Exemplo n.º 1
0
def makeTestPlot():
    hkey = 'DSA-deltaPhi'
    HISTS = HG.getAddedSignalHistograms(FILES['2Mu2J'], '2Mu2J',
                                        ('deltaPhi', ))
    DATAHISTS, DataPConfig = HG.getDataHistograms(FILES['Data'], hkey)

    HISTS[hkey] = HISTS['deltaPhi']

    pS = Plotter.Plot(HISTS[hkey], 'H#rightarrow2X#rightarrow2#mu signal', 'l',
                      'hist')
    pD = Plotter.Plot(DATAHISTS[hkey]['data'], *DataPConfig[hkey]['data'])

    canvas = Plotter.Canvas(lumi='2#mu signal + 10% of 2016 data', logy=True)

    canvas.addMainPlot(pS)
    canvas.addMainPlot(pD)

    pS.setColor(R.kBlue, which='L')

    canvas.makeLegend(lWidth=.25)
    canvas.legend.resizeHeight()
    canvas.legend.moveLegend(X=-.1)

    canvas.firstPlot.SetMinimum(0.5)
    canvas.firstPlot.SetMaximum(50000.)
    canvas.firstPlot.setTitles(Y='Long-Lived Candidates')

    line = R.TLine(R.TMath.Pi() / 2., 0.5, R.TMath.Pi() / 2., 50000.)
    line.Draw()
    line.SetLineStyle(2)

    RT.addBinWidth(canvas.firstPlot)
    canvas.cleanup('deltaPhi.pdf')
Exemplo n.º 2
0
def makePlot(mtype, vtype, quantity, which):
    hkey = '{}_{}_{}'.format(mtype, vtype, quantity)
    if which == 'Signal':
        HISTS = HG.getAddedSignalHistograms(FILES['Signal'], '2Mu2J', hkey)
        h = HISTS[hkey]
    elif which == 'Data':
        HISTS, PConfig = HG.getDataHistograms(FILES['Data'],
                                              hkey,
                                              addFlows=False)
        h = HISTS[hkey]['data']
    p = Plotter.Plot(h, '', '', 'hist')
    c = Plotter.Canvas()
    c.addMainPlot(p)
    p.setColor(R.kBlue)
    if hkey == 'Prox_PD_deltaR' or hkey == 'Prox_PP_deltaR':
        s = 0
        print hkey, which
        for ibin in xrange(1, p.GetNbinsX() + 1):
            s += p.GetBinContent(ibin)
            print p.GetXaxis().GetBinLowEdge(ibin), p.GetBinContent(ibin), s
    s = c.makeStatsBox(p, R.kBlue)
    c.cleanup(hkey + '_' + which + '.pdf')
Exemplo n.º 3
0
def fillData(fs, sp, quantity, factor):
    # get histograms
    s = HG.getHistogram(FILES['Signal'], (fs, sp), '{}_{}'.format(quantity, factor)).Clone()
    DHists, DPConfig = HG.getDataHistograms(FILES['Data'], '{}_1'.format(quantity), addFlows=False)
    b = DHists['{}_1'.format(quantity)]['data']

    if SignalInfo[sp]['sigmaBLimit'] == 0.: return

    s.Scale(ScaleFactor(sp, factor, 1.e-2))

    # get cumulatives
    sCum = s.GetCumulative(CONFIG[quantity]['forward'])
    bCum = b.GetCumulative(CONFIG[quantity]['forward'])

    # fill f.o.m. histogram, and keep track of max f.o.m. and cut value
    nBins = sCum.GetNbinsX()
    xAxis = sCum.GetXaxis()

    fom_max = 0.
    opt_cut = 0.
    opt_s   = 0.
    opt_b   = 0.

    for ibin in range(1,nBins+1):
        S, B, cutVal, FOMs = calculateFOM(s, b, sCum, bCum, nBins, ibin, xAxis, CONFIG[quantity]['forward'])
        if FOMs[FIGURE_OF_MERIT] > fom_max:
            fom_max = FOMs[FIGURE_OF_MERIT]
            opt_cut = cutVal
            opt_s   = S
            opt_b   = B

    # for each (mH, mX) pair, store the xvalue: cTau (mm) / 10 -> cm, divided by factor
    # this will run for each sample point, meaning afterwards, the (mH, mX) x and y lists
    # will have len(factors) * 2 (maybe 3 if we put the small lifetimes in) points
    masses = (sp[0], sp[1])
    cTau = sp[-1]
    DATA[masses][quantity]['x'].append(cTau/10./factor)
    DATA[masses][quantity]['y'].append(opt_cut)
Exemplo n.º 4
0
def fillData(fs, sp, quantity, hkey):
    # get histograms
    s = HG.getHistogram(FILES['Signal'], (fs, sp), hkey)
    DHists, DPConfig = HG.getDataHistograms(FILES['Data'],
                                            hkey,
                                            addFlows=False)
    b = DHists[hkey]['data']

    if SignalInfo[sp]['sigmaBLimit'] == 0.: return

    s.Scale(ScaleFactor(sp, sigmaB=1.e-2))

    # get cumulatives
    sCum = s.GetCumulative(CONFIG[quantity]['forward'])
    bCum = b.GetCumulative(CONFIG[quantity]['forward'])

    # fill f.o.m. histogram, and keep track of max f.o.m. and cut value
    nBins = sCum.GetNbinsX()
    xAxis = sCum.GetXaxis()
    data = []

    for ibin in range(1, nBins + 1):
        S, B, cutVal, FOMs = calculateFOM(s, b, sCum, bCum, nBins, ibin, xAxis,
                                          CONFIG[quantity]['forward'])
        for gridPoint in CONFIG[quantity]['VALS']:
            if abs(cutVal - gridPoint) < .01:
                data.append({
                    'cut': cutVal,
                    'ZBi': FOMs['ZBi'],
                    'ZPL': FOMs['ZPL'],
                    's': S,
                    'b': B
                })
                break

