def commercial_projections(self):
        """activity: floorspace
        energy: consumption trillion Btu
        """        
        # Commercial : Total Floorspace : New Additions, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_NA_COMM_NA_TFP_NADN_USA_BLNSQFT.A'
        # Commercial : Total Floorspace : Surviving, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_NA_COMM_NA_TFP_SURV_USA_BLNSQFT.A'
        # Commercial : Total Floorspace : Total, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_NA_COMM_NA_TFP_TOT_USA_BLNSQFT.A'


        commercial_categories = {'Commercial_Total': None, 'Total_Commercial_LMDI_UtilAdj': None}

        commercial_eia = GetEIAData('commercial')
        energy_use_commercial_electricity_us = commercial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_COMM_NA_ELC_NA_NA_QBTU.A', id_type='series')
        energy_use_commercial_total_us = commercial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_COMM_NA_TOT_NA_NA_QBTU.A', id_type='series')
        energy_use_commercial_delivered_energy_us = commercial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_COMM_NA_DELE_NA_NA_QBTU.A', id_type='series')
        
        commercial_total_floorspace = commercial_eia.eia_api(id_='AEO.2020.AEO2019REF.KEI_NA_COMM_NA_TFP_TOT_USA_BLNSQFT.A', id_type='series')

        data_dict = {'Commercial_Total': {'energy': {'elec': energy_use_commercial_electricity_us, 'deliv': energy_use_commercial_delivered_energy_us}, 
                                          'activity': commercial_total_floorspace}, 
                     'Total_Commercial_LMDI_UtilAdj': None}
        
        return data_dict
Exemplo n.º 2
0
    def residential_projections(self):
        """Gather Residential projections data
        activity: 
            - Occupied Housing Units
            - Floorspace, Square Feet

        energy: Energy Consumption Trillion Btu
        """        
        # Residential : Key Indicators : Average House Square Footage, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_HHD_RESD_NA_NA_NA_USA_SQFT.A'
        # Residential : Key Indicators : Households : Mobile Homes, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_HHD_RESD_MBH_NA_NA_USA_MILL.A'
        # Residential : Key Indicators : Households : Multifamily, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_HHD_RESD_MFR_NA_NA_USA_MILL.A'
        # Residential : Key Indicators : Households : Single-Family, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_HHD_RESD_SFR_NA_NA_USA_MILL.A'
        # Residential : Key Indicators : Households : Total, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.KEI_HHD_RESD_TEN_NA_NA_USA_MILL.A'

        self.sub_regions_dict = {'Northeast': {'New England': 'NENGL', 'Middle Atlantic': 'MATL'}, 'Midwest': {'East North Central': 'ENC', 'West North Central': 'WNC'}, 
                                 'South': {'South Atlantic': 'SATL', 'East South Central': 'ESC', 'West South Central': 'WSC'}, 'West': {'Mountain': 'MTN', 'Pacific': 'PCF'}}

        residential_eia = GetEIAData('residential')
        energy_use_residential_electricity_us = residential_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_RESD_NA_ELC_NA_NA_QBTU.A', id_type='series')
        energy_use_residential_total_us = residential_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_RESD_NA_TOT_NA_NA_QBTU.A', id_type='series')
        energy_use_residential_delivered_energy_us = residential_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_RESD_NA_DELE_NA_NA_QBTU.A', id_type='series')


        res_housholds= residential_eia.eia_api(id_='AEO.2020.AEO2019REF.KEI_HHD_RESD_TEN_NA_NA_USA_MILL.A', id_type='series', new_name='Residential')
        res_avg_size = residential_eia.eia_api(id_='AEO.2020.AEO2019REF.KEI_HHD_RESD_NA_NA_NA_USA_SQFT.A', id_type='series', new_name='Residential')
        residential_floorspace = res_avg_size.multiply(res_housholds.values)

        activity_data = {'households': res_housholds, 
                         'average_size': res_avg_size, 
                         'total_floorspace': residential_floorspace}

        energy_data =  {'elec': residential_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_RESD_NA_ELC_NA_NA_QBTU.A', id_type='series', new_name='Residential'),
                        'deliv': residential_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_RESD_NA_DELE_NA_NA_QBTU.A', id_type='series', new_name='Residential')}

        data_dict = {'energy': energy_data, 'activity': activity_data}
        
        return data_dict
Exemplo n.º 3
0
class CO2EmissionsDecomposition(CalculateLMDI):
    """Class to decompose CO2 emissions by
    sector of the U.S. economy.

    LMDI aspects:
    - total activity (Q),
    - activity share for subsector i (structure) (=Q_i/Q),
    - energy intensity for subsector i (=E_i/Q_i),
    - energy share of type j in subsector i (=E_ij/E_i),
        also called fuel mix
    - emissions rate of energy type j and subsector i (=C_ij/E_ij),
         also called emissions coefficient

    (for time series, all variables have t subscripts
    (i.e. no constants-- constant emissions rates cancel out))
    """
    def __init__(self, directory, output_directory, sector, config_path,
                 categories_dict, level_of_aggregation):
        self.sector = sector
        self.eia = GetEIAData('emissions')
        self.config_path = config_path
        self.level_of_aggregation = level_of_aggregation

        super().__init__(sector,
                         level_of_aggregation=self.level_of_aggregation,
                         categories_dict=categories_dict,
                         directory=directory,
                         output_directory=output_directory,
                         primary_activity=None,
                         unit_conversion_factor=1,
                         weather_activity=None,
                         use_yaml_config=True,
                         config_path=self.config_path)

    def collect_emissions(self,
                          sector=None,
                          fuel_type=None,
                          state_abbrev=None):
        """Collect emissions from the EIA API (through
        GetEIAData).

        Args:
            sector (str, optional): Economic sector. Defaults to None.
            fuel_type (str, optional): Fuel Type. Defaults to None.
            state_abbrev (str, optional): State (e.g. 'AK'). Defaults to None.

        Returns:
            data (DataFrame): Emissions data for sector, fuel type and state
        """
        eia_co2_emiss = f'EMISS.CO2-TOTV-{sector}-{fuel_type}-{state_abbrev}.A'
        data = self.eia.eia_api(id_=eia_co2_emiss, id_type='series')
        return data

    @staticmethod
    def get_fuel_mix(region_data):
        """Calculate shares of total fuel by fuel type

        Args:
            region_data (DataFrame): Fuel use data by fuel for a region

        Returns:
            fuel_mix (DataFrame): Fuel mix (i.e. share of total by fuel)
        """
        region_data = region_data.drop('Census Region',
                                       axis=1,
                                       errors='ignore')
        region_data = df_utils().create_total_column(region_data,
                                                     total_label='total')
        fuel_mix = \
            df_utils().calculate_shares(region_data, total_label='total')
        return fuel_mix

    @staticmethod
    def weighted(x, cols, w="weights"):
        """Calculate weighted average

        Args:
            x ([type]): [description]
            cols ([type]): [description]
            w (str, optional): [description]. Defaults to "weights".

        Returns:
            (pd.Series): Weighted average
        """
        return pd.Series(np.average(x[cols], weights=x[w], axis=0), cols)

    def get_mean_factor(self,
                        emissions_factors,
                        input_cols,
                        new_name,
                        portions=None):
        """Calculate average of given emissions factors

        Args:
            emissions_factors (pd.DataFrame): emissions factors
            input_cols (list): List of emissions
                               factors to average
            new_name (str): Name of resulting factor
            portions (dict): Optional. Weights for weighted average
                             (keys are cols)

        Returns:
            ef (pd.DataFrame): emissions factors with new type
        """
        subset = \
            emissions_factors[emissions_factors['Fuel Type'].isin(input_cols)]
        subset['weights'] = np.nan
        if portions:
            subset_ = []
            for k, v in portions.items():
                fuel_ = subset[subset['Fuel Type'] == k]
                fuel_['weights'] = v
                subset_.append(fuel_)

            subset = pd.concat(subset_, axis=0)
            subset.loc[:, 'weighted_value'] = \
                subset['value'].multiply(subset['weights'].values)

            grouped = \
                subset.groupby(by=['Unit', 'Variable'])
            mean_df = grouped.sum()
            mean_df = mean_df.drop('value', axis=1)

            mean_df['value'] = \
                mean_df['weighted_value'].divide(mean_df['weights'].values)
            mean_df = mean_df.drop('weighted_value', axis=1)

        else:
            grouped = \
                subset.groupby(by=['Unit', 'Variable'])
            mean_df = grouped.mean()

        mean_df.loc[:, 'Fuel Type'] = new_name
        mean_df.loc[:, 'Category'] = 'Merged Category'

        mean_df = mean_df.reset_index()
        mean_df = mean_df[[
            'Category', 'Fuel Type', 'Unit', 'value', 'Variable'
        ]]

        ef = pd.concat([emissions_factors, mean_df], axis=0)
        return ef

    def epa_emissions_data(self):
        """Read and process EPA emissions factors data

        Returns:
            emissions_factors (DataFrame): EPA emissions factors data
        """
        try:
            ef = pd.read_csv(
                './EnergyIntensityIndicators/Data/EPA_emissions_factors.csv')
        except FileNotFoundError:
            os.chdir('..')
            print('changed dir:', os.getcwd())
            ef = pd.read_csv(
                './EnergyIntensityIndicators/Data/EPA_emissions_factors.csv')
        df_cols = ef.columns
        dfs = []
        grouped = ef.groupby(ef['Unit Type'])
        for g in ef['Unit Type'].unique():
            unit_data = grouped.get_group(g)
            unit_data.columns = unit_data.iloc[0]

            units_dict = dict(zip(unit_data.columns, df_cols))
            unit_data = unit_data.drop(g, axis=1)

            unit_data = unit_data.drop(unit_data.index[0])
            unit_data = unit_data.melt(id_vars=['Units', 'Fuel Type'],
                                       var_name='Unit')

            unit_data = unit_data.rename(columns={'Units': 'Category'})
            unit_data.loc[:, 'Variable'] = unit_data['Unit'].map(units_dict)

            dfs.append(unit_data)
        emissions_factors = pd.concat(dfs, axis=0)

        emissions_factors['value'] = \
            emissions_factors['value'].apply(lambda x: str(x).replace(',', ''))

        emissions_factors['value'] = emissions_factors['value'].astype(float)
        ef = self.get_mean_factor(emissions_factors,
                                  input_cols=[
                                      'Distillate Fuel Oil No. 1',
                                      'Distillate Fuel Oil No. 2',
                                      'Distillate Fuel Oil No. 4'
                                  ],
                                  new_name='Distillate Fuel Oil')
        ef = self.get_mean_factor(
            ef,
            input_cols=['Residual Fuel Oil No. 5', 'Residual Fuel Oil No. 6'],
            new_name='Residual Fuel Oil')
        ef = self.get_mean_factor(
            ef,
            input_cols=['Blast Furnace Gas', 'Coke Oven Gas'],
            new_name='Blast Furnace/Coke Oven Gases')

        ef = self.get_mean_factor(
            ef,
            input_cols=['North American Softwood', 'North American Hardwood'],
            new_name='Pulping Liquor or Black Liquor')

        ef = self.get_mean_factor(
            ef,
            input_cols=['Motor Gasoline', 'Ethanol (100%)'],
            new_name='Gasohol',
            portions={
                'Ethanol (100%)': 0.16,
                'Motor Gasoline': 0.84
            })
        ef = self.get_mean_factor(ef,
                                  input_cols=['Diesel Fuel', 'Motor Gasoline'],
                                  new_name='School',
                                  portions={
                                      'Diesel Fuel': 0.9,
                                      'Motor Gasoline': 0.1
                                  })

        ef = self.get_mean_factor(ef,
                                  input_cols=[
                                      'Diesel Fuel',
                                      'Distillate Fuel Oil No. 1',
                                      'Distillate Fuel Oil No. 2',
                                      'Distillate Fuel Oil No. 4'
                                  ],
                                  new_name='Diesel Fuel & Distillate')

        ef = self.get_mean_factor(ef,
                                  input_cols=[
                                      'Distillate Fuel Oil No. 1',
                                      'Distillate Fuel Oil No. 2',
                                      'Distillate Fuel Oil No. 4',
                                      'Residual Fuel Oil No. 5',
                                      'Residual Fuel Oil No. 6'
                                  ],
                                  new_name='Petroleum')

        return ef

    @staticmethod
    def mecs_epa_mapping(mecs_data):
        """Rename mecs_data columns so that labels match
        EPA emissions factors labels

        Args:
            mecs_data (DataFrame): Industrial sector energy use
                                   by fuel type

        Returns:
            mecs_data (DataFrame): MECS data with column names
                                   that match EPA emissions data
                                   labels
        """
        rename_dict = {col: col.strip() for col in mecs_data.columns}
        mecs_data = mecs_data.rename(columns=rename_dict)
        mapping_ = {
            'Waste Gas': 'Fuel Gas',
            'Petroleum Coke': 'Petroleum Coke',
            'Wood Chips, Bark': 'Wood and Wood Residuals',
            'Waste Oils/Tars and Waste Materials': 'Used Oil',
            'steam': 'Steam and Heat',  # From Table 7
            'Net Electricity':
            'Us Average',  # From Table 6,  Total Output Emissions Factors CO2 Factor
            'Electricity': 'US Average',
            'Net Electricity(b)': 'US Average',
            'Residual': 'Residual Fuel Oil',
            'Distillate': 'Distillate Fuel Oil',
            'Distillate Fuel Oil(c)': 'Distillate Fuel Oil',
            'Nat. Gas': 'Natural Gas',
            'Natural Gas(d)': 'Natural Gas',
            'Natural Gas': 'Natural Gas',
            'HGL (excluding natural gasoline)':
            'Liquefied Petroleum Gases (LPG)',
            'Coal': 'Mixed (Industrial Sector)',
            'Coke Coal and Breeze': 'Coal Coke',
            'Coke and Breeze': 'Coal Coke',
            'Coke': 'Coal Coke',
            'LPG': 'Liquefied Petroleum Gases (LPG)',
            'Diesel': 'Diesel Fuel',
            'LP Gas': 'Liquefied Petroleum Gases (LPG)',
            'HGL (excluding natural gasoline)(e)':
            'Liquefied Petroleum Gases (LPG)',
            'Gasoline': 'Motor Gasoline',
            'Gas': 'Natural Gas'
        }

        mecs_data = mecs_data.rename(columns=mapping_)
        mecs_data = mecs_data.drop('Total Fuel', axis=1, errors='ignore')

        return mecs_data

    @staticmethod
    def electric_epa_mapping(elec_data):
        """Rename elec power sector data (from EIA) columns so
        that labels match EPA emissions factors labels

        Args:
            elec_data (pd.DataFrame): Energy consumption for the
                                      elec power sector by fuel type

        Returns:
            elec_data (pd.DataFrame): Elec data with column names
                                      that match EPA emissions data
                                      labels
        """
        rename_dict = {
            col: col[:col.find('Consumption')].strip()
            for col in elec_data.columns if 'Consumption' in col
        }
        rename_dict2 = {
            col: col[:col.find('Consumed')].strip()
            for col in elec_data.columns if 'Consumed' in col
        }

        intersect = []
        for key, value in rename_dict2.items():
            if value in rename_dict.values():
                intersect.append(key)

        elec_data = elec_data.drop(intersect, axis=1)
        rename_dict.update(rename_dict2)
        others = {
            'Electricity Net Generation From Wood, Electric Power Sector, Annual, Million Kilowatthours':
            'Wood',
            'Electricity Net Generation From Waste, Electric Power Sector, Annual, Million Kilowatthours':
            'Waste'
        }
        rename_dict.update(others)
        elec_data = elec_data.rename(columns=rename_dict)
        mapping_ = {
            'Coal': 'Mixed (Electric Power Sector)',
            'Natural Gas': 'Natural Gas',
            'Other Gases': 'Fuel Gas',
            'Other Gas': 'Fuel Gas',
            'Waste': 'Municipal Solid Waste',
            'Wood': 'Wood and Wood Residuals',
            'hydroelectric': 'Hydroelectric',
            'Other': 'US Average',
            'Other Petroleum Liquids': 'Liquefied Petroleum Gases (LPG)'
        }  # might be wrong
        elec_data = elec_data.rename(columns=mapping_)
        elec_data = elec_data.drop('Total Petroleum', axis=1, errors='ignore')
        return elec_data

