X0=0.0,
                                           transpose=False)

vCmdName = sysCL.OutputName[:3]
vCmd = out[:3]

zName = sysCL.OutputName[-7:]
z = out[-7:]

#v = -(vCmd - vExc)
v = vCmd  # FIXIT

#%% Estimate the frequency response function
optSpec = FreqTrans.OptSpect(dftType='czt',
                             freqRate=freqRate_rps,
                             smooth=('box', 3),
                             winType=('tukey', 0.0),
                             detrendType='Linear',
                             interpType='linear')

# Excited Frequencies per input channel
optSpec.freq = freqChan_rps
optSpec.freqInterp = freqExc_rps

# Null Frequencies
optSpec.freqNull = freqGap_rps
optSpec.freqNullInterp = True

# FRF Estimate
freq_rps, Txy, Cxy, Pxx, Pyy, Pxy, TxyUnc, PxxNull, Pnn = FreqTrans.FreqRespFuncEstNoise(
    vExc, v, optSpec)
# _       , Txy, Cxy, _  , Pvv, Pev = FreqTrans.FreqRespFuncEst(vExc, v, optSpec)
Exemplo n.º 2
0
plt.figure()
plt.subplot(3,1,1)
plt.plot(time_s, sig); plt.grid()
plt.ylabel('Signal (nd)');
plt.subplot(3,1,2)
plt.plot(time_s, ampChirp); plt.grid()
plt.ylabel('ampitude (nd)');
plt.subplot(3,1,3)
plt.plot(time_s, freqChirp_rps * rps2hz); plt.grid()
plt.xlabel('Time (s)'); plt.ylabel('Frequency (Hz)')
plt.show()


#%% Plot the Excitation Spectrum
## Compute Spectrum of each channel
optSpect = FreqTrans.OptSpect(freqRate = freqRate_hz)

freq_hz, sigDft, Psd_mag = FreqTrans.Spectrum(sig, optSpect)
Psd_dB = 20*np.log10(Psd_mag)

## Plot Spectrum
plt.figure()
plt.plot(freq_hz[0], Psd_dB[0])
plt.xlabel('frequency (Hz)');
plt.ylabel('Spectrum (dB)');
plt.grid()
plt.show()


#%% Create the output for JSON config
timeFinal_s = time_s[-1]
_, r, _ = control.forced_response(sysR, T = time_s, U = p)
r = r + rExc

uExc = np.zeros_like(rExc)

m = np.random.normal([0.0, 0.0], mSigma, size = (len(time_s), 2)).T
_, n, _ = control.forced_response(sysN, T = time_s, U = m)

inCL = np.concatenate((r, uExc, n))
_, outCL, _ = control.forced_response(sysCL, T = time_s, U = inCL)
uCtrl = outCL[0:2]
z = outCL[2:4]


#%% Estimate the frequency response function
optSpec = FreqTrans.OptSpect(dftType = 'czt', freqRate = freqRate_rps, smooth = ('box', 3), winType = 'bartlett', detrendType = 'linear')

# Excited Frequencies per input channel
optSpec.freq = freqChan_rps
optSpec.freqInterp = freqExc_rps

# Null Frequencies
optSpec.freqNull = freqGap_rps
optSpec.freqNullInterp = True

# FRF Estimate
freq_rps, Txy, Cxy, Sxx, Syy, Sxy, TxyUnc, SxxNull, Snn = FreqTrans.FreqRespFuncEstNoise(rExc, z, optSpec)
freq_hz = freq_rps * rps2hz

I2 = np.repeat([np.eye(2)], Txy.shape[-1], axis=0).T
ToEstNom = Txy # Txy = Sxy / Sxx
Exemplo n.º 4
0
freqNat_rps = freqNat_hz * hz2rps
objServo = Servo.Servo(1/freqRate_hz, freqNat_rps = freqNat_rps, damp = 0.8)
objServo.freeplay = 1.0
objServo.timeDelay_s = 50 / 1000 # this ends up rounded to an integer (timeDelay_s * freqRate_hz)
objServo.vLim = 560

np.random.seed(584)
rStd = [0.5]
r = np.random.normal([0.0], rStd, size = (len(time_s), 1)).T

nStd = [0.5]
n = np.random.normal([0.0], nStd, size = (len(time_s), 1)).T


#%% Setup FRE
optSpec = FreqTrans.OptSpect(dftType = 'czt', scaleType = 'density', freqRate = freqRate_hz * hz2rps, smooth = ('box', 3), winType = 'rect', detrendType = 'linear')

# Excited Frequencies per input channel
optSpec.freq = freqChan_rps
optSpec.freqInterp = freqExc_rps

# Null Frequencies
optSpec.freqNull = freqGap_rps
optSpec.freqNullInterp = True


#%% Simulate
timeRefine_s = []
ampList = []
pCmdRefine = []
pMeasRefine = []
Exemplo n.º 5
0
    ax[iChan].set_xlabel('Time (s)')

if True:
    fig, ax = plt.subplots(ncols=1, nrows=numChan, sharex=True)
    for iChan in range(0, numChan):
        for iElem in sigIndx[iChan]:
            ax[iChan].plot(time_s, sigElem[iElem])
        ax[iChan].set_ylabel('Amplitude (nd)')
        ax[iChan].grid(True)
    ax[iChan].set_xlabel('Time (s)')