    DATA[hkey] = data
Exemplo n.º 5
0
        'hMoreLxySig',
        'hLessDeltaPhi',
        'hMoreDeltaPhi',
    ],
    'Full': ['LxySig_IDPHI', 'LxySig_DPHI'],
}

DHists = {'Prompt': {}, 'Full': {}}
for which in keyList:
    if which == 'Prompt':
        for key in keyList[which]:
            DHists[which][key] = HG.getHistogram(FILES[which], 'Data',
                                                 key).Clone()
    else:
        D, P = HG.getDataHistograms(FILES[which],
                                    keyList[which],
                                    addFlows=False)
        DHists[which] = {key: D[key]['data'] for key in D}

#### Correction factors from "inverted PAT" CR and SR ####

# these are 0.5 bins

#DHists['Prompt']['hLessLxySig'].GetXaxis().SetRange(1, 12)
#DHists['Prompt']['hMoreLxySig'].GetXaxis().SetRange(1, 12)

# now they're 1 bins
DHists['Prompt']['hLessLxySig'].Rebin(2)
DHists['Prompt']['hMoreLxySig'].Rebin(2)

# up to 6
Exemplo n.º 6
0
}
SCALED = {sp: HISTS[sp].Clone() for sp in SIGNALPOINTS}
for sp in SIGNALPOINTS:
    integral = SCALED[sp].Integral(0, SCALED[sp].GetNbinsX() + 1)
    SCALED[sp].Scale(1. / (integral if integral != 0. else 1.))
CUM = {sp: SCALED[sp].GetCumulative() for sp in SIGNALPOINTS}
DISTS = {
    sp: Plotter.Plot(HISTS[sp], 'm_{{X}} = {} GeV'.format(sp[1]), 'l', 'hist')
    for sp in SIGNALPOINTS
}
PLOTS = {
    sp: Plotter.Plot(CUM[sp], 'm_{{X}} = {} GeV'.format(sp[1]), 'l', 'hist')
    for sp in SIGNALPOINTS
}

HISTS['data'] = HG.getDataHistograms(DFILE, 'mass')[0]['mass']['data']
SCALED['data'] = HISTS['data'].Clone()
SCALED['data'].Scale(
    1. / SCALED['data'].Integral(0, SCALED['data'].GetNbinsX() + 1))
CUM['data'] = SCALED['data'].GetCumulative()
DISTS['data'] = Plotter.Plot(HISTS['data'], 'Data', 'l', 'hist p')
PLOTS['data'] = Plotter.Plot(CUM['data'], 'Data', 'l', 'hist p')

cols = [(228, 26, 28), (55, 126, 184), (77, 175, 74), (152, 78, 163)]
cols = [(102, 194, 165), (252, 141, 98), (141, 160, 203), (231, 138, 195)]
rcols = {
    7000 + i: R.TColor(7000 + i, *(c / 255. for c in cols[i]))
    for i in xrange(4)
}
COLORS = {20: 7000, 50: 7001, 150: 7002, 350: 7003}
Exemplo n.º 7
0
def compareFOMPlot(quantity, sp, sigmaBMode='GLOBAL'):
    keys = FACTORS
    for FACTOR in FACTORS:
        s = HG.getHistogram(FILES['Signal'], (fs, sp),
                            '{}_{}'.format(quantity, FACTOR)).Clone()

        if sigmaBMode == 'GLOBAL':
            s.Scale(ScaleFactor(sp, 1, 1.e-2))
            extra = 'GLOBAL'

        DHists, DPConfig = HG.getDataHistograms(FILES['Data'],
                                                '{}_1'.format(quantity),
                                                addFlows=False)
        b = DHists['{}_1'.format(quantity)]['data']

        # get cumulatives
        bCum = b.GetCumulative(CONFIG[quantity]['forward'])
        sCum = s.GetCumulative(CONFIG[quantity]['forward'])
        fom = {z: sCum.Clone() for z in ('ZBi', 'ZPL')}

        nBins = sCum.GetNbinsX()
        xAxis = sCum.GetXaxis()

        # dictionaries instead of numbers because we have 2 sets of ZBi curves
        fom_max = {z: 0. for z in ('ZBi', 'ZPL')}
        opt_cut = {z: 0. for z in ('ZBi', 'ZPL')}
        opt_s = {z: 0. for z in ('ZBi', 'ZPL')}
        opt_b = {z: 0. for z in ('ZBi', 'ZPL')}

        for ibin in range(1, nBins + 1):
            S, B, cutVal, FOMs = calculateFOM(s, b, sCum, bCum, nBins, ibin,
                                              xAxis,
                                              CONFIG[quantity]['forward'])
            for z in ('ZBi', 'ZPL'):
                if FOMs[z] > fom_max[z]:
                    fom_max[z] = FOMs[z]
                    opt_cut[z] = cutVal
                    opt_s[z] = S
                    opt_b[z] = B

                fom[z].SetBinContent(ibin, FOMs[z])

        p = {
            z: Plotter.Plot(fom[z], PRETTY_LEG[z], 'l', 'hist p')
            for z in fom
        }

        colors = {'ZBi': R.kRed, 'ZPL': R.kBlue}

        c = Plotter.Canvas(lumi='({} GeV, {} GeV, {} mm){}'.format(
            sp[0], sp[1], sp[2], '' if FACTOR ==
            1 else ' #rightarrow {} mm'.format(sp[2] / FACTOR)))
        for z in fom:
            c.addMainPlot(p[z])
            p[z].setColor(colors[z], which='LM')

        c.makeLegend(lWidth=0.1, pos='tr')
        #c.legend.SetMargin(0.1)
        c.legend.resizeHeight()

        lines = {
            z: R.TLine(opt_cut[z], 0., opt_cut[z],
                       max(fom_max.values()) * 1.1)
            for z in fom
        }
        for z in fom:
            lines[z].SetLineStyle(2)
            lines[z].SetLineColor(colors[z])
            lines[z].Draw()

        for i, z in enumerate(fom.keys()):
            c.drawText(text='#color[{:d}]{{opt = {:.1f}}}'.format(
                colors[z], opt_cut[z]),
                       pos=(c.legend.GetX2(),
                            c.legend.GetY1() - .04 - i * .04),
                       align='br')