    @staticmethod
    def tedb_epa_mapping(tedb_data):
        """Rename transportation sector data (from TEDB) columns so
        that labels match EPA emissions factors labels

        Args:
            tedb_data (pd.DataFrame): Energy consumption for the
                                      transportation sector by fuel type

        Returns:
            tedb_data_ (pd.DataFrame): transportation data with
                                       column names that match
                                       EPA emissions data labels
        """

        unit_coversion = {
            'Diesel Fuel & Distillate (1,000 bbl)': 1000 / 42,
            'Residual Fuel Oil (1,000 bbl)': 1000 / 42
        }
        unit_coversion = {
            k: unit_coversion[k]
            for k in unit_coversion.keys() if k in tedb_data.columns
        }
        if len(unit_coversion) > 0:
            tedb_data = tedb_data.assign(**unit_coversion).mul(tedb_data)

        if 'Domestic Operations ' and 'International Operations ' in tedb_data.columns:
            tedb_data['Air'] = \
                tedb_data[['Domestic Operations ',
                           'International Operations ']].sum(axis=1)
            tedb_data = tedb_data[['Air']]

        mapping = {
            'Gasoline': 'Motor Gasoline',  # ef is in gallon
            'Gasoline (million gallons)': 'Motor Gasoline',  # ef is in gallon
            'Gasohol': 'Gasohol',  # ef is in gallon
            'Diesel (million gallons)': 'Diesel Fuel',  # ef is in gallon
            'Diesel': 'Diesel Fuel',  # ef is in gallon
            'CNG': 'Compressed Natural Gas (CNG)',  # ef is in scf
            'LNG': 'Liquefied Natural Gas (LNG)',  # ef is in gallons
            'Bio Diesel ': 'Biodiesel (100%)',  # ef is in gallons
            'Diesel Fuel & Distillate (1,000 bbl)':  # ef is in gallon (42 gallons in a barrel)
            'Diesel Fuel',
            'Residual Fuel Oil (1,000 bbl)':
            'Residual Fuel Oil',  # ef is in gallon (42 gallons in a barrel)
            'Jet fuel (million gallons)':
            'Aviation Gasoline',  # ef is per gallon
            'Electricity (GWhrs)': 'US Average',  # ef is kg/MWh
            'Distillate Fuel Oil': 'Diesel Fuel',  # ef is per gallon
            'Natural Gas (million cu. ft.)': 'Natural Gas',  # ef is per scf
            'Electricity (million kWh)': 'US Average',  # ef is kg/MWh
            'Diesel fuel': 'Diesel Fuel',  # ef is per gallon
            'Liquefied petroleum gas':
            'Liquefied Petroleum Gases (LPG)',  # ef is per gallon
            'LPG': 'Liquefied Petroleum Gases (LPG)',  # ef is per gallon
            'Air': 'Aviation Gasoline',  # ef is per gallon
            'Jet fuel': 'Aviation Gasoline',  # ef is per gallon
            'Residual fuel oil': 'Residual Fuel Oil',  # ef is per gallon
            'Natural gas': 'Natural Gas',  # ef is per scf
            'Electricity': 'US Average',  # ef is kg/MWh
            'Intercity': 'Diesel Fuel'  # ef is in gallon
        }

        tedb_data_ = tedb_data.rename(columns=mapping)
        tedb_data_ = tedb_data_.drop('School (million bbl)',
                                     axis=1,
                                     errors='ignore')
        tedb_data_ = \
            tedb_data_.drop(['Total Energy (Tbtu)',
                             'Total Energy (Tbtu) ',
                             'Total Energy (Tbtu) - old series'],
                            axis=1, errors='ignore')

        return tedb_data_

    @staticmethod
    def get_factor(factors_df, emissions_type):
        """Lookup emissions factor for given fuel and emissions
        type

        Args:
            factors_df (df): EPA emisions hub data
            fuel_name (str): Fuel type to look up in factors_df
            emissions_type (str): Type of emissions to return (e.g CO2)

        Returns:
            emissions_factor (float): emissions factor for given params
        """
        factors_df = \
            factors_df[factors_df['Variable'].isin(
                ['Heat Content (HHV)', emissions_type])]

        factors_df['value'] = factors_df['value'].fillna(1)

        factors_df = \
            factors_df.groupby(['Category', 'Fuel Type']).prod()
        factors_df = factors_df.reset_index()
        fuel_factor_df = factors_df[['Fuel Type', 'value']]

        fuel_factor_df.loc[:, 'value'] = fuel_factor_df['value'].astype(float)
        new_row = {'Fuel Type': 'Census Region', 'value': 1}
        fuel_factor_df = fuel_factor_df.append(new_row, ignore_index=True)
        fuel_factor_df = fuel_factor_df.set_index('Fuel Type')
        no_emissions = [
            'Solar', 'Wind', 'Nuclear', 'Geothermal', 'Hydroelectric'
        ]
        e_data = [0] * len(no_emissions)
        no_emissions_df = pd.DataFrame(data=e_data,
                                       index=no_emissions,
                                       columns=['value'])

        no_emissions_df.index.name = 'Fuel Type'
        fuel_factor_df = pd.concat([fuel_factor_df, no_emissions_df], axis=0)
        fuel_factor_df = fuel_factor_df.transpose()

        return fuel_factor_df

    def calculate_emissions(self,
                            energy_data,
                            emissions_type='CO2 Factor',
                            datasource='SEDS'):
        """Calculate emissions from the product of energy_data and
        emissions_factor

        Parameters:
            energy_data (pd.DataFrame): energy consumption by fuel data
            emissions_type (str): Type of emissions factor.
                                  Defaults to 'CO2 Factor'.
            datasource (str): 'SEDS', 'MECS', 'eia_elec', or 'TEDB'.
                              Data source for energy consumption by
                              fuel data. Defaults to 'SEDS'.
        Returns:
            emissions_data (pd.DataFrame): Emissions by fuel type
            energy_data (pd.DataFrame): Energy consumption by fuel data
                                        converted to MMBtu, if necessary,
                                        with columns matching emissions data
                                        

        TODO: Handle Other category (should not be dropped)
        """

        # Also need to convert TEDB fuel (in gal or ft3) to MMBtu
        mapping_heat = {
            'Motor Gasoline': 125000,  # ef is in gallon
            'Gasohol': 120900,  # ef is in gallon
            'Diesel Fuel': 138700,  # ef is in gallon
            'Compressed Natural Gas (CNG)': 129400,  # ef is in scf
            'Liquefied Natural Gas (LNG)': 84800,  # ef is in gallons
            'Liquefied Petroleum Gases (LPG)': 91300,
            'Biodiesel (100%)': 128520,  # ef is in gallons
            'Residual Fuel Oil':
            149700,  # ef is in gallon (42 gallons in a barrel)
            'Aviation Gasoline': 120900,  # ef is per gallon
            'US Average': 10339,  # ef is kg/MWh; Btu/kWh
            'Natural Gas': 1031,  # ef is per scf
            'Diesel Fuel': 138700,  # ef is per gallon
        }

        energy_data = energy_data.drop('region', axis=1, errors='ignore')
        emissions_factors = self.epa_emissions_data()

        if datasource == 'SEDS':
            energy_data = self.epa_eia_crosswalk(energy_data)
        elif datasource == 'MECS':
            energy_data = self.mecs_epa_mapping(energy_data)
        elif datasource == 'eia_elec':
            energy_data = self.electric_epa_mapping(energy_data)
        elif datasource == 'TEDB':
            energy_data = self.tedb_epa_mapping(energy_data)

        energy_data = energy_data.drop('Total', axis=1, errors='ignore')

        ## TEMPORARY!! (need to add these factors to csv)
        energy_data = energy_data.drop(['Other'], axis=1, errors='ignore')

        emissions_factors = self.get_factor(emissions_factors, emissions_type)

        try:
            emissions_factors = \
                emissions_factors[energy_data.columns.tolist()]
        except KeyError:
            print('energy_data.columns.tolist() not in dataframe:',
                  energy_data.columns.tolist())
            for t in energy_data.columns.tolist():
                if t not in emissions_factors.columns.tolist():
                    print('t not in list:', t)
            print('emissions_factors columns:', emissions_factors.index)
            raise KeyError('Emissions data does not contain ' +
                           'all energy sources')

        emissions_data = \
            energy_data.multiply(emissions_factors.to_numpy())

        try:
            energy_data.loc[:, 'Census Region'] = \
                energy_data.loc[:, 'Census Region'].astype(int).astype(str)
            census_region = True

        except KeyError:
            census_region = False
        try:
            # ensure string Census Regions are ints (at least some
            # start as floats-- need to match)
            emissions_data.loc[:, 'Census Region'] = \
                emissions_data['Census Region'].astype(int).astype(str)
        except KeyError:
            if census_region:
                energy_data = energy_data[energy_data['Census Region'] == '0']
            else:
                pass

        # Convert TEDB fuels to MMBtu
        if datasource == 'TEDB':
            try:
                energy_data = \
                    energy_data.apply(lambda x: mapping_heat[x.name]*x, axis=0)
            except KeyError:
                print('energy_data.columns.tolist() not in dataframe:',
                      energy_data.columns.tolist())
                for t in energy_data.columns.tolist():
                    if t not in mapping_heat.keys():
                        print('t not in list:', t)
                raise KeyError(
                    'Heat content conversion data does not contain ' +
                    'all energy sources')

        return emissions_data, energy_data

    def calc_lmdi(self, breakout, calculate_lmdi, data_dict):
        """Calculate decomposition of CO2 emissions for the U.S. economy

        TODO: Could simply call lmdi_gen main with a few slight adjustments
        """
        results_dict, formatted_results = \
            self.get_nested_lmdi(
                level_of_aggregation=self.level_of_aggregation,
                breakout=breakout, calculate_lmdi=calculate_lmdi,
                raw_data=data_dict, lmdi_type=self.gen.lmdi_type)
        return results_dict
Exemplo n.º 4
0
class WeatherFactors: 
    def __init__(self, sector, directory, activity_data=None, residential_floorspace=None, nominal_energy_intensity=None, \
                 end_year=2018):
        self.end_year = end_year
        self.directory = directory
        self.sector = sector
        self.activity_data = activity_data
        self.nominal_energy_intensity = nominal_energy_intensity
        self.residential_floorspace = residential_floorspace
        self.eia_data = GetEIAData(self.sector)
        self.lmdi_prices = pd.read_excel(f'{self.directory}/EnergyPrices_by_Sector_010820_DBB.xlsx', 
                                         sheet_name='LMDI-Prices', header=14, usecols='A:B, EY')
        self.regions_subregions = ['northeast', 'new_england', 'middle_atlantic', 'midwest', 
                                   'east_north_central', 'west_north_central', 'south', 
                                   'south_atlantic', 'east_south_central', 'west_south_central',
                                   'west', 'mountain', 'pacific']
        self.sub_regions_dict = {'northeast': ['New England', 'Middle Atlantic'], 
                                 'midwest': ['East North Central', 'West North Central'], 
                                 'south': ['South Atlantic', 'East South Central', 'West South Central'],
                                 'west': ['Mountain', 'Pacific']}
      
    @staticmethod
    def adjust_data(subregions, hdd_by_division, hdd_activity_weights, cooling=True, cdd_by_division=None, \
                    cdd_activity_weights=None, use_weights_1961_90=True):
        """Calculate weights for adjusted weather factors prediction
        """        

        years_1961_90 = list(range(1961, 1990 + 1))
        years_1981_2010 = list(range(1981, 1990 + 1))

        if cooling:
            cdd_by_division = cdd_by_division.set_index('Year')
            cdd_by_division.index = cdd_by_division.index.astype(int)

            averages_1961_90_cooling = cdd_by_division.loc[years_1961_90, :].mean(axis=0)
            averages_1981_2010_cooling = cdd_by_division.loc[years_1981_2010, :].mean(axis=0)


        hdd_by_division = hdd_by_division.set_index('Year')
        hdd_by_division.index = hdd_by_division.index.astype(int)

        averages_1961_90_heating = hdd_by_division.loc[years_1961_90, :].mean(axis=0)
        averages_1981_2010_heating = hdd_by_division.loc[years_1981_2010, :].mean(axis=0)
        
        all_s_weights_heating = []
        all_s_weights_cooling = []

        for s in subregions:
            if use_weights_1961_90:
                subregion_weights_heating = averages_1961_90_heating.loc[s] * hdd_activity_weights[s]

                if cooling:
                    subregion_weights_cooling = averages_1961_90_cooling.loc[s] * cdd_activity_weights[s]
                    all_s_weights_cooling.append(subregion_weights_cooling)

            else:
                subregion_weights_heating = averages_1981_2010_heating.loc[s] * hdd_activity_weights[s]

                if cooling:
                    subregion_weights_cooling = averages_1981_2010_cooling.loc[s] * cdd_activity_weights[s]
                    all_s_weights_cooling.append(subregion_weights_cooling)

            
            all_s_weights_heating.append(subregion_weights_heating)

        weights_dict = dict()
        if cooling:
            weights_cooling = sum(all_s_weights_cooling)
            weights_dict['cooling'] = weights_cooling

        weights_heating = sum(all_s_weights_heating)
        weights_dict['heating'] = weights_heating
        return weights_dict

    def process_prices(self, weather_factors_df):
        """TODO: Are distributed lag and time cubed ever the desired variable? 
        Does this method need to exist?
        """        
        lmdi_prices = self.lmdi_prices
        # distributed_lag = 
        # time_cubed = 
        selected_variable = [1] * len(weather_factors_df)
        return selected_variable
    
    @staticmethod
    def cbecs_1995_shares():
        """Calculate fuels and elec shares for the commercial sector from CBECS 1995 data
        """        
        electricty_consumption_tbtu = {'Northeast': 436, 'Midwest': 558, 'South': 1027, 'West': 587}
        electricty_consumption_tbtu['Total'] = sum(electricty_consumption_tbtu.values())
        electricity_df = pd.DataFrame.from_dict(electricty_consumption_tbtu, orient='index', \
                                                columns=['electricity_consumption_tbtu'])

        energy_tbtu = {'Northeast': 1035, 'Midwest': 1497, 'South': 1684, 'West': 1106}
        energy_tbtu['Total'] = sum(energy_tbtu.values())
        energy_df = pd.DataFrame.from_dict(energy_tbtu, orient='index', columns=['energy'])

        shares_df = energy_df.merge(electricity_df, left_index=True, right_index=True, how='outer')


        shares_df['elec_share'] = shares_df.electricity_consumption_tbtu.divide(shares_df.loc['Total', \
                                                                                'electricity_consumption_tbtu'])
        shares_df['fuel_consumption'] = shares_df.energy.subtract(shares_df.electricity_consumption_tbtu)
        shares_df['fuels_share'] = shares_df.fuel_consumption.divide(shares_df.loc['Total', 'fuel_consumption'])
        return shares_df

