payload()['RunLB'], '!'
                        continue

                    startTime = obj.since()
                    endTime = obj.until()
                    dtime = (endTime - startTime) / 1E9
                    valid = obj.payload()['Valid'] & 0x03

                    # Hack for lucid validity
                    if 100 < chan < 200 and valid == 1: valid = 0

                    # Check whether this is in stable beams
                    isStable = False
                    for stable in self.stableTime:
                        if not stable[0] <= startTime < stable[1]: continue
                        isStable = True
                        break

                    if self.stableOnly and not isStable: continue

                    # Clear lumi block sum counters
                    lbSum[chan] = 0.

                    # Only do this once per lumi block
                    if first:
                        first = False

                        if self.verbose:
                            print 'Found stable Run %d LB %d' % (run, lb)

                        # Fill general LB information
                        if self.ntuple:
                            nt.fillLBData(obj)
                            nt.lbDataStruct.fStable = isStable

                        # These change slowly, so checking them every run/lb is OK
                        # Make sure BCID mask is valid
                        if not self.updateBCIDMask(startTime):
                            print "Couldn't find valid BCID mask data for Run %d LB %d!" % (
                                run, lb)
                            continue

                        # Do this here so the BCID mask is up to date
                        if self.ntuple:
                            if runlb in currDict:
                                if 1 in currDict[runlb]:
                                    nt.fillCurrentData(currDict[runlb],
                                                       self.maskObj, 1)
                                if 0 in currDict[
                                        runlb] and self.writeExtraCurrents:
                                    nt.fillCurrentData(currDict[runlb],
                                                       self.maskObj, 0)

                            if runlb in lbdataDict:
                                nt.fillMoreCurrentData(lbdataDict[runlb])

                    # Now we want to start extracting bunch-by-bunch information

                    # Get raw lumi
                    normValue = obj.payload()['AverageRawInstLum']
                    blobValue = obj.payload()['BunchRawInstLum']
                    bcidVec, rawLumi = unpackBCIDValues(blobValue)

                    # dict to hold BCID lumi keyed by BCID
                    bcidLumi = dict()
                    for i in range(len(rawLumi)):

                        # Check if this is in our bunch group (only really need to fill this once)
                        bcid = bcidVec[i]

                        # Protect against any weird values
                        if bcid >= self.nBCID:
                            print 'BCID %d found >= %d!' % (bcid, self.nBCID)
                            continue

                        if bcid in self.bgObj.bg:
                            nt.bcidArray['Status'][bcid] = 1
                        else:
                            nt.bcidArray['Status'][bcid] = 0

                        # Now need to save bcid, mu, and calibLumi
                        lraw = rawLumi[i]

                        nt.fillBCIDData(chan, bcid, lraw)

                    # End loop over BCIDs

                # End of loop over channels
                nt.tree.Fill()

            # End of loop over LBs
            nt.close()

        # End of loop over runs

    # Load all data necessary to make bunch-by-bunch lumi for a single run
    def loadBCIDData(self, runnum):
        print 'MuHistMaker.loadBCIDData(%s) called' % runnum

        # Many folders are indexed by time stamp.  Load RunLB -> time conversion here
        self.loadLBLB(runnum)

        if len(self.lblbReader.data) == 0: return

        # Determine start and end time of this run
        startTime = self.lblbReader.data[0].payload()['StartTime']
        endTime = self.lblbReader.data[-1].payload()['EndTime']
        iov = (startTime, endTime)

        # Read LHC Data (for stable beams)
        self.loadLHCData(iov)

        # Read the bunch group (so we sum over the right thing)
        self.loadBGData(runnum)

        # Read BCID Data
        self.loadBCIDMask(iov)
        self.loadBCIDLumi(iov)
        self.loadBCIDCurrents(iov)
        self.loadOtherCurrents(iov)

    def loadLBLB(self, run):
        if self.verbose: print 'Loading LBLB data'