#%% Plot the Excitation Spectrum

## Compute Spectrum of each channel
optFFT = FreqTrans.OptSpect(freqRate = freqRate_hz * hz2rps, winType = ('tukey', 0.0), smooth = ('box', 1))
optCZT = FreqTrans.OptSpect(dftType = 'czt', freqRate = freqRate_hz * hz2rps, winType = ('tukey', 0.0), smooth = ('box', 1))

freq_fft = []
P_dB_fft = []
freq_czt = []
P_dB_czt = []

for iChan, sig in enumerate(sigList):
    freq_rps_fft, _, P_fft  = FreqTrans.Spectrum(sig, optFFT)
    freq_fft.append(freq_rps_fft * rps2hz)
    P_dB_fft.append(20*np.log10(P_fft))

    optCZT.freq = freqElem_rps[sigIndx[iChan]]
    freq_rps_czt, _, P_czt  = FreqTrans.Spectrum(sig, optCZT)
    freq_czt.append(freq_rps_czt * rps2hz)
Exemplo n.º 6
0
    for iSig, sigOut in enumerate(sigOutList):
        outSig[iSig] = seg[sigOut]
#        outSig[iSig] = seg['Surf'][sigOut]

#        plt.plot(oDataSegs[iSeg]['time_s'], outSig[iSig])

    outList.append(outSig)

#%% Estimate the frequency response function
# Define the excitation frequencies
freqRate_hz = 50
freqRate_rps = freqRate_hz * hz2rps
optSpec = FreqTrans.OptSpect(dftType='czt',
                             freqRate=freqRate_rps,
                             smooth=('box', 3),
                             winType=('tukey', 0.2),
                             detrendType='Linear')

# Excited Frequencies per input channel
optSpec.freq = np.asarray(freqExc_rps)
optSpec.freqInterp = np.sort(optSpec.freq.flatten())

# Null Frequencies
freqGap_rps = optSpec.freq.flatten()[0:-1] + 0.5 * np.diff(
    optSpec.freq.flatten())
optSpec.freqNull = freqGap_rps
optSpec.freqNullInterp = True

# FRF Estimate
freq_rps = []
Exemplo n.º 7
0
plt.figure()
plt.title(str(W_theshold_dB) + 'dB Bandwidth')
#overSamp = numSampList / numSampMin
plt.loglog(numSampList, np.asarray(binList), '-*')
plt.xlabel('Number of Samples')
plt.ylabel('Number of bins')
plt.grid('on')
plt.show

#%% Signal length - Window only
numSampList = np.arange(100, 1001, 100)
numSampMax = int(np.max(numSampList))
numSampMin = int(np.min(numSampList))
overSamp = numSampList / numSampMin

optSpec = FreqTrans.OptSpect(dftType = 'czt', freqRate = 1 * hz2rps, smooth = ('box', 1))
#optSpec.scaleType = 'density'
optSpec.winType = ('tukey', 0.0)
optSpec.freq = np.linspace(0, 0.05*np.pi, numSampMin-1)

sig = np.ones(numSampMax)
noiseSamples = np.random.randn(numSampMax)
noiseLev = 0.0
sig += noiseLev * noiseSamples

P_theshold_dB = -12
plt.figure()
binList = []
for numSamp in numSampList:
    numSamp = int(numSamp)
    
Exemplo n.º 8
0
                             color='r',
                             label='Hann Approximation')

ax = fig.get_axes()

ax[0].set_xscale('linear')
ax[0].set_xlim(left=0.0, right=10)
ax[0].set_xlabel('Normalized Bin')
ax[0].set_ylim(bottom=-70, top=10)
ax[0].set_ylabel('Normalized Power Magnitude [dB]')
ax[0].grid(True)
ax[0].legend()

#%% Validation with Spectrum
optTemp = FreqTrans.OptSpect(dftType='dftMat',
                             scaleType='density',
                             freqRate=freqRate_rps,
                             smooth=('box', 1))
optTemp.winType = ('tukey', 0.0)
#optTemp.winType = 'bartlett'
optTemp.freq = freqChan_rps
optTemp.freqInterp = freqExc_rps

optTempN = FreqTrans.OptSpect(dftType='dftMat',
                              scaleType='density',
                              freqRate=freqRate_rps,
                              smooth=('box', 1))
optTempN.winType = ('tukey', 0.0)
#optTempN.winType = 'bartlett'
optTempN.freq = np.vstack((freqGap_rps, freqGap_rps, freqGap_rps))
optTemp.freqInterp = freqExc_rps
Exemplo n.º 9
0
    plt.plot(oDataSegs[iSeg]['time_s'], oDataSegs[iSeg]['vIas_mps'])