        c.firstPlot.SetMinimum(0.)
        c.firstPlot.SetMaximum(max(fom_max.values()) * 1.1)
        c.firstPlot.setTitles(Y='Figure of Merit')
        RT.addBinWidth(c.firstPlot)

        c.cleanup('pdfs/COMPARE_FOM-{}_{}_{}_{}_{}_{}.pdf'.format(
            extra, quantity, sp[0], sp[1], sp[2], FACTOR))
Exemplo n.º 8
0
def makeKinkFOMPlot(quantity, masses, sigmaBMode='DEFAULT'):
    points = sorted(
        [sp for sp in SignalInfo if sp[0] == masses[0] and sp[1] == masses[1]],
        key=lambda x: x[2])
    s = {
        points[0]:
        HG.getHistogram(FILES['Signal'], (fs, points[0]),
                        '{}_1'.format(quantity)).Clone(),
        points[1]:
        HG.getHistogram(FILES['Signal'], (fs, points[1]),
                        '{}_10'.format(quantity)).Clone(),
    }

    if sigmaBMode == 'DEFAULT':
        s[points[0]].Scale(ScaleFactor(points[0], 1))
        s[points[1]].Scale(ScaleFactor(points[1], 10))
        extra = ''

    elif sigmaBMode == 'SAME':
        s[points[0]].Scale(ScaleFactor(points[0], 1))
        s[points[1]].Scale(ScaleFactor(points[0], 1))
        extra = '_SAME'

    elif sigmaBMode == 'GLOBAL':
        s[points[0]].Scale(ScaleFactor(points[0], 1, 1.e-2))
        s[points[1]].Scale(ScaleFactor(points[1], 1, 1.e-2))
        extra = '_GLOBAL'

    DHists, DPConfig = HG.getDataHistograms(FILES['Data'],
                                            '{}_1'.format(quantity),
                                            addFlows=False)
    b = DHists['{}_1'.format(quantity)]['data']

    # get cumulatives
    bCum = b.GetCumulative(CONFIG[quantity]['forward'])
    sCum = {p: s[p].GetCumulative(CONFIG[quantity]['forward']) for p in points}
    fom = {p: sCum[p].Clone() for p in points}

    nBins = sCum[points[0]].GetNbinsX()
    xAxis = sCum[points[0]].GetXaxis()

    # dictionaries instead of numbers because we have 2 sets of ZBi curves
    fom_max = {p: 0. for p in points}
    opt_cut = {p: 0. for p in points}
    opt_s = {p: 0. for p in points}
    opt_b = {p: 0. for p in points}

    for ibin in range(1, nBins + 1):
        for p in points:
            S, B, cutVal, FOMs = calculateFOM(s[p], b, sCum[p], bCum, nBins,
                                              ibin, xAxis,
                                              CONFIG[quantity]['forward'])
            if FOMs[FIGURE_OF_MERIT] > fom_max[p]:
                fom_max[p] = FOMs[FIGURE_OF_MERIT]
                opt_cut[p] = cutVal
                opt_s[p] = S
                opt_b[p] = B

            fom[p].SetBinContent(ibin, FOMs[FIGURE_OF_MERIT])

    pl = {
        points[0]:
        Plotter.Plot(fom[points[0]],
                     'c#tau = {} mm, nominal'.format(points[0][2]), 'l',
                     'hist p'),
        points[1]:
        Plotter.Plot(fom[points[1]],
                     'c#tau = {} mm, reweighted'.format(points[0][2]), 'l',
                     'hist p'),
    }

    colors = {
        points[0]: R.kBlue,
        points[1]: R.kRed,
    }

    c = Plotter.Canvas(lumi='({} GeV, {} GeV)'.format(*masses))
    c.addMainPlot(pl[points[0]])
    c.addMainPlot(pl[points[1]])

    for p in points:
        pl[p].setColor(colors[p], which='LM')

    c.makeLegend(lWidth=0.3, pos='tr')
    c.legend.SetMargin(0.1)
    c.legend.resizeHeight()

    lines = {
        p: R.TLine(opt_cut[p], 0., opt_cut[p],
                   max(fom_max.values()) * 1.1)
        for p in points
    }
    for p in points:
        lines[p].SetLineStyle(2)
        lines[p].SetLineColor(colors[p])
        lines[p].Draw()

    for i, p in enumerate(points):
        c.drawText(text='#color[{:d}]{{opt = {:.1f}}}'.format(
            colors[p], opt_cut[p]),
                   pos=(c.legend.GetX2(), c.legend.GetY1() - .04 - i * .04),
                   align='br')

    c.firstPlot.SetMinimum(0.)
    c.firstPlot.SetMaximum(max(fom_max.values()) * 1.1)
    c.firstPlot.setTitles(Y=PRETTY_LEG)
    RT.addBinWidth(c.firstPlot)

    c.cleanup('pdfs/KINK_FOM{}_{}_{}_{}_{}.pdf'.format(extra, quantity,
                                                       masses[0], masses[1],
                                                       FIGURE_OF_MERIT))
Exemplo n.º 9
0
def optimizeCut(fs, sp, quantity):
    # get histograms
    s = HG.getHistogram(FILES['Signal'], (fs, sp), quantity)
    DHists, DPConfig = HG.getDataHistograms(FILES['Data'], quantity)
    b = DHists[quantity]['data']

    n = s.Integral(0, s.GetNbinsX()+1)
    s.Scale(ScaleFactor(sp, sigmaB=1.e-2))

    # get cumulatives
    sCum = s.GetCumulative(CONFIG[quantity]['forward'])
    bCum = b.GetCumulative(CONFIG[quantity]['forward'])
    fom  = sCum.Clone()

    print '**** Data (|DeltaPhi| > Pi/2) vs. HTo2XTo{} ({} GeV, {} GeV, {} mm) (|DeltaPhi| < Pi/2)'.format(fs, *sp)
    print '**** Quantity = {:s} ::: Passing (N-1) = {:.0f} ::: N_gen = {:.0f} ::: Sigma*B = {:.3f} pb ::: 2016 ILumi = 35922 /pb'.format(
            CONFIG[quantity]['pretty'], n, SignalInfo[sp]['sumWeights'][1], SignalInfo[sp]['sigmaBLimit'])
    print '{:>8s} {:>7s} {:>7s} {:>7s} {:>6s} {:>6s}'.format('CutVal', 'S', 'B=nOff', 'S+B=nOn', 'ZBi', 'ZPL')