        # Instantiate new COOL data reader if not already done
        if self.lblbReader == None:
            self.lblbReader = CoolDataReader('COOLONL_TRIGGER/CONDBR2',
                                             '/TRIGGER/LUMI/LBLB')

        self.lblbReader.setIOVRangeFromRun(run)
        self.lblbReader.readData()

        if self.verbose:
            print 'Read %d LBLB records' % len(self.lblbReader.data)
            if len(self.lblbReader.data) > 0:
                print 'First LB %d/%d' % (
                    self.lblbReader.data[0].since() >> 32,
                    self.lblbReader.data[0].since() & 0xFFFFFFFF)
                print 'Last  LB %d/%d' % (
                    self.lblbReader.data[-1].since() >> 32,
                    self.lblbReader.data[-1].since() & 0xFFFFFFFF)

    def loadBGData(self, run):
        if self.verbose: print 'Loading Bunch group data'

        # Instantiate new COOL reader if not already done
        if self.bgReader == None:
            self.bgReader = CoolDataReader('COOLONL_TRIGGER/CONDBR2',
                                           '/TRIGGER/LVL1/BunchGroupContent')

        self.bgReader.setIOVRangeFromRun(run)
        self.bgReader.readData()

        if self.verbose:
            print 'Read %d bunch group records' % len(self.bgReader.data)

    def loadBCIDMask(self, iov):
        if self.verbose: print 'Loading BCID masks'

        # Instantiate new COOL data reader if not already done
        if self.maskReader == None:
            self.maskReader = CoolDataReader('COOLONL_TDAQ/CONDBR2',
                                             '/TDAQ/OLC/LHC/FILLPARAMS')

        self.maskReader.setIOVRange(iov[0], iov[1])
        self.maskReader.readData()

        if self.verbose:
            print 'Read %d BCID Mask records' % len(self.maskReader.data)

    def loadBCIDLumi(self, iov):
        if self.verbose: print 'Loading BCID luminosity values'

        # Instantiate new COOL data reader if not already done
        if self.lumiReader == None:
            # Switch at start of September
            self.lumiReader = CoolDataReader('COOLONL_TDAQ/CONDBR2',
                                             '/TDAQ/OLC/BUNCHLUMIS')

        #self.lumiReader.verbose = True
        self.lumiReader.setIOVRange(iov[0], iov[1])
        self.lumiReader.setChannel(self.lumiChanList)
        self.lumiReader.readData()
        #self.lumiReader.verbose = False

        if self.verbose:
            print 'Read %d Lumi records' % len(self.lumiReader.data)

    # Bunch currents
    def loadBCIDCurrents(self, iov):
        if self.verbose: print 'Loading Bunch Current information'

        if self.currReader == None:
            # self.currReader = CoolDataReader('COOLONL_TDAQ/MONP200', '/TDAQ/OLC/LHC/BUNCHDATA')
            self.currReader = CoolDataReader('COOLONL_TDAQ/CONDBR2',
                                             '/TDAQ/OLC/LHC/BUNCHDATA')

        self.currReader.setIOVRange(iov[0], iov[1])
        if self.writeExtraCurrents:
            self.currReader.setChannel([0, 1])  # 0 = BPTX, 1 = Fast BCT
        else:
            self.currReader.setChannelId(1)  # 0 = BPTX, 1 = Fast BCT
        self.currReader.readData()

        if self.verbose:
            print 'Read %d Current records' % len(self.currReader.data)

    def loadOtherCurrents(self, iov):
        if self.verbose: print 'Loading LBDATA Bunch Current information'

        if self.lbdataReader == None:
            self.lbdataReader = CoolDataReader('COOLONL_TDAQ/CONDBR2',
                                               '/TDAQ/OLC/LHC/LBDATA')

        self.lbdataReader.setIOVRange(iov[0], iov[1])
        self.lbdataReader.setChannel([0, 1, 2, 3])  # 0 = BPTX, 1 = Fast BCT
        self.lbdataReader.readData()

        if self.verbose:
            print 'Read %d LBDATA Current records' % len(
                self.lbdataReader.data)

    # Information about stable beams
    def loadLHCData(self, iov):
        if self.verbose: print 'Loading LHC information'

        # Instantiate new COOL data reader if not already done
        if self.lhcReader == None:
            self.lhcReader = CoolDataReader('COOLOFL_DCS/CONDBR2',
                                            '/LHC/DCS/FILLSTATE')

        self.lhcReader.setIOVRange(iov[0], iov[1])
        self.lhcReader.readData()

        if self.verbose:
            print 'Read %d LHC records' % len(self.lhcReader.data)

    # Fill the stable beam information in the OflLumiRunData object
    def findStable(self):
        if self.verbose: print 'Finding stable beam periods'