#    plt.plot(oDataSegs[iSeg]['time_s'], vExcList[iSeg][0])
#    plt.plot(oDataSegs[iSeg]['time_s'], vExcList[iSeg][1])
#    plt.plot(oDataSegs[iSeg]['time_s'], vExcList[iSeg][2])
#    plt.plot(oDataSegs[iSeg]['time_s'], vFbList[iSeg][0])
#    plt.plot(oDataSegs[iSeg]['time_s'], vFbList[iSeg][1])
#    plt.plot(oDataSegs[iSeg]['time_s'], vFbList[iSeg][2])

#%% Estimate the frequency response function
# Define the excitation frequencies
freqRate_hz = 50
freqRate_rps = freqRate_hz * hz2rps
optSpec = FreqTrans.OptSpect(dftType='czt',
                             freqRate=freqRate_rps,
                             smooth=('box', 3),
                             winType=('tukey', 0.2),
                             detrendType='Linear')

# Excited Frequencies per input channel
optSpec.freq = np.asarray(freqExc_rps)
optSpec.freqInterp = np.sort(optSpec.freq.flatten())

# Null Frequencies
freqGap_rps = optSpec.freq.flatten()[0:-1] + 0.5 * np.diff(
    optSpec.freq.flatten())
optSpec.freqNull = freqGap_rps
optSpec.freqNullInterp = True

# FRF Estimate
T = []
Exemplo n.º 10
0
x, ampChirpX, freqChirp_rps = GenExcite.Chirp(freqInit_rps,
                                              freqFinal_rps,
                                              time_s,
                                              ampInit,
                                              ampFinal,
                                              freqType='linear',
                                              ampType='linear',
                                              initZero=1)

# Simulate the excitation through the system
time_s, y, _ = signal.lsim(sys, x, time_s)
y = np.atleast_2d(y)

# Estimate the transfer function
optSpec = FreqTrans.OptSpect(freqRate=freqRate_rps,
                             smooth=('box', 1),
                             winType=('tukey', 0.0))
freq_rps, Txy, Cxy, Pxx, Pyy, Pxy = FreqTrans.FreqRespFuncEst(x, y, optSpec)
gain_dB, phase_deg = FreqTrans.GainPhase(Txy)
freq_hz = freq_rps * rps2hz

freq_hz = np.squeeze(freq_hz)
gain_dB = np.squeeze(gain_dB)
phase_deg = np.unwrap(np.squeeze(phase_deg) * deg2rad) * rad2deg
Cxy = np.squeeze(Cxy)

#%% Multisine signal with CZT
numChan = 1
numCycles = 1

freqMinDes_rps = freqInit_rps * np.ones(numChan)
Exemplo n.º 11
0
        ax[iChan].grid(True)
    ax[iChan].set_xlabel('Time (s)')

if True:
    fig, ax = plt.subplots(ncols=1, nrows=numChan, sharex=True)
    for iChan in range(0, numChan):
        for iElem in sigIndx[iChan]:
            ax[iChan].plot(time_s, sigElem[iElem])
        ax[iChan].set_ylabel('Amplitude (nd)')
        ax[iChan].grid(True)
    ax[iChan].set_xlabel('Time (s)')

#%% Plot the Excitation Spectrum

## Compute Spectrum of each channel
optFFT = FreqTrans.OptSpect(freqRate=freqRate_hz * hz2rps)
optMAT = FreqTrans.OptSpect(dftType='dftmat', freqRate=freqRate_hz * hz2rps)
optCZT = FreqTrans.OptSpect(dftType='czt', freqRate=freqRate_hz * hz2rps)

freq_fft = []
P_dB_fft = []
freq_mat = []
P_dB_mat = []
freq_czt = []
P_dB_czt = []

for iChan, sig in enumerate(sigList):
    freq_rps_fft, _, P_fft = FreqTrans.Spectrum(sig, optFFT)
    freq_fft.append(freq_rps_fft * rps2hz)
    P_dB_fft.append(20 * np.log10(P_fft))
Exemplo n.º 12
0
        v = max(v, np.abs(objServo.v))
        a = max(a, np.abs(objServo.a))
        av = max(av, a*v)

    print(amp, p, v, a, av)

    pCmdList.append(pCmd)
    pOutList.append(pOut)

    if True:
        plt.figure(1)
        plt.plot(time_s, pCmd, time_s, pOut)


#%% Plot the Excitation Spectrum
optSpec = FreqTrans.OptSpect(dftType = 'czt', freqRate = freqRate_hz * hz2rps, freq = freqExc_rps, smooth = ('box', 3), winType = 'rect')

plt.figure(2)
TxyList = []
CxyList = []
PxxList = []
PyyList = []
PxyList = []
for i, pOut in enumerate(pOutList):
    pCmd = pCmdList[i]
    freq_rps, Txy, Cxy, Pxx, Pyy, Pxy = FreqTrans.FreqRespFuncEst(pCmd, pOut, optSpec)
    gain_dB, phase_deg = FreqTrans.GainPhase(Txy)
    freq_hz = freq_rps * rps2hz

    freq_hz = np.squeeze(freq_hz)
    gain_dB = np.squeeze(gain_dB)