    # fill f.o.m. histogram, and keep track of max f.o.m. and cut value
    nBins = sCum.GetNbinsX()
    xAxis = sCum.GetXaxis()

    fom_max = 0.
    opt_cut = 0.
    opt_s   = 0.
    opt_b   = 0.

    for ibin in range(1,nBins+1):
        S, B, cutVal, FOMs = calculateFOM(s, b, sCum, bCum, nBins, ibin, xAxis, CONFIG[quantity]['forward'])
        print '{:8.3f} {:7.3f} {:7.3f} {:7.3f} {:6.3f} {:6.3f}'.format(cutVal, S, B, S+B, FOMs['ZBi'], FOMs['ZPL'])

        if FOMs[FIGURE_OF_MERIT] > fom_max:
            fom_max = FOMs[FIGURE_OF_MERIT]
            opt_cut = cutVal
            opt_s   = S
            opt_b   = B

        fom.SetBinContent(ibin, FOMs[FIGURE_OF_MERIT])

    # make plots
    p = {}
    p['sig'] = Plotter.Plot(sCum, 'signal'   , 'l', 'hist')
    p['bg' ] = Plotter.Plot(bCum, 'data'     , 'l', 'hist')
    p['fom'] = Plotter.Plot(fom , PRETTY_LEG , 'l', 'hist')

    # make canvas, colors, maximum
    canvas = Plotter.Canvas(lumi=SPLumiStr(fs, *sp))
    canvas.addMainPlot(p['sig'])
    canvas.addMainPlot(p['bg' ])
    canvas.addMainPlot(p['fom'])

    p['sig'].SetLineColor(R.kBlue )
    p['bg' ].SetLineColor(R.kRed  )
    p['fom'].SetLineColor(R.kGreen)

    canvas.setMaximum()
    canvas.firstPlot.SetMinimum(0.)

    # scale f.o.m. and make new axis
    fom.Scale(canvas.firstPlot.GetMaximum()/fom_max/1.05)
    axis = R.TGaxis(xAxis.GetXmax(), 0., xAxis.GetXmax(), canvas.firstPlot.GetMaximum(), 0., fom_max*1.05, 510, '+L')
    for attr in ('LabelFont', 'LabelOffset', 'TitleFont', 'TitleOffset', 'TitleSize'):
        getattr(axis, 'Set'+attr)(getattr(xAxis, 'Get'+attr)())
    axis.SetTitle('Figure of Merit')
    axis.CenterTitle()
    axis.Draw()
    canvas.scaleMargins(1.1, edges='R')

    # make the legend after
    canvas.makeLegend(lWidth=.2, pos='br')
    canvas.legend.resizeHeight()
    canvas.legend.moveLegend(X=-.2, Y=.1)

    # draw optimum text and line
    x, y = canvas.legend.GetX1(), canvas.legend.GetY2()
    canvas.drawText(text='#color[{:d}]{{opt. cut = {:.2f}}}'.format(R.kBlack, opt_cut), pos=(x, y+0.05), align='bl')

    line = R.TLine(opt_cut, 0., opt_cut, canvas.firstPlot.GetMaximum())
    line.SetLineStyle(2)
    line.Draw()

    # save
    canvas.cleanup('pdfs/OPT_{}_{}_HTo2XTo{}_{}.pdf'.format(quantity, FIGURE_OF_MERIT, fs, SPStr(sp)))
def makeDataPlot(key):
    h, pconfig = HG.getDataHistograms(FILES['Data'], key)
    h = h[key]['data']

    p = Plotter.Plot(h, '', '', 'pe')

    RT.addBinWidth(p)

    c = Plotter.Canvas(lumi='Data 2016, 36.3 fb^{{-1}} (13 TeV), {}'.format(
        CUTS[key]['lumi']),
                       cWidth=600 if key != 'deltaPhi' else 800,
                       logy=CUTS[key]['logy'])
    c.addMainPlot(p)
    c.firstPlot.setColor(R.kBlack)
    c.firstPlot.scaleTitleOffsets(1.1, 'Y')

    if key == 'deltaPhi':
        axis = c.firstPlot.GetXaxis()
        labeldict = {
            1: '0',
            25: '#pi/4',
            50: '#pi/2',
            75: '3#pi/4',
            100: '#pi'
        }
        for i in xrange(1, 101):
            val = labeldict.get(i)
            if val is None: val = ''
            axis.SetBinLabel(i, val)
        axis.SetNdivisions(216, False)
        axis.SetLabelSize(.06)
        axis.SetTickLength(0.03)
        axis.SetTickSize(0.03)
        axis.LabelsOption('h')

        c.mainPad.Update()
        ymin = c.mainPad.GetUymin()
        ymax = c.mainPad.GetUymax()
        if c.logy:
            ymax = 10.**ymax

        xB = R.TGaxis(0., ymin,
                      R.TMath.Pi() - .07, ymin, 0., R.TMath.Pi(), 216, "+B",
                      .03)
        xB.SetLabelSize(0)
        xB.Draw('same')

        xT = R.TGaxis(0., ymax,
                      R.TMath.Pi() - .07, ymax, 0., R.TMath.Pi(), 216, "-B",
                      .03)
        xT.SetLabelSize(0)
        xT.Draw('same')

    if key == 'pT':
        c.firstPlot.GetXaxis().SetRangeUser(0., 600.)