        # First, fill stable beam time periods for this run
        tlo = cool.ValidityKeyMax
        thi = cool.ValidityKeyMin
        self.stableTime = []
        for obj in self.lhcReader.data:
            if obj.payload()['StableBeams'] == 0: continue

            if tlo > thi:  # First stable beams
                tlo = obj.since()
                thi = obj.until()
            elif thi == obj.since():  # Extension of existing stable beams
                thi = obj.until()
            else:  # Not contiguous, add old to list and start again
                self.stableTime.append((tlo, thi))
                tlo = obj.since()
                thi = obj.until()

        if tlo < thi:
            self.stableTime.append((tlo, thi))

        if self.verbose:
            print 'Stable beam periods found:', self.stableTime

    def updateBCIDMask(self, startTime):

        if not self.maskObj.isValid(startTime):

            self.maskObj.clearValidity()

            # Find the proper mask object
            maskData = None
            for mask in self.maskReader.data:
                if not mask.since() <= startTime < mask.until(): continue
                self.maskObj.setMask(mask)
                break

            if not self.maskObj.isValid(startTime):
                return False

        return True

    def updateBunchGroup(self, runlb):

        if not self.bgObj.isValid(runlb):

            self.bgObj.clearValidity()

            # Find the proper BG object
            for bg in self.bgReader.data:
                if not bg.since() <= runlb < bg.until(): continue
                self.bgObj.setBG(bg)
                break

            if not self.bgObj.isValid(runlb):
                return False

        return True

    def parseOpts(self):

        parser = OptionParser(usage="usage: %prog [options]",
                              add_help_option=False)

        parser.add_option("-?",
                          "--usage",
                          action="store_true",
                          default=False,
                          dest="help",
                          help="show this help message and exit")

        parser.add_option("-v",
                          "--verbose",
                          action="store_true",
                          default=self.verbose,
                          dest="verbose",
                          help="turn on verbose output")

        parser.add_option("-r",
                          "--updateRun",
                          dest="runlist",
                          metavar="RUN",
                          help="update specific run, or comma separated list")

        parser.add_option("--noNtuple",
                          action="store_false",
                          default=self.ntuple,
                          dest='ntuple',
                          help="Don't store output ntuple (default: Do)")

        parser.add_option("-o",
                          "--outputDir",
                          dest="outdir",
                          metavar="DIR",
                          default=self.outdir,
                          help='directory for output ntuple (default: %s)' %
                          self.outdir)

        parser.add_option(
            "--noStable",
            action="store_false",
            default=self.stableOnly,
            dest="stable",
            help="turn off stable beams requirements (default: stable only)")

        parser.add_option("--channelList",
                          dest='chanlist',
                          metavar="FILE",
                          default=self.lumiMapFile,
                          help='file to read channel list from (default: %s)' %
                          self.lumiMapFile)

        (options, args) = parser.parse_args()

        if options.help:
            parser.print_help()
            sys.exit()

        self.verbose = options.verbose
        self.outdir = options.outdir
        self.stableOnly = options.stable
        self.lumiMapFile = options.chanlist

        # Parse run list
        if options.runlist != None:

            # Clear the old one
            self.runList = []

            # Can be comma-separated list of run ranges
            runlist = options.runlist.split(',')
            if len(runlist) == 0:
                print 'Invalid run list specified!'
                sys.exit()

            # Go through and check for run ranges
            for runstr in runlist:
                subrunlist = runstr.split('-')

                if len(subrunlist) == 1:  # Single run
                    self.runList.append(int(subrunlist[0]))

                elif len(subrunlist) == 2:  # Range of runs
                    for runnum in range(int(subrunlist[0]),
                                        int(subrunlist[1]) + 1):
                        self.runList.append(runnum)

                else:  # Too many parameters
                    print 'Invalid run list segment found:', runstr
                    sys.exit()

            self.runList.sort()
            if self.verbose:
                print 'Finished parsing run list:',
                for runnum in self.runList:
                    print runnum,
                print

    def fillChannelList(self):

        print 'Reading channel list from', self.lumiMapFile

        # Make sure these are empty
        self.lumiChanList = []
        self.lumiChanNames = dict()

        f = open(self.lumiMapFile)

        for line in f.readlines():

            line = string.lstrip(line)
            # Skip obvious comments
            if len(line) == 0: continue
            if line[0] == "!": continue
            if line[0] == "#": continue

