Exemplo n.º 1
0
 def __init__(self, dascore):
     if not dascore:
         raise Exception("dascore needed")
     self.kws = KeywordSearch(dascore)
     config = das_readconfig()
     self.colored_scorebar = \
         config['keyword_search'].get('colored_scorebar', False)
Exemplo n.º 2
0
 def __init__(self, dascore):
     if not dascore:
         raise Exception("dascore needed")
     self.kws = KeywordSearch(dascore)
     config = das_readconfig()
     self.colored_scorebar = \
         config['keyword_search'].get('colored_scorebar', False)
Exemplo n.º 3
0
    def __init__(cls, name, bases, d):
        type.__init__(cls, name, bases, d)

        # set up only once
        if hasattr(cls, 'global_dbs_inst') and cls.global_dbs_inst:
            return

        print('setUp in metaclass: getting dbs manager ' \
              '(and fetching datasets if needed)')
        cls.global_dbs_mngr = initialize_global_dbs_mngr(update_required=False)
        cls.global_dbs_inst = get_global_dbs_inst()
        cls.kws = KeywordSearch(dascore=DASCore(multitask=False))
        dasconfig = das_readconfig()
        cls.timeout = dasconfig['keyword_search']['timeout']
Exemplo n.º 4
0
class KeywordSearchHandler(object):
    """
    handles the keyword search and presentation of its results
    """
    def __init__(self, dascore):
        if not dascore:
            raise Exception("dascore needed")
        self.kws = KeywordSearch(dascore)
        config = das_readconfig()
        self.colored_scorebar = \
            config['keyword_search'].get('colored_scorebar', False)

    @classmethod
    def _get_link_to_query(cls, query, kw_query=''):
        """
        returns a link to given query taking into account other parameters
        already present in cherry.request (e.g. instance, page size, etc)
        """
        return url_extend_params(url='/das/request',
                                 input=query,
                                 kwquery=kw_query)

    def _prepare_score_bar(self, q):
        """
        prepares the score bar for each query (max_w & w is in pixels)
        """
        max_w = 50
        min_w = 3
        score = max(min(q['score'], 1.0), 0.0)
        w = math.floor(
            (max_w - min_w) * q['scorebar_normalized_score']) + min_w
        color_class = (score < 0.35) and 'low' or \
                      (score < 0.60) and 'avg' or 'high'
        return {
            'max_w': max_w,
            'w': w,
            'style': self.colored_scorebar and color_class or 'no-color',
            'score': q['score']
        }

    @classmethod
    def _prepare_trace(cls, q):
        """
        used for debugging, is passed as escaped html string
        to be later used by javascript (implementation doesn't matter much)
        """
        t = list(q['trace'])
        #t.sort()
        thtml = \
            '<ul style="width: 500px;background-color: #fff;"><li>' + \
            '</li><li>'.join(str(item) for item in t) + \
            '</li></ul>' + \
            'score: {0:.2f}'.format(q['score'])

        return cgi.escape(thtml, quote=True)

    @classmethod
    def _get_top_entities(cls, proposed_queries, top_k=5):
        """ returns k top-scoring  entities """

        best_scores = {}
        for r in proposed_queries:
            best_scores[r['entity']] = max(r['score'],
                                           best_scores.get(r['entity']))

        best_scores = sorted(best_scores.items(),
                             key=lambda g_score: g_score[1],
                             reverse=True)
        hi_score_result_types = [g for (g, _) in best_scores[:top_k]]

        if len(hi_score_result_types) < 2:
            return []

        hi_score_result_types.append('any')
        return hi_score_result_types

    def handle_search(self,
                      webm,
                      query,
                      dbs_inst,
                      is_ajax=False,
                      timeout=5,
                      show_score=False):
        """
        performs the search, and renders the search results
        """
        err, proposed_queries = self.kws.search(query,
                                                dbs_inst=dbs_inst,
                                                timeout=timeout)

        # get top 5 entity types
        hi_score_result_types = self._get_top_entities(proposed_queries) \
            if len(proposed_queries) > 6 else False