    @staticmethod 
    def recs_1993_shares():
        """Calculate fuels and elec shares for the residential sector from RECS 1993 data
        """        
        electricty_consumption_tbtu = {'Northeast': 470, 'Midwest': 740, 'South': 1510, 'West': 560}
        electricty_consumption_tbtu['Total'] = sum(electricty_consumption_tbtu.values())
        electricity_df = pd.DataFrame.from_dict(electricty_consumption_tbtu, orient='index', \
                                                columns=['electricity_consumption_tbtu'])

        energy_tbtu = {'Northeast': 2380, 'Midwest': 3130, 'South': 2950, 'West': 1550}
        energy_tbtu['Total'] = sum(energy_tbtu.values())
        energy_df = pd.DataFrame.from_dict(energy_tbtu, orient='index', columns=['energy'])

        shares_df = energy_df.merge(electricity_df, left_index=True, right_index=True, how='outer')


        shares_df['elec_share'] = shares_df.electricity_consumption_tbtu.divide(shares_df.loc['Total', \
                                                                         'electricity_consumption_tbtu'])
        shares_df['fuel_consumption'] = shares_df.energy.subtract(shares_df.electricity_consumption_tbtu)
        shares_df['fuels_share'] = shares_df.fuel_consumption.divide(shares_df.loc['Total', 'fuel_consumption'])
        return shares_df

    def regional_shares(self, dataframe, cols):
        """Calulate shares of regional totals by subregion
        """        
        dataframe = dataframe.set_index('regions_subregions')
        weights_data = dict()
        for col in cols: 
            shares_dict = dict()
            for r_, subregions in self.sub_regions_dict.items():
                subregions = [s.lower().replace(' ', '_') for s in subregions]
                regions_ = subregions + [r_]
                region_total = dataframe.loc[r_, col]
                for r in regions_:
                    share_value = dataframe.loc[r, col] / region_total
                    shares_dict[r] = share_value
            weights_data[col] = shares_dict
        return weights_data

    def gather_weights_data(self):
        """Calculate weights to aggregate subregions into four regions
        """        
        if self.sector == 'residential':
            electricity_data = {'total_elec_tbtu': {'northeast': 470, 'midwest': 740, 
                                                    'south': 1510, 'west': 560}, 
                                'heating_tbtu': {'northeast': 12 * 3.412, 'midwest': 22 * 3.412, 
                                                 'south': 61 * 3.412, 'west': 25 * 3.412}, 
                                'cooling_tbtu': {'northeast': 40, 'midwest': 80, 
                                                 'south': 310, 'west': 30}}
            fuels_data = {'all_energy_tbtu': {'northeast': 2380, 'midwest': 3130, 
                                              'south': 2950, 'west': 1550}, 
                          'electricity_tbtu': {'northeast': 470, 'midwest': 740, 
                                               'south': 1510, 'west': 560}, 
                          'heating_all_energy_tbtu': {'northeast': 1490, 'midwest': 1920, 
                                                      'south': 1210, 'west': 700}}
            # Residential Heating Households Millions
            heating_activity = [4.1, 1, 3.1, 5.8, 3.5, 2.4, 18.8, 10.7, 3.4, 4.8, 8.3, 2, 6.3]
            # Residential Cooling Households Millions
            cooling_activity = [10.9, 2.1, 8.8, 16.4, 10.8, 5.6, 29.4, 15, 5.3, 9.2, 7.1, 2.1, 5.1]             
            all_energy = [19.1, 4.9, 14.2, 23.2, 16.3, 6.9, 32.8, 16.8, 5.9, 10.1, 19.4, 5.3, 14.1]
            electricity = [1.9, 0.5, 1.4, 2.9, 1.6, 1.3, 14.6, 8.7, 2.5, 3.4, 5.6, 1.4, 4.2]

        elif self.sector == 'commercial':
            electricity_data = {'total_elec_tbtu': {'northeast': 436, 'midwest': 558, 
                                                    'south': 1027, 'west': 587}, 
                                 'heating_tbtu': {'northeast': 18, 'midwest': 23, 
                                                  'south': 43, 'west': 28}, 
                                 'cooling_tbtu': {'northeast': 44, 'midwest': 60, 
                                                  'south': 172, 'west': 64}}
            fuels_data = {'all_energy_tbtu': {'northeast': 1035, 'midwest': 1497, 
                                              'south': 1684, 'west': 1106}, 
                          'electricity_tbtu': {'northeast': 436, 'midwest': 558, 
                                               'south': 1027, 'west': 587}, 
                          'heating_all_energy_tbtu': {'northeast': 385, 'midwest': 668, 'south': 376,
                                    'west': 275}}
            # Commercial Heating Floorspace Million SF
            heating_activity = [657, 137, 520, 779, 345, 434, 3189, 1648, 1140, 401, 1219, 469, 750]
            # Commercial Cooling Floorspace Million SF
            cooling_activity = [5919, 1472, 4447, 10860, 7301, 3559, 13666, 6512, 3265, 3889, 7058, 2812, 4246]
            all_energy = [7661, 2031, 5630, 10860, 7301, 3559, 13666, 6512, 3265, 3889, 7065, 2819, 4246]
            electricity = [657, 137, 520, 779, 345, 434, 3189, 1648, 1140, 401, 1219, 469, 750]
        else:
            return None
        
        weights_data_ = {'regions_subregions': self.regions_subregions, 'heating_activity': heating_activity, 
                        'cooling_activity': cooling_activity, 'all_energy': all_energy, 'electricity': electricity}
        
        weights_df = pd.DataFrame(data=weights_data_)
        
        weights_df['fuels'] = weights_df['all_energy'].subtract(weights_df['electricity'])
        return weights_df
    
    def heating_cooling_data(self):
        hdd_by_division_historical = pd.read_csv('./Data/historical_hdd_census_division.csv').set_index('Year')
        cdd_by_division_historical = pd.read_csv('./Data/historical_cdd_census_division.csv').set_index('Year')

        hdd_by_division = self.eia_data.eia_api(id_='1566347', id_type='category')
        hdd_to_drop = [c for c in list(hdd_by_division.columns) if 'Monthly' in c]
        hdd_by_division = hdd_by_division.drop(hdd_to_drop, axis=1)
        hdd_rename_dict = {c: c.replace(', Annual, Number', '') for c in list(hdd_by_division.columns)}
        hdd_by_division = hdd_by_division.rename(columns=hdd_rename_dict)


        hdd_by_division = pd.concat([hdd_by_division_historical, hdd_by_division], sort=True)
        
        cdd_by_division = self.eia_data.eia_api(id_='1566348', id_type='category')
        cdd_to_drop = [c for c in list(cdd_by_division.columns) if 'Monthly' in c]
        cdd_by_division = cdd_by_division.drop(cdd_to_drop, axis=1)
        cdd_rename_dict = {c: c.replace(', Annual, Number', '') for c in list(cdd_by_division.columns)}

        cdd_by_division = cdd_by_division.rename(columns=cdd_rename_dict)

        cdd_by_division = pd.concat([cdd_by_division_historical, cdd_by_division], sort=True)


        title_case_regions = [s.replace('_', ' ').title() for s in self.regions_subregions]
        hdd_names = [f'Heating Degree-Days, {r}' for r in title_case_regions]
        cdd_names = [f'Cooling Degree-Days, {r}' for r in title_case_regions]

        hdd_new_names_dict = {name: name_title for name, name_title in zip(hdd_names, title_case_regions)}
        cdd_new_names_dict = {name: name_title for name, name_title in zip(cdd_names, title_case_regions)}

        hdd_by_division = hdd_by_division.rename(columns=hdd_new_names_dict)
        cdd_by_division = cdd_by_division.rename(columns=cdd_new_names_dict)

        return hdd_by_division, cdd_by_division

    def estimate_regional_shares(self):
        """Spreadsheet equivalent: Commercial --> 'Regional Shares' 
        assumed commercial floorspace in each region follows same trends as population or housing units"""
        regions = ['Northeast', 'Midwest', 'South', 'West']

        cbecs_data = pd.read_csv('./Data/cbecs_data_millionsf.csv').set_index('Year')
        cbecs_data.index = cbecs_data.index.astype(str)
        cbecs_years = list(cbecs_data.index)
        cbecs_data = cbecs_data.rename(columns={'Midwest ': 'Midwest', ' South': 'South', ' West': 'West'})

        cbecs_data.loc['1979', regions] = cbecs_data.loc['1983', regions].subtract([826, 972, 2665, 1212])
        cbecs_data.loc['1979', ['U.S.']] = sum(cbecs_data.loc['1979', regions].values)

        cbecs_data['U.S. (calc)'] = cbecs_data.sum(axis=1)

        comm_regional_shares = cbecs_data.drop(['U.S.', 'U.S. (calc)'], axis=1).divide(cbecs_data['U.S. (calc)'].values.reshape(len(cbecs_data), 1))
        comm_regional_shares_ln = np.log(comm_regional_shares)

        residential_data = ResidentialFloorspace(end_year=self.end_year)  # change to pull from residential().activity()
        final_results_total_floorspace_regions, regional_estimates_all, avg_size_all_regions = residential_data.final_floorspace_estimates()
        
        regional_dfs = [regional_estimates_all[r][['Total']].rename(columns={'Total': r}) for r in regions]
        residential_housing_units = reduce(lambda x, y: pd.merge(x, y, left_index=True, right_index=True, how='outer'), regional_dfs)
        residential_housing_units['U.S.'] = residential_housing_units.sum(axis=1)
        residential_housing_units.index = residential_housing_units.index.astype(str)
        regional_shares_residential_housing_units = residential_housing_units.drop('U.S.', axis=1).divide(residential_housing_units['U.S.'].values.reshape(len(residential_housing_units), 1))
        regional_shares_residential_housing_units_ln = np.log(regional_shares_residential_housing_units)

        regional_shares_residential_housing_units_cbecs_years = regional_shares_residential_housing_units.loc[cbecs_years, :]
        regional_shares_residential_housing_units_cbecs_years_ln = np.log(regional_shares_residential_housing_units_cbecs_years)
        
        predictions_df = pd.DataFrame(columns=comm_regional_shares.columns, index=residential_housing_units.index)
        for region in comm_regional_shares.columns:
            x_values = comm_regional_shares_ln[region].values
            X = x_values.transpose()
            y = regional_shares_residential_housing_units_cbecs_years_ln[region].values

            p = np.polyfit(X, y, 1)
            predictions_df[region] = np.exp(regional_shares_residential_housing_units_ln[region].multiply(p[0]).add(p[1]))

        predictions_df['Predicted Sum'] = predictions_df.sum(axis=1)
        normalized_shares = predictions_df.drop('Predicted Sum', axis=1).divide(predictions_df['Predicted Sum'].values.reshape(len(predictions_df), 1))
        return normalized_shares
    
    def commercial_estimate_regional_floorspace(self):
        regional_shares = self.estimate_regional_shares()
        commercial_floorspace = self.activity_data 

        regional_shares_index = regional_shares.index.astype(str)
        commercial_floorspace_reshape = commercial_floorspace.loc[regional_shares_index, :]

        regional_floorspace = regional_shares.multiply(commercial_floorspace_reshape.values)
        return regional_floorspace

    def commercial_regional_intensity_aggregate(self):
        """Calculate Energy Intensities (kBtu/sq. ft.) by region and fuel type (i.e. Fuels and Electricity) for use
        in calculating weather factors
        Returns:
            dictionary with keys: 'electricity' and 'fuels', values: dataframes of intensity data for the commercial sector
            with Year index and Region columns
        """        
        regional_floorspace = self.commercial_estimate_regional_floorspace()
        total_fuels_to_indicators, elec_to_indicators = self.eia_data.get_seds()
        
        regional_floorspace_index = regional_floorspace.index
        elec_to_indicators =  elec_to_indicators.loc[regional_floorspace_index, :]
        total_fuels_to_indicators =  total_fuels_to_indicators.loc[regional_floorspace_index, :]

        fuels_regional = regional_floorspace.multiply(total_fuels_to_indicators.drop('National', axis=1).values)
        elec_regional = regional_floorspace.multiply(elec_to_indicators.drop('National', axis=1).values)

        return {'fuels': fuels_regional, 'electricity': elec_regional}
    
    def residential_regional_intensity_aggregate(self):
        """This function does not need to exist if nominal_energy_intensity is properly formated, change formatting here if not
        Returns:
            dictionary with keys: 'electricity' and 'fuels', values: dataframes of intensity data for the residential sector
            with Year index and Region columns
            i.e. {'fuels': fuels_regional, 'electricity': elec_regional}
        """        

        nominal_energy_intensity = self.nominal_energy_intensity # nominal_energy_intensity should already be formated in this way 

        return nominal_energy_intensity

    def weather_factors(self, region, energy_type, actual_intensity, weights_df, regional_weights):
        """Estimate a simple regression model to fit the regional intensity to a linear function of time (included squared and cubed values of time) and degree days. 
        -electricity model: constant term, heating degree day (HDD), cooling degree day (CDD), time, time-squared, and time-cubed
        -fuels model: contant term?, HDD, HDD*Time, Time, Time-squared and composite fuel price index (the composite fuel price index was developed as a weighted average of the national distillate
            fuel oil price index and a national average price for natural gas)
        Weather factors are applied at the regional level to generate the weather-normalized intensity indexes for each of the four Census regions
        
        -The weather factors for delivered energy and source energy are computed implicitly. For delivered energy, they are calculated
        as the sum of reported electricity and fuels divided by the sum of the weather-adjusted electricity and weather-adjusted fuels. 
        A similar procedure is followed for source energt. As such, the implied weather factors are a result of the process, not an independent
        variable that influences the values of intensity indexes for delivered energy and source energy. All of these computation occur within Commercial_Total worksheet.

        TODO: Input data 
        """
        if energy_type == 'electricity':
            energy_type = 'elec'
        subregions = self.sub_regions_dict[region]
        subregions_lower = [s.lower().replace(' ', '_') for s in subregions]
        hdd_activity_weights = [regional_weights['heating_activity'][r_] for r_ in subregions_lower]
        hdd_activity_weights_dict = {r : regional_weights['heating_activity'][r_] for r, r_ in zip(subregions, subregions_lower)}
        cdd_activity_weights = [regional_weights['cooling_activity'][r_] for r_ in subregions_lower]
        cdd_activity_weights_dict = {r : regional_weights['cooling_activity'][r_] for r, r_ in zip(subregions, subregions_lower)}
        fuels_weights = [regional_weights['fuels'][r_] for r_ in subregions_lower]
        
        hdd_by_division, cdd_by_division = self.heating_cooling_data()

        heating_degree_days = hdd_by_division[subregions]

        heating_degree_days = heating_degree_days.reset_index('Year')

        heating_degree_days[region] = heating_degree_days[subregions].dot(hdd_activity_weights)

        fuels_heating_degree_days = heating_degree_days
        fuels_heating_degree_days[region] = fuels_heating_degree_days[subregions].dot(fuels_weights)

        weather_factors_df = heating_degree_days[['Year', region]].rename(columns={region: 'HDD'})
        weather_factors_df['Year'] = weather_factors_df['Year'].astype(int)

        weather_factors_df['Time'] = weather_factors_df['Year'].values - 1969
        weather_factors_df['Time^2'] = weather_factors_df[['Time']].pow(2).values

        if energy_type == 'elec': 
            cooling_degree_days = cdd_by_division[subregions]
            cooling_degree_days[region] = cooling_degree_days[subregions].dot(cdd_activity_weights)
            cooling_degree_days = cooling_degree_days.reset_index('Year')
            cooling_degree_days['Year'] = cooling_degree_days['Year'].astype(int)

            weather_factors_df_cooling = cooling_degree_days[['Year', region]].rename(columns={region: 'CDD'})
            weather_factors_df = weather_factors_df.merge(weather_factors_df_cooling, on='Year', how='outer')

            weather_factors_df['Time^3'] = weather_factors_df[['Time']].pow(3).values
            weather_factors_df = weather_factors_df.set_index('Year')
            weather_factors_df.index = weather_factors_df.index.astype(int)
            
            X_data = weather_factors_df[['HDD', 'CDD', 'Time', 'Time^2', 'Time^3']]

        elif energy_type == 'fuels': 
            weather_factors_df['HDD*Time'] = heating_degree_days[region].multiply(weather_factors_df['Time'])
            weather_factors_df['Price'] = self.process_prices(weather_factors_df)
            weather_factors_df = weather_factors_df.set_index('Year')
            weather_factors_df.index = weather_factors_df.index.astype(int)
            X_data = weather_factors_df[['HDD', 'HDD*Time', 'Time', 'Time^2', 'Price']]