            # Now parse
            tokens = line.split()
            chanID = int(tokens[0])
            chanName = tokens[1]
            print 'Found Channel %d: %s' % (chanID, chanName)
            self.lumiChanList.append(chanID)
            self.lumiChanNames[chanID] = chanName

        # End of loop over channels
        f.close()
bunchDescriptionReader.setIOVRangeFromRun(215589)
bunchDescriptionReader.readData()

bgd = BunchDescription()
for obj in bunchDescriptionReader.data:
    print obj
#    bgd.setValue(obj.payload())
#    print bgd.nBunchD1()

##### BunchDataUtil ##########################################################################
print "--------------------Testing BunchDataUtil----------------"
from ROOT import BunchDataUtil
bunchDataUtilReader = CoolDataReader("COOLONL_TDAQ/COMP200",
                                     "/TDAQ/OLC/LHC/BUNCHDATA")
bunchDataUtilReader.setIOVRange(iovSince, iovUntil)
bunchDataUtilReader.setChannel([0])
bunchDataUtilReader.readData()
count = 0
bdu = BunchDataUtil()
for obj in bunchDataUtilReader.data:
    runlb = obj.payload()['RunLB']
    run = runlb >> 32
    lb = runlb & 0xFFFF
    #    print "lb ", lb
    count += 1
    x1 = bdu.nx1Storage(obj.payload())
    y1 = bdu.ny1Storage(obj.payload())
    x2 = bdu.nx2Storage(obj.payload())
    y2 = bdu.ny2Storage(obj.payload())

    if (y1 == 0):
class OflLumiMaker:
    def __init__(self):

        # Control output level
        self.verbose = False

        # Output root file name
        self.fileName = 'scan.root'

        # Input file with turn information (from Nitesh)
        self.turnFile = None

        # Location of scan data
        self.tdaqDB = 'COOLONL_TDAQ/COMP200'
        self.tdaqMonpDB = 'COOLONL_TDAQ/MONP200'

        self.monp = False  # Use MONP or COMP DB

        self.scanFolder = '/TDAQ/OLC/LHC/SCANDATA'  # vdM Scan parameter data
        self.beamFolder = '/TDAQ/OLC/LHC/BEAMPOSITION'
        self.fillFolder = '/TDAQ/OLC/LHC/FILLPARAMS'
        self.lbdataFolder = '/TDAQ/OLC/LHC/LBDATA'
        self.bunchFolder = '/TDAQ/OLC/LHC/BUNCHDATA'
        self.bunchLumiFolder = '/TDAQ/OLC/BUNCHLUMIS'
        self.lumiFolder = '/TDAQ/OLC/LUMINOSITY'

        # Calendar time range to look for vdM scan data
        self.startTime = '2010-10-01:07:00:00/UTC'
        self.endTime = '2010-10-01:14:00:00/UTC'

        # Time as COOL IOV
        self.startTimeIOV = None
        self.endTimeIOV = None

        self.startLBIOV = None
        self.endLBIOV = None

        # Pointers to CoolDataReader return objects
        self.lhcData = None
        self.lumiData = None
        self.scanData = None
        self.lbdataData = None
        self.bunchdataData = None

        self.ions = False

        # Object to store BCID information
        self.maskObj = BCIDMask()

        # Object to store the bunch group definition
        self.bgObj = BunchGroup()

        # Channels to store
        self.lumiChanList = [
            101, 102, 103, 104, 105, 106, 201, 202, 206, 207, 211, 212, 216,
            217, 221, 222, 226, 1001, 1002, 1004, 1011, 1012, 1014
        ]

    # Called in command-line mode
    def execute(self):

        # Handle command-line switches
        self.parseOpts()

        # Find the scan data
        self.findScanData()

        # Write the data to ntuple
        #nt = ScanNtupleHandler()
        #nt.fileName = self.fileName
        #nt.ions = self.ions

        #nt.open()
        #nt.init()
        #nt.fill(self) # Must pass self reference to get access to data
        #nt.close()

        nt = NtupleHandler()
        nt.chan2011 = False
        nt.chan2012 = True
        nt.fibers = False
        nt.fileName = self.fileName

        nt.open()
        nt.init()

        nfilled = 0

        # Sort raw data and save by [iov][algo]
        rawDict = dict()
        for obj in self.bunchLumi.data:

            channel = obj.channelId()
            iov = obj.since()

            if iov not in rawDict:
                rawDict[iov] = dict()
            rawDict[iov][channel] = obj