    eff = getEff(p, key)
    c.drawText('{:.1%} efficient'.format(eff),
               align='tr',
               pos=(1. - c.margins['r'] - .03, 1. - c.margins['t'] - .03))

    c.mainPad.Update()
    ymax = c.mainPad.GetUymax()
    line = R.TLine(CUTS[key]['val'], 0., CUTS[key]['val'],
                   ymax if not c.logy else 10.**ymax)
    line.SetLineStyle(2)
    line.Draw()

    if key == 'trkChi2': c.firstPlot.GetXaxis().SetTitle('trk. #chi^{2}/dof')

    c.cleanup('pdfs/NM1_Data_{}.pdf'.format(key), mode='LUMI')
Exemplo n.º 11
0
import ROOT as R
import DisplacedDimuons.Analysis.HistogramGetter as HG
import DisplacedDimuons.Analysis.Plotter as Plotter

# the input histogram here is just two histograms with LxySig < 6 and DeltaPhi < pi/4 and > 3pi/4 separately
# the script to make it is validateBackground which is in oldscripts now
# this script makes a little less sense now, also it is superseded by smallLxySigConsistency,
# but I'm leaving it here in case you want to see how to to the KS probability

f = R.TFile.Open('roots/ValidationPlots_DATA.root')

D, P = HG.getDataHistograms(f, ('LxySig_DPHI', 'LxySig_IDPHI'), addFlows=False)

h = {k: D[k]['data'] for k in D}

c = {k: h[k].GetCumulative(False) for k in h}

cumRatio = c['LxySig_IDPHI'].Clone()
cumRatio.Divide(c['LxySig_DPHI'])

for k in h:
    h[k].Rebin(5)

distRatio = h['LxySig_IDPHI'].Clone()
distRatio.Divide(h['LxySig_DPHI'])

pDist = {
    k: Plotter.Plot(h[k],
                    '#Delta#Phi {} #pi/2'.format('<' if '_DPHI' in k else '>'),
                    'lp', 'hist e')
    for k in h
def makeIntegratedSEQMC(hkey='SEQ'):
    if DODATA:
        HISTS, PConfig = HG.getBackgroundHistograms(FILES['MC'],
                                                    hkey,
                                                    extraScale=DATASCALE)
        DATAHISTS, DataPConfig = HG.getDataHistograms(FILES['Data'], hkey)
    else:
        HISTS, PConfig = HG.getBackgroundHistograms(FILES['MC'], hkey)

    HISTS = HISTS[hkey]
    PConfig = PConfig[hkey]

    if DODATA:
        DATAHISTS = DATAHISTS[hkey]
        PConfig['data'] = DataPConfig[hkey]['data']

    PLOTS = {}
    for key in HG.BGORDER + ('stack', ):
        PLOTS[key] = Plotter.Plot(HISTS[key], *PConfig[key])

    if DODATA:
        PLOTS['data'] = Plotter.Plot(DATAHISTS['data'], *PConfig['data'])

    canvas = Plotter.Canvas(
        lumi='MC' if not DODATA else 'MC + Data',
        logy=True,
        cWidth=1600,
    )
    #       ratioFactor=0. if not DODATA else 1./3., fontscale=1. if not DODATA else 1.+1./3.)

    for key in HG.BGORDER:
        PLOTS[key].setColor(HG.PLOTCONFIG[key]['COLOR'], which='LF')

    canvas.addMainPlot(PLOTS['stack'])

    if DODATA:
        canvas.addMainPlot(PLOTS['data'])

    setBinLabels(canvas)

    canvas.makeLegend(lWidth=.27, pos='tr', autoOrder=False,
                      fontscale=0.8)  # if not DODATA else 1.)
    if DODATA:
        canvas.addLegendEntry(PLOTS['data'])
    for ref in reversed(HG.BGORDER):
        canvas.addLegendEntry(PLOTS[ref])
    canvas.legend.resizeHeight()
    canvas.legend.moveLegend(X=.1)

    canvas.firstPlot.setTitles(X='Cut', Y='Normalized Counts')
    canvas.firstPlot.SetMaximum(2.e7)
    canvas.firstPlot.SetMinimum(1.e4 if 'DSA' not in hkey else 1.e-1)

    canvas.scaleMargins(.5, 'L')
    canvas.firstPlot.scaleTitleOffsets(.5, 'Y')
    R.TGaxis.SetExponentOffset(0., 0.02, "y")

    #    if DODATA:
    #        canvas.makeRatioPlot(PLOTS['data'].plot, PLOTS['stack'].plot.GetStack().Last())
    #        canvas.firstPlot.scaleTitleOffsets(0.8, axes='Y')
    #        canvas.rat      .scaleTitleOffsets(0.8, axes='Y')
    #        canvas.rat.setTitles(X='', copy=canvas.firstPlot.plot)
    #        setBinLabels(canvas, '')

    #canvas.cleanup('pdfs/NM1_{}_MC.pdf'.format(hkey))
    #canvas.finishCanvas(extrascale=1. if not DODATA else 1.+1./3.)
    #canvas.save('pdfs/NM1_{}{}_MC.pdf'.format(hkey, BUMPSTRING))
    #canvas.deleteCanvas()
    canvas.cleanup('pdfs/NM1_{}{}{}_MC.pdf'.format(hkey, BUMPSTRING,
                                                   IDPHISTRING))
def makeIntegratedNM1MC(hkey='NM1'):

    ### modified version of getBackgroundHistograms

    FILE = FILES['MC']
    keylist = [hkey]
    stack = True
    addFlows = False
    rebin = None
    rebinVeto = None

    HISTS = {}
    PConfig = {}
    for key in keylist:
        HISTS[key] = {}
        PConfig[key] = {'stack': ('', '', 'hist')}

        if stack:
            HISTS[key]['stack'] = R.THStack('hStack', '')

        for ref in HG.BGORDER:
            HISTS[key][ref] = HG.getHistogram(FILE, ref, key).Clone()

            #if addFlows:
            #    RT.addFlows(HISTS[key][ref])

            HISTS[key][ref].Scale(HG.PLOTCONFIG[ref]['WEIGHT'])
            if DODATA:
                HISTS[key][ref].Scale(DATASCALE)