        # elif self.energy_type == 'delivered':
        #     weather_factor = (reported_electricity + fuels) / (weather_adjusted_electrity + weather_adjusted_fuels)
        #     return weather_factor
        else:
            raise KeyError(f'Missing valid energy type. Type given: {energy_type}')

        actual_intensity.index = actual_intensity.index.astype(int)  
        data = X_data.merge(actual_intensity, left_index=True, right_index=True, how='inner').dropna()
        X = data.drop(region.capitalize(), axis=1)
        Y = data[[region.capitalize()]]

        reg = linear_model.LinearRegression()
        reg.fit(X, Y)
        coefficients = reg.coef_
        coefficients = coefficients[0]
        intercept = reg.intercept_
        predicted_value_intensity_actualdd = reg.predict(X)  # Predicted value of the intensity based on actual degree days

        if  energy_type == 'elec': 
            prediction2_weights = self.adjust_data(subregions=subregions, hdd_by_division=heating_degree_days, cdd_by_division=cooling_degree_days, 
                                                   cdd_activity_weights=cdd_activity_weights_dict, hdd_activity_weights=hdd_activity_weights_dict,
                                                   use_weights_1961_90=True)
            predicted_value_intensity_ltaveragesdd = intercept + coefficients[0] * prediction2_weights['heating'] + coefficients[1] * prediction2_weights['cooling'] + \
                                                    coefficients[2] * data['Time'] + coefficients[3] * data['Time^2'] + coefficients[4] * data['Time^3']  # Predicted value of the intensity based on the long-term averages of the degree days
        
        elif energy_type == 'fuels': 
            prediction2_weights = self.adjust_data(subregions=subregions, hdd_by_division=heating_degree_days, 
                                                   hdd_activity_weights=hdd_activity_weights_dict, cooling=False,
                                                   use_weights_1961_90=True)
            predicted_value_intensity_ltaveragesdd = intercept + coefficients[0] * prediction2_weights['heating'] + coefficients[1] * data['Time'] + \
                                                     coefficients[2] * data['Time'] + coefficients[3] * data['Time^2'] + coefficients[4] * data['Price'] # Predicted value of the intensity based on the long-term averages of the degree days

        weather_factor = predicted_value_intensity_actualdd.flatten() / predicted_value_intensity_ltaveragesdd.values.flatten()

        try:
            weather_normalized_intensity = actual_intensity.loc[data.index].divide(weather_factor.reshape(len(weather_factor), 1))
        except Exception:
            try:
                weather_normalized_intensity = actual_intensity.loc[data.index].divide(weather_factor)
            except Exception as e:
                raise ValueError(f'Failure to divide: {actual_intensity.shape} by {weather_factor.shape}, failed with error {e}')


        weather_factor_df = pd.DataFrame(data={'Year': data.index, f'{region}_weather_factor': weather_factor}).set_index('Year')
        return weather_factor_df, weather_normalized_intensity
    
    def national_method1_fixed_end_use_share_weights(self, energy_type_):
        """Used fixed weights to develop from regional factors, weighted by regional energy share from 1995 CBECS
        """
        if self.sector == 'commercial':
            shares = self.cbecs_1995_shares()
            intensity_df = self.commercial_regional_intensity_aggregate()
        elif self.sector == 'residential':
            intensity_df = self.residential_regional_intensity_aggregate()
            shares = self.recs_1993_shares()
        
        if energy_type_ == 'elec':
            energy_type = 'electricity'
        else:
            energy_type = energy_type_
        
        regional_weather_factors = []
        weights_df = self.gather_weights_data()
        regional_weights = self.regional_shares(dataframe=weights_df, cols=['heating_activity', 'cooling_activity', 'fuels'])

        for region in self.sub_regions_dict.keys():
            region_cap = region.capitalize()
            if self.sector == 'residential':
                regional_intensity = intensity_df[region_cap][energy_type_]
            elif self.sector == 'commercial':
                regional_intensity = intensity_df[energy_type_][region_cap]

            weather_factors, weather_normalized_intensity = self.weather_factors(region, energy_type_, actual_intensity=regional_intensity, weights_df=weights_df, regional_weights=regional_weights)
            regional_weather_factors.append(weather_factors)
        
        weather_factors_all = pd.concat(regional_weather_factors, axis=1)
        weather_factors_all = weather_factors_all.reindex(columns=list(weather_factors_all.columns) + [f'{energy_type_}_weather_factor'])
        for y in weather_factors_all.index:
            if energy_type == 'electricity': 
                energy_type = 'elec'

            share_name = f'{energy_type}_share'

            year_weather = weather_factors_all.drop(f'{energy_type_}_weather_factor', axis=1).loc[y, :]
            weights = shares[share_name].drop('Total')
            year_factor = year_weather.dot(weights.to_numpy())

            weather_factors_all.loc[y, [f'{energy_type_}_weather_factor']] = year_factor
        return weather_factors_all


    def national_method2_regression_models(self, seds_data, weather_factors):
        seds_data, weather_factors = CalculateLMDI.ensure_same_indices(seds_data, weather_factors)
        
        weather_adjusted_consumption = seds_data.drop('National', axis=1).multiply(weather_factors.values)
        weather_adjusted_consumption['National'] = weather_adjusted_consumption.sum(axis=1)

        implicit_national_weather_factor = seds_data[['National']].divide(weather_adjusted_consumption['National'].values.reshape(len(weather_adjusted_consumption), 1))
        return implicit_national_weather_factor

    
    def adjust_for_weather(self, data, energy_type):
        """Adjust data by weather factors
            Parameters
            ----------
            data: dataframe
                dataset to adjust by weather
            weather_factors: array?
            Returns
            -------
            weather_adjusted_data: dataframe ?
        """
        weather_factors = self.national_method1_fixed_end_use_share_weights(energy_type)
        weather_adjusted_data = data / weather_factors[energy_type]

        return weather_adjusted_data

    def get_weather(self, energy_dict=None, energy_type=None, energy_df=None, weather_adjust=False, seds_data=None):
        if self.sector == 'residential':
            if weather_adjust: 
                for type, energy_dataframe in energy_dict.items():
                    weather_adj_energy = self.adjust_for_weather(energy_dataframe, type)
                    energy_dict[f'{type}_weather_adj'] = weather_adj_energy
                    return energy_dict
            else: 
                weather_factors = dict()
                for type in energy_dict.keys():
                    weather_factors_t = self.national_method1_fixed_end_use_share_weights(energy_type_=type)
                    if type == 'electricity': 
                        type = 'elec'
                    weather_factors[type] = weather_factors_t
                return weather_factors

        elif self.sector == 'commercial':
            weather_factors = dict()
            for type in ['electricity', 'fuels']:
                weather_factors_method1 = self.national_method1_fixed_end_use_share_weights(type)
                                

                early_years = range(min(weather_factors_method1.index), 1969 + 1)

                weather_factors_early = weather_factors_method1.loc[early_years, [f'{type}_weather_factor']]
                weather = weather_factors_method1.drop(f'{type}_weather_factor', axis=1)

                if type == 'electricity': 
                    type = 'elec'

                type_seds = seds_data[type]
                weather_factors_method2 = self.national_method2_regression_models(seds_data=type_seds, weather_factors=weather)
                weather_factors_method2 = weather_factors_method2.rename(columns={'National': f'{type}_weather_factor'})
                late_years = range(1970, max(weather_factors_method2.index) + 1)
                weather_factors_late = weather_factors_method2.loc[late_years]

                weather_factors_t = pd.concat([weather_factors_early, weather_factors_late], sort=True)

                weather_factors[type] = weather_factors_t
            return weather_factors
Exemplo n.º 5
0
class ElectricityIndicators(CalculateLMDI):
    def __init__(self,
                 directory,
                 output_directory,
                 level_of_aggregation,
                 lmdi_model=['multiplicative'],
                 base_year=1985):
        self.sub_categories_list = {
            'Elec Generation Total': {
                'Elec Power Sector': {
                    'Electricity Only': {
                        'Fossil Fuels': {
                            'Coal': None,
                            'Petroleum': None,
                            'Natural Gas': None,
                            'Other Gasses': None
                        },
                        'Nuclear': None,
                        'Hydro Electric': None,
                        'Renewable': {
                            'Wood': None,
                            'Waste': None,
                            'Geothermal': None,
                            'Solar': None,
                            'Wind': None
                        }
                    },
                    'Combined Heat & Power': {
                        'Fossil Fuels': {
                            'Coal': None,
                            'Petroleum': None,
                            'Natural Gas': None,
                            'Other Gasses': None
                        },
                        'Renewable': {
                            'Wood': None,
                            'Waste': None
                        }
                    }
                },
                'Commercial Sector': None,
                'Industrial Sector': None
            },
            'All CHP': {
                'Elec Power Sector': {
                    'Combined Heat & Power': {
                        'Fossil Fuels': {
                            'Coal': None,
                            'Petroleum': None,
                            'Natural Gas': None,
                            'Other Gasses': None
                        },
                        'Renewable': {
                            'Wood': None,
                            'Waste': None
                        },
                        'Other': None
                    }
                },
                'Commercial Sector': {
                    'Combined Heat & Power': {
                        'Fossil Fuels': {
                            'Coal': None,
                            'Petroleum': None,
                            'Natural Gas': None,
                            'Other Gasses': None
                        },
                        'Hydroelectric': None,
                        'Renewable': {
                            'Wood': None,
                            'Waste': None
                        },
                        'Other': None
                    }
                },
                'Industrial Sector': {
                    'Combined Heat & Power': {
                        'Fossil Fuels': {
                            'Coal': None,
                            'Petroleum': None,
                            'Natural Gas': None,
                            'Other Gasses': None
                        },
                        'Hydroelectric': None,
                        'Renewable': {
                            'Wood': None,
                            'Waste': None
                        },
                        'Other': None
                    }
                }
            }
        }
        self.elec_power_eia = GetEIAData(sector='electricity')
        # self.Table21f = pd.read_excel('https://www.eia.gov/totalenergy/data/browser/xls.php?tbl=T02.06') #self.elec_power_eia.eia_api(id_='711254') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711254'
        # self.Table82a = self.elec_power_eia.eia_api(id_='3') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=3'
        # self.Table82b = self.elec_power_eia.eia_api(id_='21')  # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=21'
        # self.Table82c = self.elec_power_eia.eia_api(id_='1736765') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=1736765' ?
        # self.Table82d = self.elec_power_eia.eia_api(id_='711282') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711282'
        # # self.Table82d_2012_and_later = self.elec_power_eia.eia_api(id_='1017') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=1017'
        # self.Table83d_03 = self.elec_power_eia.eia_api(id_='711284') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711284' ?
        # self.Table84b = self.elec_power_eia.eia_api(id_='711284') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711284' ?
        # self.Table85c = self.elec_power_eia.eia_api(id_='379')  # ?
        # self.Table86b = self.elec_power_eia.eia_api(id_='463') # ?
        # self.MER_T72b_1013_AnnualData = self.elec_power_eia.eia_api(id_='21')  #'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=21'
        # self.MER_T72c_1013_AnnualData = self.elec_power_eia.eia_api(id_='2') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=2'
        self.energy_types = ['primary']
        self.Table84c = pd.read_csv(
            'https://www.eia.gov/totalenergy/data/browser/csv.php?tbl=T07.03C'
        )  # Consumption of combustible fuels for electricity generation: Commercial and industrial sectors (selected fuels) # elec_power_eia.eia_api(id_='456')
        self.Table85c = pd.read_csv(
            'https://www.eia.gov/totalenergy/data/browser/csv.php?tbl=T07.03B'
        )  # Consumption of combustible fuels for electricity generation: Electric power sector
        self.Table82d = pd.read_csv(
            'https://www.eia.gov/totalenergy/data/browser/csv.php?tbl=T07.02C')
        super().__init__(sector='electric', level_of_aggregation=level_of_aggregation, lmdi_models=lmdi_model, categories_dict=self.sub_categories_list, \
                         energy_types=self.energy_types, directory=directory, output_directory=output_directory, base_year=base_year)

    @staticmethod
    def get_eia_aer():
        """Prior to 2012, the data for the indicators were taken directly from tables published (and downloaded in 
        Excel format) from EIA's Annual Energy Review. 
        """
        pass

    @staticmethod
    def get_reconciles():
        """ The EIA Annual Energy Review data (pre 2012) for energy consumption to produce
        electricity were generally supplied in physical units only (e.g., mcf of natural gas, tons of coal, etc.) The
        values needed to be converted to Btu, and still be consistent with aggregate energy consumption for
        this sector as published by EIA. For each major fossil fuel, a separate worksheet was developed; these
        worksheets are identified with the suffix “reconcile.” Thus, the worksheet “NatGas Reconcile” seeks to
        produce an estimate of the Btu consumption of natural gas used to generate electricity. Similar
        worksheets were developed for coal, petroleum, and other fuels. 

        ///   Does this need to be done or can download Btu directly instead of converting physical units to Btu --> no     
        """
        pass

    def process_utility_level_data(self):
        """The indicators for electricity are derived entirely from data collected by EIA. Since 2012, the indicators
        are based entirely upon te EIA-923 survey
        """
        eia_923_schedules = pd.read_excel('./')

        net_generation = pd.pivot_table(eia_923_schedules,
                                        columns='EIA Sector Number',
                                        index='AERFuel Type Code',
                                        aggfunc='sum')  # page A-71,
        # 'Net Generation' lower right-hand quadrant?
        net_generation['Grand_Total'] = net_generation.sum(
            axis=1, skipna=True
        )  # Should have 18 rows labeled by type of fuel and seven columns
        # plus one for 'Grand Total'. Note: rows is not an arg of pd.pivot_table
        elec_btu_consumption = pd.pivot_table(eia_923_schedules,
                                              columns='EIA Sector Number',
                                              index='AERFuel Type Code',
                                              aggfunc='sum')  # page A-71,
        # 'Elec Fuel ConsumptionMMBTU' lower right-hand quadrant?
        elec_btu_consumption['Grand_Total'] = elec_btu_consumption.sum(
            axis=1, skipna=True
        )  # Should have 18 rows labeled by type of fuel and seven columns
        # plus one for 'Grand Total'
        previous_years_net_gen = pd.read_excel('./')
        previous_yeas_elec_btu_consumption = pd.read_excel('./')
        master_net_gen = previous_years_net_gen.concat(net_generation)
        maseter_elec_btu_consumption = previous_yeas_elec_btu_consumption.concat(
            elec_btu_consumption)
        # Aggregate data?? page A-72 fpr net generation and elec btu consumption
        return None

    @staticmethod
    def reconcile(total, elec_gen, elec_only_plants, chp_elec,
                  assumed_conv_factor, chp_heat):
        """total: df, Btu
        elec_gen: df, Btu 
        elec_only_plants: df, Short tons
        chp_elec: df, Short tons
        assumed_conv_factor: float, MMBtu/Ton
        chp_heat  
        """
        difference = total.subtract(elec_gen)  # Btu
        implied_conversion_factor = total.divide(elec_only_plants).multiply(
            1000)  # MMBtu/Ton
        elec_only_billionbtu = elec_only_plants.multiply(
            assumed_conv_factor).multiply(1000)  # Billion Btu
        chp_elec_billionbtu = chp_elec.multiply(assumed_conv_factor).multiply(
            0.001)  # Billion Btu
        chp_heat_billionbtu = chp_heat.multiply(assumed_conv_factor).multiply(
            0.001)  # Billion Btu
        total_fuel = elec_only_billionbtu.add(chp_elec_billionbtu).add(
            chp_heat_billionbtu)

        # Cross Check
        total_short_tons = elec_only_plants + chp_elec + chp_heat  # Short Tons
        implied_conversion_factor_cross = total.divide(
            total_short_tons).multiply(1000)  # MMBtu/Ton
        implied_conversion_factor_revised = elec_gen.divide(
            chp_elec.add(elec_only_plants)).multiply(1000)  # MMBtu/Ton

        chp_plants_fuel = implied_conversion_factor_revised.multiply(
            chp_elec).multiply(0.000001)  # Trillion Btu
        elec_only_fuel = elec_gen.multiply(.001).subtract(
            chp_plants_fuel)  # Trillion Btu
        resulting_total = chp_plants_fuel.add(elec_only_fuel)
        return chp_plants_fuel, elec_only_fuel

    def coal_reconcile(self):
        energy_consumption_coal = self.elec_power_eia.eia_api(
            id_='TOTAL.CLEIBUS.A', id_type='series')  # Table21f11 column b
        consumption_for_electricity_generation_coal = self.elec_power_eia.eia_api(
            id_='TOTAL.CLEIBUS.A', id_type='series')  # Table84b11 column b

        consumption_combustible_fuels_electricity_generation_coal = self.elec_power_eia.eia_api(
            id_='TOTAL.CLL1PUS.A', id_type='series'
        )  # Table85c11 column B SHOULD BE separated Elec-only/CHP

        consumption_combustible_fuels_useful_thermal_output_coal = self.elec_power_eia.eia_api(
            id_='TOTAL.CLEIPUS.A', id_type='series')  # Table86b11 column B

        assumed_conversion_factor = 20.9
        total = energy_consumption_coal
        elec_gen = consumption_for_electricity_generation_coal
        elec_only_plants = consumption_combustible_fuels_electricity_generation_coal  # should be separate part?
        chp_elec = consumption_combustible_fuels_electricity_generation_coal  # should be separate part?
        assumed_conv_factor = assumed_conversion_factor
        chp_heat = consumption_combustible_fuels_useful_thermal_output_coal
        # eia-923 pivot table

        difference = total.subtract(elec_gen)  # Btu
        implied_conversion_factor = total.divide(elec_only_plants).multiply(
            1000)  # MMBtu/Ton
        elec_only_billionbtu = elec_only_plants.multiply(
            assumed_conv_factor).multiply(1000)  # Billion Btu
        chp_elec_billionbtu = chp_elec.multiply(assumed_conv_factor).multiply(
            0.001)  # Billion Btu
        chp_heat_billionbtu = chp_heat.multiply(assumed_conv_factor).multiply(
            0.001)  # Billion Btu
        total_fuel = elec_only_billionbtu.add(chp_elec_billionbtu).add(
            chp_heat_billionbtu)