        # PMT current data
        pmtDict = dict()
        fibDict = dict()  # Fiber currents
        for obj in self.pmtReader.data:
            if obj.channelId() == 0:
                pmtDict[obj.since()] = obj
            elif obj.channelId() == 1:
                fibDict[obj.since()] = obj
            else:
                print 'Found channel %d in pmtReader!' % obj.channel()

        # Bunch current data
        currDict = dict()
        for obj in self.bunchData.data:
            currDict[obj.since()] = obj

        # Loop over scandata entries
        for plbobj in self.scanData.data:

            iov = plbobj.since()
            iovString = timeString(iov)

            runlb = plbobj.payload()['RunLB']
            run = plbobj.payload()['RunLB'] >> 32
            lb = plbobj.payload()['RunLB'] & 0xFFFFFFFF
            dtime = (plbobj.until() - plbobj.since()) / 1E9

            print '%s (%6d/%3d)  t=%5.2fs  Acq:%5.2f d=%6.3fmm IP:%2d Plane:%2d' % (
                iovString, run, lb, dtime, plbobj.payload()['AcquisitionFlag'],
                plbobj.payload()['NominalSeparation'],
                plbobj.payload()['ScanningIP'],
                plbobj.payload()['ScanInPlane']),

            # Check if beams are moving at IP1
            if run == 0 and plbobj.payload(
            )['ScanningIP'] == 1 and plbobj.payload()['AcquisitionFlag'] < 1.:
                print " --> moving"
                continue
            print

            nt.fillLBData(plbobj)
            nt.lbDataStruct.fStable = True  # Ensure true

            if iov not in rawDict:
                print "Can't find time %s in raw lumi!" % iovString
                continue

            nt.clearBCIDData()

            # Make sure BCID mask is valid
            if not self.updateBCIDMask(iov):
                print "Couldn't find valid BCID mask data for IOV %s!" % iov
                continue

            # Make sure BunchGroup is valid
            #if run > 0 and not self.updateBunchGroup(runlb):
            #    print "Couldn't find valid BunchGroup data for %s (%d/%d)!" % (iov, run, lb)

            if iov in pmtDict:
                nt.lbDataStruct.fPmtA = pmtDict[iov].payload()['CurrentSideA']
                nt.lbDataStruct.fPmtC = pmtDict[iov].payload()['CurrentSideC']
                # print 'Found Run %d LB %d PMTA %f PMTC %f' % (run, lb, nt.lbDataStruct.fPmtA, nt.lbDataStruct.fPmtC)

            if iov in fibDict:
                nt.lbDataStruct.fFibA = fibDict[iov].payload()['CurrentSideA']
                nt.lbDataStruct.fFibC = fibDict[iov].payload()['CurrentSideC']
                # print 'Found Run %d LB %d FIBA %f FIBC %f' % (run, lb, nt.lbDataStruct.fFibA, nt.lbDataStruct.fFibC)

            if iov in currDict:
                nt.fillCurrentData(currDict[iov], self.maskObj)

            for chan in self.lumiChanList:

                if chan not in rawDict[iov]:
                    print "Can't find channel", chan, "in", iovString
                    continue

                rawobj = rawDict[iov][chan]

                if chan != rawobj.channelId():
                    print 'Channel', chan, '!=', rawobj.channelId(), '!'
                    continue

                # Get raw lumi
                normValue = rawobj.payload()['AverageRawInstLum']
                blobValue = rawobj.payload()['BunchRawInstLum']
                bcidVec, rawLumi = unpackBCIDValues(blobValue,
                                                    self.maskObj.coll,
                                                    normValue)

                # dict to hold BCID lumi keyed by BCID
                for i in range(len(rawLumi)):

                    # Check if this is in our bunch group (only really need to fill this once)
                    bcid = bcidVec[i]

                    # Protect against any weird values
                    if bcid >= nt.nBCID:
                        print 'BCID %d found >= %d!' % (bcid, nt.nBCID)
                        continue

                    #if bcid in self.bgObj.bg:
                    #    nt.bcidStruct.fStatus[bcid] = 1
                    #else:
                    #    nt.bcidStruct.fStatus[bcid] = 0