        # process the results
        for q in proposed_queries:
            q['link'] = self._get_link_to_query(q['result'], kw_query=query)
            q['trace'] = self._prepare_trace(q)
            q['bar'] = self._prepare_score_bar(q)

        # TODO: add user info to logs if available
        # (e.g. certificate auth, to filter out queries submitted by developers)

        return webm.templatepage('kwdsearch_results',
                                 is_ajax=is_ajax,
                                 proposed_queries=proposed_queries,
                                 hi_score_result_types=hi_score_result_types,
                                 err=err,
                                 show_score=show_score)
Exemplo n.º 5
0
class KeywordSearchHandler(object):
    """
    handles the keyword search and presentation of its results
    """
    def __init__(self, dascore):
        if not dascore:
            raise Exception("dascore needed")
        self.kws = KeywordSearch(dascore)
        config = das_readconfig()
        self.colored_scorebar = \
            config['keyword_search'].get('colored_scorebar', False)

    @classmethod
    def _get_link_to_query(cls, query, kw_query=''):
        """
        returns a link to given query taking into account other parameters
        already present in cherry.request (e.g. instance, page size, etc)
        """
        params = cherrypy.request.params.copy()
        params['input'] = query

        # will see in logs which suggestion was selected by user for kw_query
        if kw_query:
            params['kwquery'] = kw_query

        das_url = '/das/request?' + urllib.urlencode(params)
        return das_url

    def _prepare_score_bar(self, q):
        """
        prepares the score bar for each query (max_w & w is in pixels)
        """
        max_w = 50
        min_w = 3
        score = max(min(q['score'], 1.0), 0.0)
        w = math.floor((max_w - min_w) * q['scorebar_normalized_score']) + min_w
        color_class = (score < 0.35) and 'low' or \
                      (score < 0.60) and 'avg' or 'high'
        return {'max_w': max_w,
                'w': w,
                'style': self.colored_scorebar and color_class or 'no-color',
                'score': q['score']}

    @classmethod
    def _prepare_trace(cls, q):
        """
        used for debugging, is passed as escaped html string
        to be later used by javascript (implementation doesn't matter much)
        """
        t = list(q['trace'])
        #t.sort()
        thtml = \
            '<ul style="width: 500px;background-color: #fff;"><li>' + \
            '</li><li>'.join(str(item) for item in t) + \
            '</li></ul>' + \
            'score: {0:.2f}'.format(q['score'])

        return cgi.escape(thtml,  quote=True)

    @classmethod
    def _get_top_entities(cls, proposed_queries, top_k=5):
        """ returns k top-scoring  entities """

        best_scores = {}
        for r in proposed_queries:
            best_scores[r['entity']] = max(r['score'],
                                           best_scores.get(r['entity']))

        best_scores = sorted(best_scores.items(),
                             key=lambda (g, score): score, reverse=True)
        hi_score_result_types = [g for (g, score) in best_scores[:top_k]]

        if len(hi_score_result_types) < 2:
            return []

        hi_score_result_types.append('any')
        return hi_score_result_types

    def handle_search(self, webm, query, dbs_inst, is_ajax=False, timeout=5,
                      show_score=False):
        """
        performs the search, and renders the search results
        """
        err, proposed_queries = self.kws.search(query, dbs_inst=dbs_inst,
                                                timeout=timeout)

        # get top 5 entity types
        hi_score_result_types = self._get_top_entities(proposed_queries) \
            if len(proposed_queries) > 6 else False

        # process the results
        for q in proposed_queries:
            q['link'] = self._get_link_to_query(q['result'], kw_query=query)
            q['trace'] = self._prepare_trace(q)
            q['bar'] = self._prepare_score_bar(q)

        # TODO: add user info to logs if available
        # (e.g. certificate auth, to filter out queries submitted by developers)

        return webm.templatepage('kwdsearch_results',
                                 is_ajax=is_ajax,
                                 proposed_queries = proposed_queries,
                                 hi_score_result_types = hi_score_result_types,
                                 err=err,
                                 show_score=show_score)