        # Cross Check
        total_short_tons = elec_only_plants + chp_elec + chp_heat  # Short Tons
        implied_conversion_factor_cross = total.divide(
            total_short_tons).multiply(1000)  # MMBtu/Ton
        implied_conversion_factor_revised = elec_gen.divide(
            chp_elec.add(elec_only_plants)).multiply(1000)  # MMBtu/Ton

        chp_plants_fuel = implied_conversion_factor_revised.multiply(
            chp_elec).multiply(0.000001)  # Trillion Btu
        elec_only_fuel = elec_gen.multiply(.001).subtract(
            chp_plants_fuel)  # Trillion Btu
        resulting_total = chp_plants_fuel.add(elec_only_fuel)
        return chp_plants_fuel, elec_only_fuel

    def natgas_reconcile(self):
        energy_consumption_natgas = self.elec_power_eia.eia_api(
            id_='TOTAL.NNEIBUS.A', id_type='series')  # Table21f11 column d
        consumption_for_electricity_generation_natgas = self.elec_power_eia.eia_api(
            id_='TOTAL.NNEIBUS.A', id_type='series')  # Table84b11 column f
        consumption_combustible_fuels_electricity_generation_natgas = self.elec_power_eia.eia_api(
            id_='TOTAL.NGL1PUS.A', id_type='series')  # Table85c11 column N
        consumption_combustible_fuels_useful_thermal_output_natgas = self.elec_power_eia.eia_api(
            id_='TOTAL.NGEIPUS.A', id_type='series')  # Table86b11 column M

        # eia-923 pivot table
        """total: df, Billion Btu
        elec_gen: df, Billion Btu 
        elec_only_plants: df, Thou. Cu. Ft.
        chp_elec: df, Thou. CF
        assumed_conv_factor: float, MMBtu/Ton
        chp_heat: df, Thou. CF
        """
        total = energy_consumption_natgas
        elec_gen = consumption_for_electricity_generation_natgas
        elec_only_plants = consumption_combustible_fuels_electricity_generation_natgas
        chp_elec = consumption_combustible_fuels_electricity_generation_natgas  # different part
        assumed_conv_factor = 1.028
        chp_heat = consumption_combustible_fuels_useful_thermal_output_natgas

        difference = total.subtract(elec_gen)  # Billion Btu
        implied_conversion_factor = elec_gen.divide(elec_only_plants).multiply(
            1000)  # kBtu/CF  * different from coal_reconcile
        elec_only_trillionbtu = elec_only_plants.multiply(
            assumed_conv_factor).multiply(0.001)  # Trillion Btu
        chp_elec_trillionbtu = chp_elec.multiply(assumed_conv_factor).multiply(
            0.001)  # Trillion Btu
        chp_heat_trillionbtu = chp_heat.multiply(assumed_conv_factor).multiply(
            0.001)  # Trillion Btu
        total_fuel = elec_only_trillionbtu.add(chp_elec_trillionbtu).add(
            chp_heat_trillionbtu)

        # Cross Check
        total_thou_cf = elec_only_plants + chp_elec + chp_heat  # Thou. CF
        implied_conversion_factor_cross = total.divide(total_thou_cf).multiply(
            1000)  # kBtu/CF
        implied_conversion_factor_revised = elec_gen.divide(
            chp_elec.add(elec_only_plants)).multiply(1000)  # MMBtu/Ton

        chp_plants_fuel = implied_conversion_factor_revised.multiply(
            chp_elec).multiply(0.000001)  # Trillion Btu
        elec_only_fuel = elec_gen.multiply(.001).subtract(
            chp_plants_fuel)  # Trillion Btu
        resulting_total = chp_plants_fuel.add(elec_only_fuel)
        return chp_plants_fuel, elec_only_fuel

    def petroleum_reconcile(self):
        energy_consumption_petroleum = self.elec_power_eia.eia_api(
            id_='TOTAL.PAEIBUS.A', id_type='series')  # Table21f11 column F
        consumption_for_electricity_generation_petroleum = self.elec_power_eia.eia_api(
            id_='TOTAL.PAEIBUS.A', id_type='series')  # Table84b11 column D
        consumption_combustible_fuels_electricity_generation_distillate_fuel_oil = self.elec_power_eia.eia_api(
            id_='TOTAL.DKL1PUS.A',
            id_type='series')  # Table85c11 column D, F, H, J
        consumption_combustible_fuels_electricity_generation_residual_fuel_oil = self.elec_power_eia.eia_api(
            id_='TOTAL.RFL1PUS.A', id_type='series')
        consumption_combustible_fuels_electricity_generation_other_liquids = self.elec_power_eia.eia_api(
            id_='TOTAL.OLL1PUS.A', id_type='series')
        consumption_combustible_fuels_electricity_generation_petroleum_coke = self.elec_power_eia.eia_api(
            id_='TOTAL.PCL1MUS.A', id_type='series')
        consumption_combustible_fuels_electricity_generation_total_petroleum = self.elec_power_eia.eia_api(
            id_='TOTAL.PAL1PUS.A', id_type='series')

        fuels_list = [
            consumption_combustible_fuels_electricity_generation_distillate_fuel_oil,
            consumption_combustible_fuels_electricity_generation_residual_fuel_oil,
            consumption_combustible_fuels_electricity_generation_other_liquids,
            consumption_combustible_fuels_electricity_generation_petroleum_coke
        ]
        elec_only_plants_petroleum = reduce(
            lambda x, y: pd.merge(x, y, on='Period'), fuels_list)

        consumption_combustible_fuels_useful_thermal_output_distillate_fuel_oil = self.elec_power_eia.eia_api(
            id_='TOTAL.DKEIPUS.A',
            id_type='series')  # Table86b11 column D, F, G, I
        consumption_combustible_fuels_useful_thermal_output_residual_fuel_oil = self.elec_power_eia.eia_api(
            id_='TOTAL.RFEIPUS.A', id_type='series')
        consumption_combustible_fuels_useful_thermal_output_other_liquids = self.elec_power_eia.eia_api(
            id_='TOTAL.OLEIPUS.A', id_type='series')
        consumption_combustible_fuels_useful_thermal_output_petroleum_coke = self.elec_power_eia.eia_api(
            id_='TOTAL.PCEIMUS.A', id_type='series')
        consumption_combustible_fuels_useful_thermal_output_total_petroleum = self.elec_power_eia.eia_api(
            id_='TOTAL.PTEIPUS.A', id_type='series')
        chp_elec = consumption_combustible_fuels_electricity_generation_total_petroleum
        # eia-923 pivot table
        assumed_conversion_factors = [5.825, 6.287, 5.67, 30120]
        chp_plants_petroleum, elec_only_petroleum = self.reconcile(
            total=energy_consumption_petroleum,
            elec_gen=consumption_for_electricity_generation_petroleum,
            elec_only_plants=elec_only_plants_petroleum,
            chp_elec=chp_elec,
            assumed_conv_factor=assumed_conversion_factors,
            chp_heat=
            consumption_combustible_fuels_useful_thermal_output_total_petroleum
        )
        return chp_plants_petroleum, elec_only_petroleum

    def othgas_reconcile(self):
        consumption_for_electricity_generation_fossil_fuels = self.elec_power_eia.eia_api(
            id_='TOTAL.FFEIBUS.A', id_type='series')  # Table84b11 column H
        consumption_for_electricity_generation_oth_gas = consumption_for_electricity_generation_fossil_fuels - consumption_for_electricity_generation_petroleum - consumption_for_electricity_generation_natgas - consumption_for_electricity_generation_coal
        consumption_combustible_fuels_electricity_generation_oth_gas = self.elec_power_eia.eia_api(
            id_='TOTAL.OJL1BUS.A', id_type='series')  # Table85c11 column P
        consumption_combustible_fuels_useful_thermal_output_othgas = self.elec_power_eia.eia_api(
            id_='TOTAL.OJEIBUS.A', id_type='series')  # Table86b11 column O

        elec_gen = consumption_for_electricity_generation_oth_gas
        elec_only_plants = consumption_combustible_fuels_electricity_generation_oth_gas
        chp_elec = consumption_combustible_fuels_electricity_generation_oth_gas  # ** different part of the series?'
        chp_heat = consumption_combustible_fuels_useful_thermal_output_othgas
        total_other_gas = elec_only_plants.add(chp_elec).add(chp_heat)
        return chp_elec

    # consumption_combustible_fuels_electricity_generation =
    # print(consumption_combustible_fuels_electricity_generation)
    # consumption_combustible_fuels_useful_thermal_output =
    # print(consumption_combustible_fuels_useful_thermal_output)

    def industrial_sector_chp_renew(self):

        wood_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Wood Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)
        waste_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Waste Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4C column R # TBtu

        wood_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WDI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column R
        waste_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WSI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column T

        data_dict = {
            'Wood': {
                'energy': {
                    'primary': wood_energy
                },
                'activity': wood_activity
            },
            'Waste': {
                'energy': {
                    'primary': waste_energy
                },
                'activity': waste_activity
            }
        }
        return data_dict

    def industrial_sector_chp_fossil(self):
        coal_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Coal Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4c column B # TBtu
        petroleum_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Petroleum Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4c column D # TBtu
        natgas_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Natural Gas Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4c column F # TBtu
        othgas_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Other Gases Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4c column H # TBtu

        coal_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.CLI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column B
        petroleum_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.PAI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column D
        natgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.NGI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column F
        othgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.OJI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column H

        data_dict = {
            'Coal': {
                'energy': {
                    'primary': coal_energy
                },
                'activity': coal_activity
            },
            'Petroleum': {
                'energy': {
                    'primary': petroleum_energy
                },
                'activity': petroleum_activity
            },
            'Natural Gas': {
                'energy': {
                    'primary': natgas_energy
                },
                'activity': natgas_activity
            },
            'Other Gasses': {
                'energy': {
                    'primary': othgas_energy
                },
                'activity': othgas_activity
            }
        }
        return data_dict

    def industrial_sector_total(self):
        """Note: Other includes batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies

        """
        hydroelectric_energy = None  #.multiply(0.001) # Table 8.4C11 column N
        other_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Other Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4C11 column AB

        hydroelectric_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.HVI5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d11 Column P
        other_activity = None  #  self.elec_power_eia.eia_api(id_='', id_type='series').multiply(0.001) # Table 8.2d11 Column AD
        data_dict = {
            'Hydroelectric': {
                'energy': {
                    'primary': hydroelectric_energy
                },
                'activity': hydroelectric_activity
            },
            'Other': {
                'energy': {
                    'primary': other_energy
                },
                'activity': other_activity
            }
        }
        return data_dict

    def comm_sector_chp_renew(self):
        """As is, these are the same sources as ind sector, but should be different part of columns? 
        """
        wood_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Other Gases Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4C column P # TBtu
        waste_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Other Gases Consumption for Electricity Generation, Industrial Sector'].multiply(
                0.001)  # Table 8.4C column R # TBtu

        wood_activity = None  # self.elec_power_eia.eia_api(id_='', id_type='series').multiply(0.001) # Table 8.2d column R
        waste_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WSC5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column T
        data_dict = {
            'Wood': {
                'energy': {
                    'primary': wood_energy
                },
                'activity': wood_activity
            },
            'Waste': {
                'energy': {
                    'primary': waste_energy
                },
                'activity': waste_activity
            }
        }
        return data_dict

    def comm_sector_chp_fossil(self):
        coal_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Coal Consumption for Electricity Generation, Commercial Sector'].multiply(
                0.001)  # Table 8.4c column B # TBtu
        petroleum_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Petroleum Consumption for Electricity Generation, Commercial Sector'].multiply(
                0.001)  # Table 8.4c column D # TBtu
        natgas_energy = self.Table84c[
            self.Table84c['Description'] ==
            'Natural Gas Consumption for Electricity Generation, Commercial Sector'].multiply(
                0.001)  # Table 8.4c column F # TBtu
        othgas_energy = None  #.multiply(0.001) # Table 8.4c column H # TBtu

        coal_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.CLC5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column B
        petroleum_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.PAC5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column D
        natgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.NGC5PUS.A',
            id_type='series').multiply(0.001)  # Table 8.2d column F
        othgas_activity = None  #  self.elec_power_eia.eia_api(id_='', id_type='series').multiply(0.001) # Table 8.2d column H

        # Industrial and Commercial have same spreadsheet sources but different parts of the columns
        data_dict = {
            'Coal': {
                'energy': {
                    'primary': coal_energy
                },
                'activity': coal_activity
            },
            'Petroleum': {
                'energy': {
                    'primary': petroleum_energy
                },
                'activity': petroleum_activity
            },
            'Natural Gas': {
                'energy': {
                    'primary': natgas_energy
                },
                'activity': natgas_activity
            },
            'Other Gasses': {
                'energy': {
                    'primary': othgas_energy
                },
                'activity': othgas_activity
            }
        }
        return data_dict

    def comm_sector_total(self):
        """Note: Other includes batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies

        """
        hydroelectric_energy = None  #.multiply(0.001) # Table 8.4C11 column N
        other_energy = None  # .multiply(0.001) # Table 8.4C11 column AB

        hydroelectric_activity = None  # self.elec_power_eia.eia_api(id_='', id_type='series').multiply(0.001) # Table 8.2d11 Column P
        other_activity = None  # self.Table82d contains 'Electricity Net Generation Total (including from sources not shown), Commercial Sector',
        #                                          could get "other" by subtracting other categories from ^ ?.multiply(0.001) # Table 8.2d11 Column AD

        data_dict = {
            'Hydroelectric': {
                'energy': {
                    'primary': hydroelectric_energy
                },
                'activity': hydroelectric_activity
            },
            'Other': {
                'energy': {
                    'primary': other_energy
                },
                'activity': other_activity
            }
        }
        return data_dict

    def elec_power_sector_chp_renew(self):
        wood_energy = self.Table85c[
            self.Table85c['Description'] ==
            'Wood Consumption for Electricity Generation, Electric Power Sector'].multiply(
                0.001)  # Table 8.5C column R # TBtu
        waste_energy = self.Table85c[
            self.Table85c['Description'] ==
            'Waste Consumption for Electricity Generation, Electric Power Sector'].multiply(
                0.001)  # Table 8.5C column T # TBtu

        wood_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WDEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2c column R
        waste_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WSEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2c column T

        data_dict = {
            'Wood': {
                'energy': {
                    'primary': wood_energy
                },
                'activity': wood_activity
            },
            'Waste': {
                'energy': {
                    'primary': waste_energy
                },
                'activity': waste_activity
            }
        }
        return data_dict

    def elec_power_sector_chp_fossil(self):
        coal_energy = self.coal_reconcile()
        petroleum_energy = self.petroleum_reconcile()
        natgas_energy = self.natgas_reconcile()
        othgas_energy = self.othgas_reconcile()

        coal_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.CLEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2c column B
        petroleum_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.PAEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2c column D
        natgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.NGEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2c column F
        othgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.OJEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2c column H

        data_dict = {
            'Coal': {
                'energy': {
                    'primary': coal_energy
                },
                'activity': coal_activity
            },
            'Petroleum': {
                'energy': {
                    'primary': petroleum_energy
                },
                'activity': petroleum_activity
            },
            'Natural Gas': {
                'energy': {
                    'primary': natgas_energy
                },
                'activity': natgas_activity
            },
            'Other Gasses': {
                'energy': {
                    'primary': othgas_energy
                },
                'activity': othgas_activity
            }
        }
        return data_dict

    def elec_power_sector_chp_total(self):

        other_energy = self.Table85c[
            self.Table85c['Description'] ==
            'Other Consumption for Electricity Generation, Electric Power Sector'].multiply(
                0.001)  # Table 8.5c column V
        other_activty = None  # self.elec_power_eia.eia_api(id_='', id_type='series').multiply(0.001) # Table 8.2c columnAD

        data_dict = {
            'Other': {
                'energy': {
                    'primary': other_energy
                },
                'activity': other_activty
            }
        }
        return data_dict

    def electricity_only_renew(self):
        wood_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WDL1BUS.A',
            id_type='series').multiply(0.001)  # Table 8.3d I, 8.5C R
        waste_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.WSL1BUS.A',
            id_type='series').multiply(0.001)  # Table 8.3d J, 8.5C T
        geothermal_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.GEEGBUS.A',
            id_type='series').multiply(0.001)  # Table 8.4 T
        solar_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.SOEGBUS.A',
            id_type='series').multiply(0.001)  # Table 8.4 V
        wind_activity = self.elec_power_eia.eia_api(id_='TOTAL.WYEGBUS.A',
                                                    id_type='series').multiply(
                                                        0.001)  # Table 8.4 X

        wood_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.WDEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2b S, 8.2c R
        waste_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.WSEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2b T, 8.2c T
        geothermal_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.GEEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2b V, 8.2c V
        solar_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.SOEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2b X, 8.2c X
        wind_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.WYEGPUS.A',
            id_type='series').multiply(0.001)  # Table 8.2b Z, 8.2c Z

        data_dict = {
            'Wood': {
                'energy': {
                    'primary': wood_energy
                },
                'activity': wood_activity
            },
            'Waste': {
                'energy': {
                    'primary': waste_energy
                },
                'activity': waste_activity
            },
            'Geothermal': {
                'energy': {
                    'primary': geothermal_energy
                },
                'activity': geothermal_activity
            },
            'Solar': {
                'energy': {
                    'primary': solar_energy
                },
                'activity': solar_activity
            },
            'Wind': {
                'energy': {
                    'primary': wind_energy
                },
                'activity': wind_activity
            }
        }
        return data_dict

    def electricity_only_fossil(self):
        coal_energy = self.coal_reconcile()
        petroleum_energy = self.petroleum_reconcile()
        natgas_energy = self.natgas_reconcile()
        othgas_energy = self.othgas_reconcile()

        coal_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.CLEGPUS.A',
            id_type='series').multiply(0.001)  # 8.2b B, 8.2c B
        petroleum_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.PAEGPUS.A',
            id_type='series').multiply(0.001)  # 8.2b D, 8.2c D
        natgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.NGEGPUS.A',
            id_type='series').multiply(0.001)  # 8.2b B, 8.2c F
        othgas_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.OJEGPUS.A', id_type='series').multiply(0.001)  # 8.2c H

        data_dict = {
            'Coal': {
                'energy': {
                    'primary': coal_energy
                },
                'activity': coal_activity
            },
            'Petroleum': {
                'energy': {
                    'primary': petroleum_energy
                },
                'activity': petroleum_activity
            },
            'Natural Gas': {
                'energy': {
                    'primary': natgas_energy
                },
                'activity': natgas_activity
            },
            'Other Gasses': {
                'energy': {
                    'primary': othgas_energy
                },
                'activity': othgas_activity
            }
        }
        return data_dict

    def electricity_only_total(self):
        nuclear_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.NUEGBUS.A', id_type='series').multiply(0.001)  # 8.4b L
        hydroelectric_energy = self.elec_power_eia.eia_api(
            id_='TOTAL.HVEGBUS.A', id_type='series').multiply(0.001)  # 8.4b N

        nuclear_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.NUEGPUS.A', id_type='series').multiply(0.001)  # 8.2b L
        hydroelectric_activity = self.elec_power_eia.eia_api(
            id_='TOTAL.HVEGPUS.A', id_type='series').multiply(0.001)  # 8.2b O

        data_dict = {
            'Hydro Electric': {
                'energy': {
                    'primary': hydroelectric_energy
                },
                'activity': hydroelectric_activity
            },
            'Nuclear': {
                'energy': {
                    'primary': nuclear_energy
                },
                'activity': nuclear_activity
            }
        }
        return data_dict

    def collect_data(self):
        industrial_sector_chp_renew = self.industrial_sector_chp_renew()
        industrial_sector_chp_fossil = self.industrial_sector_chp_fossil()
        industrial_sector_total = self.industrial_sector_total()
        industrial_sector_total['Fossil Fuels'] = industrial_sector_chp_fossil
        industrial_sector_total['Renewable'] = industrial_sector_chp_renew

        comm_sector_chp_renew = self.comm_sector_chp_renew()
        comm_sector_chp_fossil = self.comm_sector_chp_fossil()
        comm_sector_total = self.comm_sector_total()
        comm_sector_total['Fossil Fuels'] = comm_sector_chp_fossil
        comm_sector_total['Renewable'] = comm_sector_chp_renew

        elec_power_sector_chp_renew = self.elec_power_sector_chp_renew()
        elec_power_sector_chp_fossil = self.elec_power_sector_chp_fossil()
        elec_power_sector_chp_total = self.elec_power_sector_chp_total()
        elec_power_sector_chp_total[
            'Fossil Fuels'] = elec_power_sector_chp_fossil
        elec_power_sector_chp_total['Renewable'] = elec_power_sector_chp_renew

        all_chp = dict()
        all_chp['Industrial Sector'] = industrial_sector_total
        all_chp['Commercial Sector'] = comm_sector_total
        all_chp['Elec Power Sector'] = elec_power_sector_chp_total

        electricity_only_renew = self.electricity_only_renew()
        electricity_only_fossil = self.electricity_only_fossil()
        electricity_only_total = self.electricity_only_total()
        electricity_only_total['Fossil Fuels'] = electricity_only_fossil
        electricity_only_total['Renewable'] = electricity_only_total

        chp_elec_power_sector = dict()
        chp_renew = self.chp_renew()
        chp_fossil = self.chp_fossil()
        chp_elec_power_sector['Fossil Fuels'] = chp_fossil
        chp_elec_power_sector['Renewable'] = chp_renew

        elec_power_sector = dict()
        elec_power_sector['Electricity Only'] = electricity_only_total
        elec_power_sector['Combined Heat & Power'] = chp_elec_power_sector

        elec_generation_total = dict(
        )  # Need to build this from commerical and industrial_totals
        elec_generation_total['Elec Power Sector'] = elec_power_sector
        elec_generation_total['Commercial Sector'] = comm_sector_total
        elec_generation_total['Industrial Sector'] = industrial_sector_total

        data_dict = {
            'Elec Generation Total': elec_generation_total,
            'All CHP': all_chp
        }
        return data_dict

    def main(self, breakout, save_breakout, calculate_lmdi):
        data_dict = self.collect_data()
        print(data_dict)
        results_dict, formatted_results = self.get_nested_lmdi(
            level_of_aggregation=self.level_of_aggregation,
            breakout=breakout,
            save_breakout=save_breakout,
            calculate_lmdi=calculate_lmdi,
            raw_data=data_dict)
Exemplo n.º 6
0
class CommercialIndicators(CalculateLMDI):
    """
    Data Sources: 
    - New construction is based on data from Dodge Data and Analytics. Dodge data on new floor space additions is available 
    from the published versions of the Statistical Abstract of the United States (SAUS). The Most recent data is from the 2020 
    SAUS, Table 995 "Construction Contracts Started- Value of the Construction and Floor Space of Buildings by Class of Construction:
    2014 to 2018".
    """
    def __init__(self,
                 directory,
                 output_directory,
                 level_of_aggregation,
                 lmdi_model=['multiplicative'],
                 end_year=2018,
                 base_year=1985):
        self.end_year = end_year
        self.sub_categories_list = {
            'Commercial_Total': None
        }  #, 'Total_Commercial_LMDI_UtilAdj': None}
        self.eia_comm = GetEIAData('commercial')
        self.energy_types = ['elec', 'fuels', 'deliv', 'source', 'source_adj']
        super().__init__(sector='commercial',
                         level_of_aggregation=level_of_aggregation,
                         lmdi_models=lmdi_model,
                         directory=directory,
                         output_directory=output_directory,
                         categories_dict=self.sub_categories_list,
                         energy_types=self.energy_types,
                         base_year=base_year,
                         end_year=end_year)
        # self.cbecs =
        # self.residential_housing_units = [0] # Use regional estimates of residential housing units as interpolator, extrapolator via regression model

        # self.mer_data23_May_2016 = GetEIAData.eia_api(id_='711251')  # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711251'
        # self.mer_data23_Jan_2017 = GetEIAData.eia_api(id_='711251')   # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711251'
        # self.mer_data23_Dec_2019 =  GetEIAData.eia_api(id_='711251')  # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711251'
        # self.AER11_Table21C_Update = GetEIAData.eia_api(id_='711251')  # Estimates?

    def collect_input_data(self, dataset_name):
        datasets = \
            {'national_calibration':
                self.eia_comm.national_calibration(),
             'SEDS_CensusRgn':
                self.eia_comm.get_seds(),
             'mer_data_23':
                self.eia_comm.eia_api(id_='711251', id_type='category')}
        return datasets[dataset_name]

    def adjusted_supplier_data(self):
        """
        This worksheet adjusts some of commercial energy consumption data
        as reported in the Annual Energy Review.  These adjustments are
        based upon state-by-state analysis of energy consumption in the
        industrial and commercial sectors.  For electricity, there have been
        a number of reclassifications by utilities since 1990 that has moved
        sales from the industrial sector to the commercial sector.

        The adjustment for electricity consumption is based upon a
        state-by-state examination of commercial and electricity
        sales from 1990 through 2011.  This data is collected
        by EIA via Survey EIA-861.  Significant discontinuities
        in the sales data from one year to the next were removed.
        In most cases, these adjustments caused industrial consumption
        to increase and commercial consumption to decrease.  The
        spreadsheet with these adjustments is
        Sectoral_reclassification5.xls  (10/25/2012).

        In 2009, there was a significant decline in commercial
        electricity sales in MA and a corresponding increase in industrial
        sales
        Assuming that industrial consumption would have
        fallen by 2% between 2008 and 2009, the adjustment
        to both the commercial (+) and industrial sectors (-) was
        estimated to be 7.61 TWh.  .
        The 7.61 TWh converted to Tbtu is 26.0.  This value is then added
        to the negative 164.0 Tbtu in 2009 and subsequent years.

        State Energy Data System (Jan. 2017) via National Calibration worksheet
        """

        # 1949-1969
        published_consumption_trillion_btu = \
            self.eia_comm.eia_api(id_='TOTAL.ESCCBUS.A', id_type='series')  # Column W (electricity retail sales to the commercial sector) # for years 1949-69
        published_consumption_trillion_btu = \
            published_consumption_trillion_btu.rename(
                columns={'Electricity Retail Sales to the Commercial Sector, Annual, Trillion Btu':
                         'published_consumption_trillion_btu'})
        # 1970-2018
        national_calibration = self.collect_input_data('national_calibration')
        published_consumption_trillion_btu.loc['1970':, [
            'published_consumption_trillion_btu'
        ]] = national_calibration.loc['1970':, [
            'Final Est. (Trillion Btu)_elec'
        ]].values  # Column G (electricity final est) # for years 1970-2018
        # 1977-1989

        years = list(
            range(
                1977,
                max(published_consumption_trillion_btu.index.astype(int)) + 1))
        years = [str(y) for y in years]
        # adjustment_to_commercial_trillion_btu_early = number_for_1990
        adjustment_to_commercial_trillion_btu = \
            [9.21340312799975, 9.21340312799975, 9.21340312799975, 9.21340312799975, 9.21340312799975,
            9.21340312799975, 9.21340312799975, 9.21340312799975, 9.21340312799975, 9.21340312799975,
            9.21340312799975, 9.21340312799975, 9.21340312799975, 9.21340312799975, 9.21340654000005,
            29.77918535999970, 10.21012680399960, 1.70263235599987, -40.63866012000020, -40.63865670799990,
            -117.72073870000000, -117.72073528800000, -117.72073187600000, -117.72072846400000, -162.61452790400100,
            -136.25241618800100, -108.91594645600000, -125.97594304400000, -125.97593963200100, -163.95020989600000,
            -163.95020648400000, -163.95020307200000, -137.98708428968000, -137.98487966000100, -137.98487966000100,
            -137.98487966000100, -137.98487966000100, -137.98487966000100, -137.98487966000100, -137.98487966000100,
            -137.98487966000100, -137.98487966000100] # First value is for 1977 - 2018
        adjustment_df = \
            pd.DataFrame([years, adjustment_to_commercial_trillion_btu]).transpose()
        adjustment_df.columns = \
            ['Year', 'adjustment_to_commercial_trillion_btu']

        adjusted_supplier_data = \
            adjustment_df.merge(published_consumption_trillion_btu, how='outer', on='Year')
        adjusted_supplier_data['adjustment_to_commercial_trillion_btu'] = \
            adjusted_supplier_data['adjustment_to_commercial_trillion_btu'].fillna(0)

        adjusted_supplier_data = adjusted_supplier_data.set_index('Year')
        adjusted_supplier_data['adjusted_consumption_trillion_btu'] = \
            adjusted_supplier_data['adjustment_to_commercial_trillion_btu'].add(adjusted_supplier_data['published_consumption_trillion_btu'])
        adjusted_supplier_data['adjusted_consumption_trillion_btu'] = \
            adjusted_supplier_data['adjusted_consumption_trillion_btu'].astype(float)
        adjusted_supplier_data = \
            adjusted_supplier_data.sort_index(ascending=True)

        return adjusted_supplier_data[['adjusted_consumption_trillion_btu']]

    @staticmethod
    def get_saus():
        """Get Data from the Statistical Abstract of the United States (SAUS)
        """

        print('os.getcwd():', os.getcwd())
        try:
            saus_2002 = \
                pd.read_csv('./EnergyIntensityIndicators/Data/SAUS2002_table995.csv').set_index('Year')
        except FileNotFoundError:
            os.chdir('..')
            saus_2002 = \
                pd.read_csv('./EnergyIntensityIndicators/Data/SAUS2002_table995.csv').set_index('Year')

        saus_1994 = {
            1980: 738,
            1981: 787,
            1982: 631,
            1983: 716,
            1984: 901,
            1985: 1039,
            1986: 960,
            1987: 933,
            1988: 883,
            1989: 867,
            1990: 694,
            1991: 477,
            1992: 462,
            1993: 479
        }
        saus_2001 = {
            1980: 738,
            1981: None,
            1982: None,
            1983: None,
            1984: None,
            1985: 1039,
            1986: None,
            1987: None,
            1988: None,
            1989: 867,
            1990: 694,
            1991: 476,
            1992: 462,
            1993: 481,
            1994: 600,
            1995: 700,
            1996: 723,
            1997: 855,
            1998: 1106,
            1999: 1117,
            2000: 1176
        }
        saus_merged = dict()
        for (year, value) in saus_2001.items():
            if value == None:
                set_value = saus_1994[year]
            else:
                set_value = value
            saus_merged[year] = set_value

        saus_merged_df = \
            pd.DataFrame.from_dict(
                saus_merged, orient='index', columns=['Value'])
        return saus_2002, saus_merged_df