                    # Now need to save bcid, mu, and calibLumi
                    lraw = rawLumi[i]
                    muval = 0.  # Uncalibrated
                    nt.fillBCIDData(chan, bcid, lraw, muval)

                # End of loop over BCIDs

            # End of loop over channels
            nt.tree.Fill()

        # End of loop over IOVs
        nt.close()

    def parseOpts(self):

        parser = OptionParser(usage="usage: %prog [options]",
                              add_help_option=False)

        parser.add_option("-?",
                          "--usage",
                          action="store_true",
                          default=False,
                          dest="help",
                          help="show this help message and exit")

        parser.add_option("-v",
                          "--verbose",
                          action="store_true",
                          default=self.verbose,
                          dest="verbose",
                          help="turn on verbose output")

        parser.add_option("-o",
                          "--output",
                          dest="outfile",
                          metavar="FILE",
                          default=self.fileName,
                          help="specify output ROOT file name - default: " +
                          self.fileName)

        parser.add_option("--startTime",
                          dest="starttime",
                          metavar="TIME",
                          help="set starting time (YYYY-MM-DD:HH:MM:SS)")

        parser.add_option("--endTime",
                          dest="endtime",
                          metavar="TIME",
                          help="set ending time (YYYY-MM-DD:HH:MM:SS)")

        parser.add_option(
            "--ions",
            dest="ions",
            default=self.ions,
            action="store_true",
            help="Use Heavy Ion variable list (not used currently!)")

        parser.add_option(
            "--monp",
            dest="monp",
            default=self.monp,
            action="store_true",
            help=
            "Use MONP200 rather than COMP200 DB for per-bunch lumi - default: "
            + str(self.monp))

        (options, args) = parser.parse_args()

        if options.help:
            parser.print_help()
            sys.exit()

        self.verbose = options.verbose
        self.ions = options.ions
        self.monp = options.monp

        # Parse times
        if options.starttime != None:
            self.startTime = options.starttime
        if options.endtime != None:
            self.endTime = options.endtime

        self.fileName = options.outfile

    def findScanData(self):
        print 'vdMScanMaker.findScanData() called'

        # Based on the (text) starting and ending times, find the available scan entries in COOL

        # First, convert time strings to COOL IOV times
        self.startTimeIOV = timeVal(self.startTime)
        if self.startTimeIOV == None:
            print 'OflLumiMaker.findScanData - Error converting start time', self.startTime, '!'
            sys.exit()

        self.endTimeIOV = timeVal(self.endTime)
        if self.endTimeIOV == None:
            print 'OflLumiMaker.findScanData - Error converting end time', self.endTime, '!'
            sys.exit()

        # Load the scan data
        self.scanData = CoolDataReader(self.tdaqDB, self.scanFolder)
        self.scanData.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        if not self.scanData.readData():
            print 'OflLumiMaker.findScanData - No scan data found in range', self.startTime, 'to', self.endTime, '!'
            sys.exit()

        # for obj in self.scanData.data:
        #     run = obj.payload()['RunLB'] >> 32
        #     lb = obj.payload()['RunLB'] & 0xFFFFFFFF
        #     print '%s (%6d/%3d)  t=%5.2fs  Acq:%5.2f d=%6.3fmm IP:%2d Plane:%2d' % (timeString(obj.since()), run, lb, (obj.until()-obj.since())/1E9, obj.payload()['AcquisitionFlag'], obj.payload()['NominalSeparation'], obj.payload()['ScanningIP'], obj.payload()['ScanInPlane'])

        # Load the beam positions
        # self.beamData = CoolDataReader(self.tdaqDB, self.beamFolder)
        # self.beamData.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        # if not self.beamData.readData():
        #     print 'OflLumiMaker.findScanData - No beam separation data found in range', self.startTime, 'to', self.endTime,'!'
        #     sys.exit()

        # if self.verbose:
        #     for obj in self.beamData.data:
        #         run = obj.payload()['RunLB'] >> 32
        #         lb = obj.payload()['RunLB'] & 0xFFFFFFFF
        #         print run, lb, obj.payload()['B1_PositionAtIP_H'], obj.payload()['B1_PositionAtIP_V'], obj.payload()['B2_PositionAtIP_H'], obj.payload()['B2_PositionAtIP_V']

