Exemplo n.º 1
0
from sklearn.utils import shuffle
from sklearn.neighbors import KNeighborsClassifier

if __name__ == "__main__":

    from __test_my_layer import MyLayerV1

    e_len = 128
    batch_size = 128

    db = INFO['fashion']
    shape = db['shape']
    n_cls = db['n_cls']

    X_train, X_test, y_train, y_test = get_fewshot(*load_data('fashion'),
                                                   shot=None)

    X_train, y_train = shuffle(X_train, y_train)
    X_test, y_test = shuffle(X_test, y_test)

    X_train = reshape(X_train / 255.0, shape)
    X_test = reshape(X_test / 255.0, shape)

    # %% CNN My Dual Model
    in_layer = layers.Input(shape=shape)

    conv_01 = layers.Conv2D(32, (3, 3))(in_layer)
    batch_01 = layers.BatchNormalization()(conv_01)
    active_01 = layers.Activation('relu')(batch_01)
Exemplo n.º 2
0
from tensorflow.keras import backend as K
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import EarlyStopping

from sklearn.neighbors import KNeighborsClassifier

if __name__ == "__main__":

    embed_size = 128

    db = INFO['fashion']
    shape = db['shape']
    n_cls = db['n_cls']

    X_train, X_test, y_train, y_test = load_data('fashion')

    X_train = reshape(X_train / 255.0, shape)
    X_test = reshape(X_test / 255.0, shape)

    # %% CNN My Dual Model
    in_layer = layers.Input(shape=shape)

    conv_01 = layers.Conv2D(32, (3, 3))(in_layer)
    batch_01 = layers.BatchNormalization()(conv_01)
    active_01 = layers.Activation('relu')(batch_01)

    conv_02 = layers.Conv2D(32, (3, 3))(active_01)
    batch_02 = layers.BatchNormalization()(conv_02)
    active_02 = layers.Activation('relu')(batch_02)
Exemplo n.º 3
0
# %% Initialization
way = -1
shot = None

s_ver = 'V01'
build = 'MyModelV2'

db = 'mnist'
n_cls = INFO[db]['n_cls']
shape = INFO[db]['shape']

rpt = Reporter(file_dir='./my_report.log')

# %% Dataset loading
data = load_data(db)

X_train, X_test, y_train, y_test = get_fewshot(*data, shot, way)

X_train, y_train = shuffle(X_train, y_train)
X_test, y_test = shuffle(X_test, y_test)

X_train = reshape(X_train / 255.0, shape)
X_test = reshape(X_test / 255.0, shape)

# %% Generator section
traingen = MyTriplet(X_train, y_train, n_cls)
validgen = MyTriplet(X_test, y_test, n_cls)

# %% Schema creation
schema = load_schema(s_ver)