    @staticmethod
    def dod_compare_old():
        """
        DODCompareOld Note from PNNL (David B. Belzer):
        "These series are of unknown origin--need to check Jackson and Johnson 197 (sic)?
        """

        dod_old = pd.read_csv(
            './EnergyIntensityIndicators/Data/DODCompareOld.csv').set_index(
                'Year')

        cols_list = ['Retail', 'Auto R', 'Office', 'Warehouse']
        dod_old['Commercial'] = dod_old[cols_list].sum(axis=1)
        dod_old_subset = dod_old.loc[list(range(1960, 1982)), cols_list]
        dod_old_hotel = dod_old.loc[list(range(1980, 1990)), ['Commercial']]
        return dod_old, dod_old_subset, dod_old_hotel

    def dodge_adjustment_ratios(self, dodge_dataframe, start_year, stop_year,
                                adjust_years, late):
        """(1985, 1990) or (1960, 1970)
        """

        year_indices = self.years_to_str(start_year, stop_year)
        revision_factor_commercial = dodge_dataframe.loc[year_indices,
                                                         ['Commercial']].sum(
                                                             axis=0).values
        categories = ['Retail', 'Auto R', 'Office', 'Warehouse', 'Hotel']
        if late:
            col = 'Commercial'
        else:
            col = 'Commercial, Excl Hotel'
        for category in categories:

            revision_factor_cat = dodge_dataframe.loc[
                year_indices,
                [category]].sum(axis=0).values / revision_factor_commercial
            dodge_dataframe.loc[adjust_years,
                                [category]] = dodge_dataframe.loc[
                                    adjust_years,
                                    [col]].values * revision_factor_cat[0]

        return dodge_dataframe

    def west_inflation(self):
        """Jackson and Johnson Estimate of West Census Region Inflation Factor, West Region Shares Based on CBECS

        Note from PNNL: "Staff: Based upon CBECS, the percentage of construction in west census region was slightly greater
         in the 1900-1919 period than in 1920-1945.  Thus, factor is set to 1.12, approximately same as 1925 value published
         by Jackson and Johnson"
        """

        # hist_stat = self.hist_stat()['Commercial  (million SF)'] # hist_stat column E
        # # west inflation column Q
        ornl_78 = {
            1925: 1.127,
            1930: 1.144,
            1935: 1.12,
            1940: 1.182,
            1945: 1.393,
            1950: 1.216,
            1951: 1.237,
            1952: 1.224,
            1953: 1.209,
            1954: 1.213,
            1955: 1.229
        }
        all_years = list(range(min(ornl_78.keys()), max(ornl_78.keys()) + 1))
        increment_years = list(ornl_78.keys())

        final_factors = {year: 1.12 for year in list(range(1919, 1925))}
        for index, y_ in enumerate(increment_years):
            if index > 0:
                year_before = increment_years[index - 1]
                num_years = y_ - year_before
                infl_factor_year_before = ornl_78[year_before]
                infl_factor_y_ = ornl_78[y_]
                increment = 1 / num_years
                for delta in range(num_years):
                    value = infl_factor_year_before * (1 - increment * delta) + \
                        infl_factor_y_ * (increment * delta)
                    year = year_before + delta
                    final_factors[year] = value
        final_factors_df = pd.DataFrame.from_dict(final_factors,
                                                  columns=['Final Factors'],
                                                  orient='index')
        return final_factors_df

    @staticmethod
    def years_to_str(start_year, end_year):
        """Create list of year strings from start_year and end_year range
        """

        list_ = list(range(start_year, end_year + 1))
        return [str(l) for l in list_]

    def hist_stat(self):
        """Historical Dodge Data through 1970

        Data Source: Series N 90-100 Historical Statistics of the U.S., Colonial Times to 1970
        """

        historical_dodge = pd.read_csv(
            './EnergyIntensityIndicators/Data/historical_dodge_data.csv'
        ).set_index('Year')
        pub_inst_values = historical_dodge.loc[list(range(1919, 1925)),
                                               ['Pub&Institutional']].values
        total_1925_6 = pd.DataFrame.sum(
            historical_dodge.loc[list(range(1925, 1927)), ],
            axis=0).drop(index='Commercial  (million SF)')
        inst_pub_total_1925 = pd.DataFrame.sum(
            historical_dodge.loc[1925, ].drop('Commercial  (million SF)'),
            axis=0)
        inst_pub_total_1926 = pd.DataFrame.sum(
            historical_dodge.loc[1926, ].drop('Commercial  (million SF)'),
            axis=0)
        inst_pub_total_1925_6 = inst_pub_total_1925 + inst_pub_total_1926

        shares = total_1925_6.divide(inst_pub_total_1925_6)
        for col in list(total_1925_6.index):
            values = historical_dodge.loc[list(range(1919, 1925)),
                                          ['Pub&Institutional']].multiply(
                                              shares[col]).values
            historical_dodge.at[list(range(1919, 1925)), col] = values

        historical_dodge.at[list(range(1919, 1925)),
                            ['Pub&Institutional']] = pub_inst_values
        return historical_dodge

    def hist_stat_adj(self):
        """Adjust historical Dodge data to account for
        omission of data for the West Census Region prior to 1956
        """

        hist_data = self.hist_stat()
        west_inflation = self.west_inflation()
        hist_data = hist_data.merge(west_inflation,
                                    how='outer',
                                    left_index=True,
                                    right_index=True)
        hist_data['Final Factors'] = hist_data['Final Factors'].fillna(1)
        adjusted_for_west = hist_data.drop(
            columns=['Final Factors', 'Pub&Institutional']).multiply(
                hist_data['Final Factors'].values, axis=0)
        return adjusted_for_west.loc[list(range(1919, 1960)), :]

    def dodge_revised(self):
        """Dodge Additions, adjusted for omission of
        West Census Region prior to 1956
        """

        saus_2002, saus_merged = self.get_saus()
        dod_old, dod_old_subset, dod_old_hotel = self.dod_compare_old()
        west_inflation = self.hist_stat_adj()

        dodge_revised = pd.read_csv(
            './EnergyIntensityIndicators/Data/Dodge_Data.csv').set_index(
                'Year')
        dodge_revised.index = dodge_revised.index.astype(str)

        dodge_revised = dodge_revised.reindex(
            dodge_revised.columns.tolist() +
            ['Commercial, Excl Hotel', 'Hotel'],
            axis=1).fillna(np.nan)

        years_1919_1989 = self.years_to_str(1919, 1990)
        years_1990_1997 = self.years_to_str(1990, 1997)

        dodge_revised.loc[self.years_to_str(1960, 1981),
                          ['Retail', 'Auto R', 'Office', 'Warehouse'
                           ]] = dod_old_subset.values

        dodge_revised.loc[self.years_to_str(1919, 1959),
                          ['Commercial, Excl Hotel']] = west_inflation[
                              'Commercial  (million SF)'].values.reshape(
                                  41, 1)  # hist_stat_adj column Q
        hist_adj_cols = [
            'Education', 'Hospital', 'Public', 'Religious', 'Soc/Amuse', 'Misc'
        ]
        dodge_revised.loc[self.years_to_str(1919, 1959),
                          hist_adj_cols] = west_inflation.drop(
                              'Commercial  (million SF)', axis=1).values
        dodge_revised.loc[self.years_to_str(1990, 1998),
                          hist_adj_cols] = saus_2002.loc[
                              self.years_to_str(1990, 1998), [
                                  'Educational', 'Health', 'Pub. Bldg',
                                  'Religious', 'Soc/Rec', 'Misc.'
                              ]].values
        dodge_revised.loc[self.years_to_str(1990, 2003),
                          ['Soc/Misc']] = saus_2002.loc[
                              self.years_to_str(1990, 2001), ['Soc/Rec']].add(
                                  saus_2002.loc[self.years_to_str(1990, 2001),
                                                ['Misc.']].values)
        dodge_revised.loc[self.years_to_str(1999, 2001),
                          'Misc'] = saus_2002.loc[
                              self.years_to_str(1999, 2001),
                              ['Misc.']].values.reshape(3, )
        dodge_revised.loc[self.years_to_str(1961, 1989),
                          'Misc'] = dodge_revised.loc[
                              self.years_to_str(1961, 1989),
                              'Soc/Misc'].subtract(dodge_revised.loc[
                                  self.years_to_str(1961, 1989),
                                  'Soc/Amuse'].values)
        dodge_revised.loc[str(2000), 'Hospital'] = saus_2002.loc[str(2000),
                                                                 'Health']

        dodge_revised.loc[self.years_to_str(1960, 1989),
                          ['Commercial, Excl Hotel']] = dodge_revised.loc[
                              self.years_to_str(1960, 1989),
                              ['Retail', 'Auto R', 'Office', 'Warehouse']].sum(
                                  axis=1)

        hotel_80_89 = saus_merged.loc[list(range(1980, 1989 + 1)),
                                      ['Value']].subtract(dod_old_hotel.values)

        dodge_revised.loc[self.years_to_str(1980, 1989),
                          ['Hotel']] = hotel_80_89

        hotel_80_89_ratio = hotel_80_89.sum(axis=0).values / dodge_revised.loc[
            self.years_to_str(1980, 1989),
            ['Commercial, Excl Hotel']].sum(axis=0).values

        dodge_revised.loc[
            self.years_to_str(1919, 1979), ['Hotel']] = dodge_revised.loc[
                self.years_to_str(1919, 1979),
                ['Commercial, Excl Hotel']].values * hotel_80_89_ratio

        dodge_revised.loc[years_1990_1997,
                          ['Commercial, Incl Hotel']] = saus_2002.loc[
                              years_1990_1997, ['Commercial']].values

        dodge_revised.loc[self.years_to_str(1985, 1989),
                          ['Commercial']] = saus_merged.loc[
                              list(range(1985, 1989 + 1)), ['Value']].values
        dodge_revised.loc[self.years_to_str(1990, 2018),
                          ['Commercial']] = dodge_revised.loc[
                              self.years_to_str(1990, 2018),
                              ['Commercial, Incl Hotel']].values

        dodge_revised = self.dodge_adjustment_ratios(
            dodge_revised,
            1960,
            1969,
            adjust_years=self.years_to_str(1919, 1959),
            late=False)
        dodge_revised = self.dodge_adjustment_ratios(
            dodge_revised,
            1985,
            1989,
            adjust_years=self.years_to_str(1990, 2018),
            late=True)

        dodge_revised.loc[years_1919_1989,
                          ['Commercial, Incl Hotel']] = dodge_revised.loc[
                              years_1919_1989, ['Commercial, Excl Hotel']].add(
                                  dodge_revised.loc[years_1919_1989,
                                                    ['Hotel']].values)
        dodge_revised['Total'] = dodge_revised.drop(
            ['Commercial, Incl Hotel', 'Commercial, Excl Hotel'],
            axis=1).sum(axis=1).values
        return dodge_revised

    def dodge_to_cbecs(self):
        """Redefine the Dodge building categories more along the lines of CBECS categories. Constant fractions of floor space are moved among categories. 

        Returns:
            dodge_to_cbecs (dataframe): redefined data
        """

        # Key Assumptions:
        education_floor_space_office = .10
        auto_repair_retail = .80
        retail_merc_service = .80  # remainder to food service and sales
        retail_merc_service_food_sales = .11
        retail_merc_service_food_service = .90
        education_assembly = .05
        education_misc = .05  # (laboratories)
        health_transfered_to_cbecs_health = .75  # 25% to lodging (nursing homes)
        misc_public_assembly = .10  # (passenger terminals)

        dodge_revised = self.dodge_revised()  # dataframe

        dodge_to_cbecs = pd.DataFrame(dodge_revised[[
            'Total', 'Religious', 'Warehouse'
        ]]).rename(columns={'Total': 'Dodge_Totals'})
        dodge_to_cbecs['Office'] = dodge_revised[
            'Office'] + education_floor_space_office * dodge_revised[
                'Education']
        dodge_to_cbecs['Merc/Serv'] = retail_merc_service * (
            dodge_revised['Retail'] +
            auto_repair_retail * dodge_revised['Auto R'])
        dodge_to_cbecs['Food_Sales'] = retail_merc_service_food_sales * (
            dodge_revised['Retail'] +
            auto_repair_retail * dodge_revised['Auto R'])
        dodge_to_cbecs['Food_Serv'] = retail_merc_service_food_service * (
            dodge_revised['Retail'] +
            auto_repair_retail * dodge_revised['Auto R'])
        dodge_to_cbecs['Education'] = (
            1 - education_floor_space_office - education_assembly -
            education_misc) * dodge_revised['Education']
        dodge_to_cbecs[
            'Health'] = health_transfered_to_cbecs_health * dodge_revised[
                'Hospital']
        dodge_to_cbecs['Lodging'] = dodge_revised['Hotel'] + (
            1 - health_transfered_to_cbecs_health) * dodge_revised['Hospital']
        dodge_to_cbecs['Assembly'] = dodge_revised[
            'Soc/Amuse'] + misc_public_assembly * dodge_revised[
                'Misc'] + education_assembly * dodge_revised['Education']
        dodge_to_cbecs['Other'] = dodge_revised['Public'] + (
            1 - misc_public_assembly) * dodge_revised['Misc'] + (
                1 - auto_repair_retail) * dodge_revised[
                    'Auto R'] + education_misc * dodge_revised['Education']
        dodge_to_cbecs['Redefined_Totals'] = dodge_to_cbecs.drop(
            'Dodge_Totals', axis=1).sum(axis=1).values
        # dodge_to_cbecs = dodge_to_cbecs.drop()  # don't need totals?
        return dodge_to_cbecs

    def nems_logistic(self, dataframe, params):
        """
        
        PNNL errors found: 
            - Column S in spreadsheet has CO-StatePop2.xls are incorrectly aligned with years
            - Column AL does not actually scale by 1.28 as suggested in the column header

        """

        current_year = dt.datetime.now().year

        link_factors = pd.read_excel(
            f'{self.directory}/CO-EST_statepop2.xls',
            sheet_name='Stock',
            usecols='D:E',
            header=1,
            skiprows=158).rename(columns={1789: 'Year'})
        state_pop = link_factors.set_index('Year').rename(
            columns={' New': 'state_pop'})
        state_pop = state_pop[state_pop.index.notnull()]
        state_pop.index = state_pop.index.astype(int)
        state_pop.index = state_pop.index.astype(str)

        dataframe = dataframe.merge(state_pop,
                                    how='outer',
                                    left_index=True,
                                    right_index=True)
        dataframe = dataframe[dataframe.index.notnull()]
        dataframe = dataframe.reindex(columns=dataframe.columns.tolist() + [
            'adjusted_state_pop', 'adjusted_state_pop_scaled_b',
            'adjusted_state_pop_scaled_c', 'scaled_additions_estimate_a',
            'scaled_additions_estimate_b', 'scaled_additions_estimate_c',
            'removal', 'adjusted_removals', 'old_stk_retain', 'floorspace_bsf'
        ])
        dataframe['Year_Int'] = dataframe.index.astype(int)
        dataframe['age'] = dataframe['Year_Int'].subtract(
            current_year).multiply(-1)
        dataframe['remaining'] = ((dataframe['age'].divide(params[1])).pow(
            params[0]).add(1)).pow(-1)
        dataframe['inflate_fac'] = dataframe['remaining'].pow(-1)

        link_factor = 0.1
        adjusted_state_pop_1 = 40

        timing_wgts_current_yr = 0.4
        timing_wgts_lag_yr = 0.6
        benchmark_factor = 1

        dataframe.loc[str(1838), ['state_pop']] = 400
        dataframe.loc[self.years_to_str(1838, 1919),
                      ['adjusted_state_pop']] = dataframe.loc[
                          self.years_to_str(1838, 1919),
                          ['state_pop']].values * link_factor
        dataframe.loc[self.years_to_str(1920, current_year),
                      ['adjusted_state_pop']] = dataframe.loc[
                          self.years_to_str(1920, current_year),
                          ['Redefined_Totals']].values

        for year in self.years_to_str(1838, current_year):
            adjusted_state_pop_value = dataframe.loc[
                year, ['adjusted_state_pop']].values
            if year == '1838':
                vpip_estimate = adjusted_state_pop_value
            elif year == '1920':
                vpip_estimate = adjusted_state_pop_value
            else:
                adjusted_state_pop_year_before = dataframe.loc[
                    str(int(year) - 1), ['adjusted_state_pop']].values
                vpip_estimate = (
                    timing_wgts_current_yr * adjusted_state_pop_value +
                    timing_wgts_lag_yr *
                    adjusted_state_pop_year_before) * benchmark_factor
            dataframe.loc[year, 'VPIP-Estimate'] = vpip_estimate
        _variable = 1.2569  # This should be solved for
        x_column_value = _variable
        db_estimates = 1.2
        db_estimates2 = [1.25 - 0.01 * d for d in list(range(1990, 2021))]