            #if rebin is not None and (rebinVeto is None or (rebinVeto is not None and not rebinVeto(key))):
            #    is2D = 'TH2' in str(HISTS[key][ref].__class__)
            #    if is2D:
            #        if not hasattr(rebin, '__iter__'):
            #            print '[HISTOGRAMGETTER ERROR]: For 2D plots, "rebin" must be a list of 2 rebin values'
            #            exit()
            #        HISTS[key][ref].Rebin2D(*rebin)
            #    else:
            #        HISTS[key][ref].Rebin(rebin)

            PConfig[key][ref] = (HG.PLOTCONFIG[ref]['LATEX'], 'f', 'hist')

            #if not stack and ref == BGORDER[0]:
            #    HISTS[key]['stack'] = HISTS[key][ref].Clone()
            #    continue

        ### modification

        totalBin1 = sum(
            [HISTS[key][ref].GetBinContent(1) for ref in HG.BGORDER])
        for ibin in range(1, len(CUTS) + 2):
            totalBin = sum(
                [HISTS[key][ref].GetBinContent(ibin) for ref in HG.BGORDER])
            scaleFactor = totalBin1 / totalBin
            for ref in HG.BGORDER:
                HISTS[key][ref].SetBinContent(
                    ibin, HISTS[key][ref].GetBinContent(ibin) / totalBin *
                    scaleFactor)

        ### end modification

        # NOW add to the stack
        for ref in HG.BGORDER:
            HISTS[key]['stack'].Add(HISTS[key][ref])

    ### end modified version of getBackgroundHistograms

    HISTS = HISTS[hkey]
    PConfig = PConfig[hkey]

    if DODATA:
        DATAHISTS, DataPConfig = HG.getDataHistograms(FILES['Data'], hkey)
        DATAHISTS = DATAHISTS[hkey]
        PConfig['data'] = DataPConfig[hkey]['data']
        #PConfig['data'] = ('DoubleMuon2016', 'pe', 'pe')

        totalBin1 = DATAHISTS['data'].GetBinContent(1)
        for ibin in range(1, len(CUTS) + 2):
            totalBin = DATAHISTS['data'].GetBinContent(ibin)
            scaleFactor = totalBin1 / totalBin
            DATAHISTS['data'].SetBinContent(
                ibin,
                DATAHISTS['data'].GetBinContent(ibin) / totalBin * scaleFactor)

        for ibin in range(1, len(CUTS) + 2):
            DATAHISTS['data'].SetBinError(ibin, 1.e-7)

    PLOTS = {}
    for key in HG.BGORDER + ('stack', ):
        PLOTS[key] = Plotter.Plot(HISTS[key], *PConfig[key])

    if DODATA:
        PLOTS['data'] = Plotter.Plot(DATAHISTS['data'], *PConfig['data'])

    canvas = Plotter.Canvas(
        lumi='MC' if not DODATA else 'MC + Data',
        logy=True,
        cWidth=1600,
    )
    #       ratioFactor=0. if not DODATA else 1./3., fontscale=1. if not DODATA else 1.+1./3.)

    for key in HG.BGORDER:
        PLOTS[key].setColor(HG.PLOTCONFIG[key]['COLOR'], which='LF')

    canvas.addMainPlot(PLOTS['stack'])

    if DODATA:
        canvas.addMainPlot(PLOTS['data'])

    setBinLabels(canvas)

    canvas.makeLegend(lWidth=.27, pos='bl', autoOrder=False,
                      fontscale=0.8)  # if not DODATA else 1.)
    if DODATA:
        canvas.addLegendEntry(PLOTS['data'])
    for ref in reversed(HG.BGORDER):
        canvas.addLegendEntry(PLOTS[ref])
    canvas.legend.resizeHeight()

    canvas.firstPlot.setTitles(X='Cut', Y='n#minus1 Eff.')
    canvas.firstPlot.SetMaximum(1.e0)
    canvas.firstPlot.SetMinimum(1.e-3 if 'DSA' not in hkey else 1.e-6)

    #    if DODATA:
    #        canvas.makeRatioPlot(PLOTS['data'].plot, PLOTS['stack'].plot.GetStack().Last())
    #        canvas.firstPlot.scaleTitleOffsets(0.8, axes='Y')
    #        canvas.rat      .scaleTitleOffsets(0.8, axes='Y')
    #        canvas.rat.setTitles(X='', copy=canvas.firstPlot.plot)
    #        setBinLabels(canvas, '')
    #        for ibin in range(1, len(CUTS)+2):
    #            canvas.rat.SetBinError(ibin, 1.e-7)

    canvas.scaleMargins(.5, 'L')
    canvas.firstPlot.scaleTitleOffsets(.5, 'Y')

    #canvas.cleanup('pdfs/NM1_{}_MC.pdf'.format(hkey))
    #canvas.finishCanvas(extrascale=1. if not DODATA else 1.+1./3.)
    #canvas.save('pdfs/NM1_{}{}_MC.pdf'.format(hkey, BUMPSTRING))
    #canvas.deleteCanvas()
    canvas.cleanup('pdfs/NM1_{}{}{}_MC.pdf'.format(hkey, BUMPSTRING,
                                                   IDPHISTRING))
Exemplo n.º 14
0
def makeMCPlots():
    quantities = {
        'DSA': [],
        'PAT': [],
        'HYB': [],
        'HYB-DSA': [],
        'HYB-PAT': []
    }
    dimQuantities = [
        'Lxy', 'LxySig', 'LxyErr', 'vtxChi2', 'mind0Sig', 'mass', 'deltaPhi',
        'deltaR', 'cosAlpha', 'cosAlpha-O', 'DCA', 'pTOverM', 'minNHits',
        'qsum'
    ]
    for recoType in quantities:
        if 'HYB-' in recoType: continue
        quantities[recoType].extend(dimQuantities)

    quantities['HYB-DSA'].extend(
        ['pT', 'eta', 'phi', 'd0', 'FPTE', 'd0Sig', 'trkChi2', 'nStations'])
    quantities['HYB-PAT'].extend(
        ['pT', 'eta', 'phi', 'd0', 'relTrkIso', 'd0Sig', 'trkChi2'])

    for recoType in ('DSA', 'PAT'):
        quantities[recoType].extend(quantities['HYB-' + recoType])

    quantities['REF-DSA'] = ['FPTE']
    quantities[''] = ['nDimuon', 'nDSA', 'nDSA12', 'nDSA12-pT', 'nDSA-DT']