        # Load the fill parameters
        self.fillData = CoolDataReader(self.tdaqDB, self.fillFolder)
        self.fillData.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        if not self.fillData.readData():
            print 'OflLumiMaker.findScanData - No fill parameters data found in range', self.startTime, 'to', self.endTime, '!'
            sys.exit()

        if self.verbose:
            for obj in self.fillData.data:
                print obj.payload()['Beam1Bunches'], obj.payload(
                )['Beam2Bunches'], obj.payload()['LuminousBunches']

        # Load the lbdata parameters
        self.lbdataData = CoolDataReader(self.tdaqDB, self.lbdataFolder)
        self.lbdataData.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        if not self.lbdataData.readData():
            print 'OflLumiMaker.findScanData - No LBDATA data found in range', self.startTime, 'to', self.endTime, '!'
            sys.exit()

        if self.verbose:
            for obj in self.lbdataData.data:
                print 'LBDATA', obj.channelId(), obj.payload(
                )['Beam1Intensity'], obj.payload()['Beam2Intensity']

        # Load the BUNCHDATA parameters
        if self.monp:
            self.bunchData = CoolDataReader(self.tdaqMonpDB, self.bunchFolder)
        else:
            self.bunchData = CoolDataReader(self.tdaqDB, self.bunchFolder)

        self.bunchData.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        self.bunchData.setChannelId(1)  # 0 = BPTX, 1 = Fast BCT

        if not self.bunchData.readData():
            print 'OflLumiMaker.findScanData - No BUNCHDATA data found in range', self.startTime, 'to', self.endTime, '!'
            sys.exit()

        if self.verbose:
            for obj in self.bunchData.data:
                print 'BUNCHDATA', obj.channelId(), obj.payload(
                )['B1BunchAverage'], obj.payload()['B2BunchAverage']

        # Load the BUNCHLUMI parameters
        if self.monp:
            self.bunchLumi = CoolDataReader(self.tdaqMonpDB,
                                            self.bunchLumiFolder)
        else:
            self.bunchLumi = CoolDataReader(self.tdaqDB, self.bunchLumiFolder)

        self.bunchLumi.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        if not self.bunchLumi.readData():
            print 'OflLumiMaker.findScanData - No BUNCHLUMIS data found in range', self.startTime, 'to', self.endTime, '!'
            sys.exit()

        if self.verbose:
            for obj in self.bunchLumi.data:
                print 'BUNCHLUMI', obj.channelId(), obj.payload(
                )['AverageRawInstLum']

        # Load the luminosity data
        self.lumiData = CoolDataReader(self.tdaqDB, self.lumiFolder)
        self.lumiData.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        if not self.lumiData.readData():
            print 'OflLumiMaker.findScanData - No LUMINOSITY data found in range', self.startTime, 'to', self.endTime, '!'
            sys.exit()

        # Load the Lucid currents
        self.pmtReader = CoolDataReader('COOLONL_TDAQ/COMP200',
                                        '/TDAQ/OLC/LUCIDCURRENTS')
        self.pmtReader.setIOVRange(self.startTimeIOV, self.endTimeIOV)
        self.pmtReader.setChannel([0, 1])  # Load total PMT and fiber currents
        if not self.pmtReader.readData():
            print 'No PMT current data found in range', self.startTime, 'to', self.endTime, '!'

        if self.verbose:
            for obj in self.pmtReader.data:
                print 'LUCIDCURRENTS', obj.channelId(), obj.payload(
                )['CurrentSideA'], obj.payload()['CurrentSideC']

    def updateBCIDMask(self, startTime):

        if not self.maskObj.isValid(startTime):

            self.maskObj.clearValidity()

            # Find the proper mask object
            maskData = None
            for mask in self.fillData.data:
                if not mask.since() <= startTime < mask.until(): continue
                self.maskObj.setMask(mask)
                break

            if not self.maskObj.isValid(startTime):
                return False

        return True

    def updateBunchGroup(self, runlb):

        if not self.bgObj.isValid(runlb):

            self.bgObj.clearValidity()

            # Find the proper BG object
            for bg in self.bgReader.data:
                if not bg.since() <= runlb < bg.until(): continue
                self.bgObj.setBG(bg)
                break

            if not self.bgObj.isValid(runlb):
                return False

        return True