    # consider making deltaPhi not log scale. If so, then uncomment the maximum commands at the bottom

    def rebinVeto(key):
        if 'Lxy' in key and 'Sig' not in key and 'Err' not in key and 'DSA' not in key:
            return True
        if 'deltaPhi' in key or 'phi' in key: return True
        if 'mass' in key and MASSZOOMED: return True
        if 'nStations' in key: return True
        if 'cosAlpha' in key: return True
        if 'LxySig' in key and 'DSA' in key: return True
        if 'mind0Sig' in key and 'DSA' in key: return True
        if 'd0' in key and 'Sig' not in key and 'DSA' in key: return True
        if 'trkChi2' in key: return True
        if 'nDimuon' in key: return True
        if 'nDSA' in key: return True
        if 'REF-DSA-FPTE' in key: return True
        if 'minNHits' in key: return True
        if 'qsum' in key: return True
        return False

    for recoType in quantities:
        for quantity in quantities[recoType]:
            hkey = recoType + '-' + quantity
            if hkey[0] == '-' or recoType == 'DSAPlus':
                hkey = quantity
                recoType = 'DSAPlus'

            DODATA = recoType == 'DSA' or recoType == 'REF-DSA' or (
                recoType == 'DSAPlus' and 'nDSA' in quantity)

            if DODATA:
                HISTS, PConfig = HG.getBackgroundHistograms(
                    FILES['MC'],
                    hkey,
                    addFlows=True,
                    rebin=10,
                    rebinVeto=rebinVeto,
                    extraScale=DATASCALE)
                DATAHISTS, DataPConfig = HG.getDataHistograms(
                    FILES['Data'],
                    hkey,
                    addFlows=True,
                    rebin=10,
                    rebinVeto=rebinVeto)
            else:
                HISTS, PConfig = HG.getBackgroundHistograms(
                    FILES['MC'],
                    hkey,
                    addFlows=True,
                    rebin=10,
                    rebinVeto=rebinVeto)

            HISTS = HISTS[hkey]
            PConfig = PConfig[hkey]

            if DODATA:
                DATAHISTS = DATAHISTS[hkey]
                PConfig['data'] = DataPConfig[hkey]['data']

            PLOTS = {}
            for key in HG.BGORDER + ('stack', ):
                PLOTS[key] = Plotter.Plot(HISTS[key], *PConfig[key])

            if DODATA:
                PLOTS['data'] = Plotter.Plot(DATAHISTS['data'],
                                             *PConfig['data'])

            canvas = Plotter.Canvas(
                lumi=('MC' if not DODATA else 'MC + Data') +
                lumiExtra.get(CUTSTRING) + ' ({})'.format(recoType),
                logy=True,
                ratioFactor=0. if not DODATA else 1. / 3.,
                fontscale=1. if not DODATA else 1. + 1. / 3.)

            if hkey == 'REF-DSA-FPTE':
                canvas.mainPad.SetLogx()

            for key in HG.BGORDER:
                PLOTS[key].setColor(HG.PLOTCONFIG[key]['COLOR'], which='LF')

            canvas.addMainPlot(PLOTS['stack'])

            if DODATA:
                canvas.addMainPlot(PLOTS['data'])

            # this has to be here because it has to be drawn first
            if 'vtxChi2' in hkey:
                canvas.firstPlot.GetXaxis().SetRangeUser(0., 50.)

            if 'mass' in hkey:
                if MASSZOOMED:
                    canvas.firstPlot.GetXaxis().SetRangeUser(0., 100.)

            if 'mind0Sig' in hkey and 'DSA' in hkey:
                pass
                #canvas.firstPlot.GetXaxis().SetRangeUser(0., 5.)

            canvas.firstPlot.setTitles(X='', copy=PLOTS[HG.BGORDER[0]])
            canvas.firstPlot.setTitles(Y='Normalized Counts')
            canvas.makeLegend(lWidth=.27,
                              pos='tr' if hkey != 'REF-DSA-FPTE' else 'tl',
                              autoOrder=False,
                              fontscale=0.8 if not DODATA else 1.)
            if DODATA:
                canvas.addLegendEntry(PLOTS['data'])
            for ref in reversed(HG.BGORDER):
                canvas.addLegendEntry(PLOTS[ref])
            canvas.legend.resizeHeight()
            RT.addBinWidth(canvas.firstPlot)

            HISTS['sum'] = HISTS['stack'].GetStack().Last()
            nBins = HISTS['sum'].GetNbinsX()

            val = None
            if 'LxySig' in hkey:
                val = 100.
            if 'vtxChi2' in hkey:
                val = 50.
            if 'LxyErr' in hkey:
                val = 10.
            if 'mind0Sig' in hkey:
                val = 3.
            if 'Lxy' == quantity:
                val = 100.

            if val is not None:
                print '{} Mean         : {}'.format(hkey,
                                                    HISTS['sum'].GetMean())
                print '{} Overflow   % : {}'.format(
                    hkey, HISTS['sum'].GetBinContent(nBins) /
                    HISTS['sum'].Integral(1, nBins) * 100.)
                print '{} > {:<8.0f} % : {}'.format(
                    hkey, val,
                    HISTS['sum'].Integral(HISTS['sum'].FindBin(val), nBins) /
                    HISTS['sum'].Integral(1, nBins) * 100.)

            if hkey == 'PAT-LxySig':
                h = HG.getHistogram(FILES['MC'], 'DY50toInf', hkey).Clone()
                print '{} DY50toInf    : {}'.format(
                    hkey, h.Integral(h.FindBin(100.), h.GetNbinsX()))

            if DODATA:
                canvas.makeRatioPlot(PLOTS['data'].plot,
                                     PLOTS['stack'].plot.GetStack().Last())
                canvas.firstPlot.scaleTitleOffsets(0.8, axes='Y')
                canvas.rat.scaleTitleOffsets(0.8, axes='Y')

                if 'mass' in hkey:
                    if MASSZOOMED:
                        canvas.rat.GetXaxis().SetRangeUser(0., 100.)

                if 'REF-DSA-FPTE' in hkey:
                    canvas.ratPad.SetLogx()

            doNotMaximize = True
            canvas.firstPlot.SetMaximum({
                'DSA': 1000.,
                'PAT': 10.**7.,
                'HYB': 2. * 10.**5.,
                'HYB-DSA': 2. * 10.**5.,
                'HYB-PAT': 2. * 10.**5.,
                'REF-DSA': 1000.,
                'DSAPlus': 1000.
            }[recoType])

            if recoType == 'DSA' and quantity in [
                    'pT', 'eta', 'phi', 'FPTE', 'd0Sig', 'trkChi2', 'nStations'
            ]:
                canvas.firstPlot.SetMaximum(10.**5.)

            #if recoType == 'PAT' and 'deltaPhi' in quantity:
            #    canvas.firstPlot.SetMaximum(11.**5.)

            if not doNotMaximize:
                canvas.firstPlot.SetMaximum(HISTS['sum'].GetMaximum() * 1.05)
            canvas.firstPlot.SetMinimum(1.)
            #canvas.cleanup('pdfs/ZEP_{}_{}_{}_MC.pdf'.format(quantity, recoType, CUTSTRING))
            canvas.finishCanvas(extrascale=1. if not DODATA else 1. + 1. / 3.)
            canvas.save('pdfs/ZEP_{}_{}_{}_MC.pdf'.format(
                quantity +
                ('Zoomed' if 'mass' in quantity and MASSZOOMED else ''),
                recoType, CUTSTRING))
            canvas.deleteCanvas()
Exemplo n.º 15
0
def makeMCPlot(hkey, DODATA=False, TENP=False):

    if DODATA:
        if not TENP:
            HISTS, PConfig = HG.getBackgroundHistograms(FILES['MC_I'], hkey)
            DATAHISTS, DataPConfig = HG.getDataHistograms(
                FILES['Data_I'], hkey)
            lumi = 'MC + Data, |#Delta#Phi| > #pi/2'
        else:
            HISTS, PConfig = HG.getBackgroundHistograms(FILES['MC'],
                                                        hkey,
                                                        extraScale=DATASCALE)
            DATAHISTS, DataPConfig = HG.getDataHistograms(FILES['Data'], hkey)
            lumi = 'MC + 10% Data'
    else:
        HISTS, PConfig = HG.getBackgroundHistograms(FILES['MC'], hkey)
        lumi = 'MC'

    HISTS = HISTS[hkey]
    PConfig = PConfig[hkey]

    if DODATA:
        DATAHISTS = DATAHISTS[hkey]
        PConfig['data'] = DataPConfig[hkey]['data']

    PLOTS = {}
    for key in HG.BGORDER + ('stack', ):
        PLOTS[key] = Plotter.Plot(HISTS[key], *PConfig[key])

    if DODATA:
        PLOTS['data'] = Plotter.Plot(DATAHISTS['data'], *PConfig['data'])

    canvas = Plotter.Canvas(
        lumi=lumi,
        logy=True if hkey != 'nDTHits' else False
        #ratioFactor=0. if not DODATA else 1./3., fontscale=1. if not DODATA else 1.+1./3.)
    )

    for key in HG.BGORDER:
        PLOTS[key].setColor(HG.PLOTCONFIG[key]['COLOR'], which='LF')

    canvas.addMainPlot(PLOTS['stack'])

    if DODATA:
        canvas.addMainPlot(PLOTS['data'])

    canvas.firstPlot.setTitles(X='', copy=HISTS[HG.BGORDER[0]])
    canvas.firstPlot.setTitles(Y='Normalized Counts')
    canvas.makeLegend(lWidth=.27, pos='tr', autoOrder=False,
                      fontscale=0.8)  # if not DODATA else 1.)
    if DODATA:
        canvas.addLegendEntry(PLOTS['data'])
    for ref in reversed(HG.BGORDER):
        canvas.addLegendEntry(PLOTS[ref])
    canvas.legend.resizeHeight()
    RT.addBinWidth(canvas.firstPlot)

    if canvas.logy:
        canvas.firstPlot.SetMinimum(1.)
        canvas.firstPlot.SetMaximum(500.)
    else:
        canvas.firstPlot.SetMinimum(0.)
        canvas.firstPlot.SetMaximum(10.)

    #if DODATA:
    #    canvas.makeRatioPlot(PLOTS['data'].plot, PLOTS['stack'].plot.GetStack().Last())
    #    canvas.firstPlot.scaleTitleOffsets(0.8, axes='Y')
    #    canvas.rat      .scaleTitleOffsets(0.8, axes='Y')
    #    canvas.rat.setTitles(X='', copy=canvas.firstPlot.plot)

    if canvas.logy:
        line = R.TLine(CONFIG[hkey]['val'], 0.45, CONFIG[hkey]['val'],
                       10.**(R.TMath.Log10(500.) * 1.06))
    else:
        line = R.TLine(CONFIG[hkey]['val'], 0., CONFIG[hkey]['val'],
                       10. * 1.05)
    line.Draw()
    line.SetLineStyle(2)
    if DODATA:
        if not TENP:
            DATAHISTS_NO, DataPConfig_NO = HG.getDataHistograms(
                FILES['Data_I'], hkey, addFlows=False)
        else:
            DATAHISTS_NO, DataPConfig_NO = HG.getDataHistograms(FILES['Data'],
                                                                hkey,
                                                                addFlows=False)
        print '\033[32m{:6s} {:8s} {:5.0f} {:5.0f} {:7.2%}\033[m'.format(
            'Data' + ('' if not TENP else '10'), hkey,
            *fractionCut(hkey, DATAHISTS_NO[hkey]['data']))

    canvas.cleanup('pdfs/NM1D_{}_MC{}{}.pdf'.format(
        hkey, '' if not DODATA else 'Data', '' if not TENP else '-10'))