        post_1989_scaling_factor = db_estimates  # Should choose this
        variable_2 = 1.533  # This should be solved for

        without_lags = dataframe.loc[self.years_to_str(1990, current_year),
                                     ['adjusted_state_pop']].multiply(
                                         post_1989_scaling_factor)

        dataframe.loc[:str(1989),
                      ['scaled_additions_estimate_a']] = dataframe.loc[:str(
                          1989), ['VPIP-Estimate']].values * variable_2
        dataframe.loc[self.years_to_str(1990, current_year),
                      ['scaled_additions_estimate_a']] = dataframe.loc[
                          self.years_to_str(1990, current_year),
                          ['VPIP-Estimate']].values * post_1989_scaling_factor
        dataframe.loc[:str(1989),
                      ['adjusted_state_pop_scaled_b']] = dataframe.loc[
                          self.years_to_str(1790, 1989),
                          ['scaled_additions_estimate_a']].values
        dataframe.loc[self.years_to_str(1990, 2001),
                      ['adjusted_state_pop_scaled_b']] = dataframe.loc[
                          self.years_to_str(1990, 2001),
                          ['scaled_additions_estimate_a']].values * 1.15
        dataframe.loc[self.years_to_str(2002, current_year),
                      ['adjusted_state_pop_scaled_b']] = dataframe.loc[
                          self.years_to_str(2002, current_year),
                          ['scaled_additions_estimate_a']].values

        dataframe.loc[str(1790), ['adjusted_state_pop_scaled_c']] = 1
        dataframe.loc[self.years_to_str(1791, 1989),
                      ['adjusted_state_pop_scaled_c']] = dataframe.loc[
                          self.years_to_str(1791, 1989),
                          ['scaled_additions_estimate_a']].values
        dataframe.loc[self.years_to_str(1990, 2001),
                      ['adjusted_state_pop_scaled_c']] = dataframe.loc[
                          self.years_to_str(1990, 2001),
                          ['scaled_additions_estimate_a']].values * 1.28
        dataframe.loc[self.years_to_str(2002, current_year),
                      ['adjusted_state_pop_scaled_c']] = dataframe.loc[
                          self.years_to_str(2002, current_year),
                          ['scaled_additions_estimate_a']].values

        for y in self.years_to_str(1839, current_year):
            years_diff = current_year - 1870
            start_year = int(y) - years_diff
            # first_index_year = int(dataframe.index[0])
            # if start_year < first_index_year:
            #     start_year = first_index_year
            year_index = self.years_to_str(start_year, int(y))
            remaining = dataframe.loc[self.years_to_str(1870, current_year),
                                      ['remaining']].values.flatten()
            adjusted_state_pop_scaled_b = dataframe.loc[
                year_index,
                ['adjusted_state_pop_scaled_b']].fillna(0).values.flatten()
            adjusted_state_pop_scaled_c = dataframe.loc[
                year_index,
                ['adjusted_state_pop_scaled_c']].fillna(0).values.flatten()

            b_value = np.dot(adjusted_state_pop_scaled_b, remaining)
            c_value = np.dot(adjusted_state_pop_scaled_c, remaining)

            dataframe.loc[y, ['scaled_additions_estimate_b']] = b_value
            dataframe.loc[y, ['scaled_additions_estimate_c']] = c_value

        removal_chg = 1  # Not sure what this is about
        fractions = [0.3, 0.4, 0.4, 0.35, 0.35, 0.35, 0.35, 0.3, 0.3, 0.3]
        fraction_retained = [f * removal_chg for f in fractions]

        for i in dataframe.index:
            if i >= '1870':
                removal = dataframe.loc[
                    i, ['scaled_additions_estimate_c']].values - dataframe.loc[
                        str(int(i) - 1),
                        ['scaled_additions_estimate_c']].values - dataframe.loc[
                            i, ['scaled_additions_estimate_a']].values
                dataframe.loc[i, ['removal']] = removal

        dataframe.loc[self.years_to_str(2009, 2009 + len(fractions) - 1),
                      ['adjusted_removals']] = dataframe.loc[
                          self.years_to_str(2009, 2009 + len(fractions) - 1),
                          ['removal']].values.flatten() * fraction_retained

        for y_ in list(range(2009, 2009 + len(fractions))):
            if y_ == 2009:
                dataframe.loc[str(y_), ['old_stk_retain']] = dataframe.loc[
                    str(y_), ['adjusted_removals']]
            else:
                dataframe.loc[str(y_), ['old_stk_retain']] = dataframe.loc[
                    str(y_ - 1), ['old_stk_retain']].values + dataframe.loc[
                        str(y_), ['adjusted_removals']].values

        dataframe['adjusted_removals'] = dataframe['adjusted_removals'].fillna(
            0)
        dataframe.loc[
            self.years_to_str(1960, current_year),
            ['floorspace_bsf']] = dataframe.loc[
                self.years_to_str(1960, current_year),
                ['scaled_additions_estimate_c']].values - dataframe.loc[
                    self.years_to_str(1960, current_year),
                    ['adjusted_removals']].values

        return dataframe[['floorspace_bsf']].dropna()

    def solve_logistic(self, dataframe):
        """Solve NES logistic parameters
        """

        pnnl_coefficients = [3.92276415015621,
                             73.2238120168849]  # [gamma, lifetime]
        # popt, pcov = curve_fit(self.nems_logistic, xdata=dataframe[], ydata=dataframe[] , p0=pnnl_coefficients)
        # return popt
        return pnnl_coefficients

    def activity(self):
        """Use logistic parameters to find predicted historical floorspace

        Returns:
            historical_floorspace_billion_sq_feet (pd.DataFrame): historical floorspace
                                                                  in the Commercial Sector.
                                                                  Years: 
                                                                  Units: Billion Square Feet
                                                                  Data Source:
        """

        dodge_to_cbecs = self.dodge_to_cbecs(
        )  # columns c-m starting with year 1920 (row 17)
        coeffs = self.solve_logistic(dodge_to_cbecs)
        historical_floorspace_late = self.nems_logistic(
            dodge_to_cbecs, coeffs)  # properly formatted?

        historical_floorspace_early = {
            1949: 27235.1487296062,
            1950: 27788.6370796569,
            1951: 28246.642791733,
            1952: 28701.4989706012,
            1953: 29253.2282427217,
            1954: 29913.8330998026,
            1955: 30679.7157232176,
            1956: 31512.6191323126,
            1957: 32345.382764321,
            1958: 33206.8483392728,
            1959: 34088.6640247816
        }
        historical_floorspace_early = pd.DataFrame.from_dict(
            historical_floorspace_early,
            columns=['floorspace_bsf'],
            orient='index')
        historical_floorspace_early.index = historical_floorspace_early.index.astype(
            str)

        historical_floorspace = pd.concat(
            [historical_floorspace_early, historical_floorspace_late])
        historical_floorspace_billion_sq_feet = historical_floorspace.multiply(
            0.001)
        return historical_floorspace_billion_sq_feet

    def fuel_electricity_consumption(self):
        """
        Trillion Btu

        Returns:
            energy_data (dict): Dictionary of dataframes
                                with keys 'elec' and 'fuels'
        """

        year_range = list(range(1949, 1970))
        year_range = [str(y) for y in year_range]
        national_calibration = self.collect_input_data('national_calibration')
        total_primary_energy_consumption = \
            self.eia_comm.eia_api(id_='TOTAL.TXCCBUS.A',
                                  id_type='series') # pre 1969: AER table 2.1c update column U
        total_primary_energy_consumption = \
            total_primary_energy_consumption.rename(
                columns={'Total Primary Energy Consumed by the Commercial Sector, Annual, Trillion Btu': 'total_primary'})
        # total_primary_energy_consumption = total_primary_energy_consumption[total_primary_energy_consumption.index.isin(year_range)]
        # total_primary_energy_consumption = total_primary_energy_consumption.multiply(0.001)

        fuels_dataframe = total_primary_energy_consumption.copy()
        replacement_data = national_calibration.loc['1970':, [
            'Final Est. (Trillion Btu)_fuels'
        ]]  # >= 1970: National Calibration Column 0
        fuels_dataframe.loc['1970':,
                            ['total_primary']] = replacement_data.values
        fuels_dataframe = fuels_dataframe.rename(
            columns={'total_primary': 'adjusted_consumption_trillion_btu'})
        fuels_dataframe['adjusted_consumption_trillion_btu'] = fuels_dataframe[
            'adjusted_consumption_trillion_btu'].astype(float)
        elec_dataframe = self.adjusted_supplier_data()

        energy_data = {'elec': elec_dataframe, 'fuels': fuels_dataframe}
        return energy_data

    def get_seds(self):
        """Collect SEDS data

        Returns:
            data (dict): Dictionary of dataframes
                         with keys 'elec' and 'fuels'
        """

        seds = self.collect_input_data('SEDS_CensusRgn')
        census_regions = {4: 'West', 3: 'South', 2: 'Midwest', 1: 'Northeast'}
        total_fuels = seds[0].rename(columns=census_regions)
        elec = seds[1].rename(columns=census_regions)
        data = {'elec': elec, 'fuels': total_fuels}
        return data

    def collect_weather(self, comm_activity):
        """Gather weather data for the Commercial sector

        Args:
            comm_activity ([type]): [description]

        Returns:
            weather_data (dict): [description]
        """

        seds = self.get_seds()
        res = ResidentialIndicators(directory=self.directory,
                                    output_directory=self.output_directory,
                                    base_year=self.base_year)
        # residential_activity_data = res.get_floorspace()
        # residential_floorspace = residential_activity_data['floorspace_square_feet']
        weather = WeatherFactors(sector='commercial',
                                 directory=self.directory,
                                 activity_data=comm_activity)
        #  residential_floorspace=residential_floorspace)
        weather_factors = weather.get_weather(seds_data=seds)
        # weather_factors = weather.adjust_for_weather() # What should this return?? (e.g. weather factors or weather adjusted data, both?)

        weather_data = dict()
        for key, value in weather_factors.items():
            value = value.drop('electricity_weather_factor',
                               axis=1,
                               errors='ignore')
            weather_data[key] = value

        return weather_data

    def collect_data(self):
        """Gather decomposition input data for the Commercial sector

        Returns:
            data_dict (dict): Commercial Sector data input to the LMDI model
        """

        # Activity: Floorspace_Estimates column U, B
        # Energy: Elec --> Adjusted Supplier Data Column D
        #         Fuels --> AER11 Table 2.1C_Update column U, National Calibration Column O
        activity_data = self.activity()
        print('Activity data collected without issue')
        energy_data = self.fuel_electricity_consumption()
        print('Energy data collected without issue')

        weather_factors = \
            self.collect_weather(comm_activity=activity_data)

        data_dict = {
            'Commercial_Total': {
                'energy': energy_data,
                'activity': activity_data,
                'weather_factors': weather_factors
            }
        }
        return data_dict

    def main(self, breakout, calculate_lmdi):
        """Decompose energy use for the Commercial sector

        Args:
            breakout ([type]): [description]
            calculate_lmdi ([type]): [description]

        Returns:
            [type]: [description]
        """

        data_dict = self.collect_data()
        results_dict, formatted_results = \
            self.get_nested_lmdi(level_of_aggregation=self.level_of_aggregation,
                                 breakout=breakout,
                                 calculate_lmdi=calculate_lmdi,
                                 raw_data=data_dict,
                                 lmdi_type='LMDI-I')

        return results_dict
Exemplo n.º 7
0
class IndustrialIndicators(CalculateLMDI):
    """Some of the specific steps to download and process the census data
       on construction energy costs are explained in the following paragraphs.
       The top-level census bureau website for the Economic Census is:
        https://www.census.gov/programs-surveys/economic-census.html. Scroll
        down the page until the words “2017 Data Tables” are found. After
        clicking on that link, the user will end up at
        https://www.census.gov/programs-surveys/economic-census/news-updates/updates/2017-datatables.html.
        The “2017 Data Table pages” now include direct links into
        data.census.gov and large ftp downloads. After clicking on pages,
        the webpage https://www.census.gov/programssurveys/economic-census/data/tables.html
        comes up. Scroll down this page until the entry
        “Construction (NAICS Sector 23)” is found. After selecting this entry,
        the user is then automatically transferred to:
        https://www.census.gov/data/tables/2017/econ/economic-census/naics-sector23.html.
    """
    def __init__(self,
                 directory,
                 output_directory,
                 level_of_aggregation=None,
                 lmdi_model='multiplicative',
                 base_year=1985,
                 end_year=2018,
                 naics_digits=3):
        self.sub_categories_list = \
            {'Industry':
                {'Manufacturing':
                    {'Food and beverage and tobacco products': None,
                     'Textile mills and textile product mills': None,
                     'Apparel and leather and allied products': None,
                     'Wood products': None,
                     'Paper products': None,
                     'Printing and related support activities': None,
                     'Petroleum and coal products': None,
                     'Chemical products': None,
                     'Plastics and rubber products': None,
                     'Nonmetallic mineral products': None,
                     'Primary metals': None,
                     'Fabricated metal products': None,
                     'Machinery': None,
                     'Computer and electronic products': None,
                     'Electrical equipment, appliances, and components': None,
                     'Motor vehicles, bodies and trailers, and parts': None,
                     'Furniture and related products': None,
                     'Miscellaneous manufacturing': None},
                 'Nonmanufacturing':
                    {'Agriculture, Forestry & Fishing': None,
                     'Mining':
                        {'Petroleum and Natural Gas': None,
                         'Other Mining': None,
                         'Support Activities': None},
                     'Construction': None}}}

        self.ind_eia = GetEIAData('industry')
        # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.MER_Nov19_Table24 = \
            self.ind_eia.eia_api(id_='711252')
        # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.AER10_Table21d = \
            self.ind_eia.eia_api(id_='711252')
        # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.AER11_Table21d_MER0816 = \
            self.ind_eia.eia_api(id_='711252')
        # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.mer_dataT0204 = \
            self.ind_eia.eia_api(id_='711252')
        self.energy_types = ['elec', 'fuels', 'deliv', 'source', 'source_adj']
        self.naics_digits = naics_digits

        super().__init__(sector='industry',
                         level_of_aggregation=level_of_aggregation,
                         lmdi_models=lmdi_model,
                         categories_dict=self.sub_categories_list,
                         energy_types=self.energy_types,
                         directory=directory,
                         output_directory=output_directory,
                         base_year=base_year,
                         primary_activity='value_added')

    def reconcile_physical_units(self, ):
        """Convert physical units to Btu. (Prior to 2005, the data on energy
        consumption fuels to produce electricity were supplied in physical
        units (e.g. mcf of natural gas, tons of coal, etc))
        Data Source: EIA's Annual Energy Review (AER)"""
        pass

    def manufacturing(self):
        """Gather manufacturing data

        Returns:
            [type]: [description]
        """
        manufacturing_data = \
            Manufacturing(self.naics_digits).manufacturing()
        return manufacturing_data

    def non_manufacturing(self):
        """Gather non-manufacturing data

        Primary Data Sources:
            Economic Census (previously the Census of
            Manufactures, Census of Agriculture, and
            Census of Mining) Prior to 1985, primary
            data source is the National Energy Accounts (NEA)
        http://www.nass.usda.gov/Statistics_by_Subject/index.php

        Returns:
            [type]: [description]
        """
        non_manufacturing_data = \
            NonManufacturing(self.naics_digits).nonmanufacturing_data()

        return non_manufacturing_data

    def collect_data(self):
        """Gather all input data for decomposition
        of the energy use in the Industrial sector

        Returns:
            data_dict (dict): [description]
        """
        non_man = self.non_manufacturing()
        man = self.manufacturing()

        data_dict = {
            'Industry': {
                'Manufacturing': man,
                'Nonmanufacturing': non_man
            }
        }
        return data_dict

    def total_industrial_util_adj_lmdi(self):
        """[summary]

        Returns:
            util_adj_categories (list): [description]
        """
        # This case is quite different from the others
        util_adj_categories = [
            'Fuels', 'Delivered Electricity', 'Source Electricity',
            'Total Source'
        ]
        return util_adj_categories

    def main(self, breakout, calculate_lmdi):
        """Calculate decomposition for the Industrial sector

        Args:
            breakout ([type]): [description]
            calculate_lmdi ([type]): [description]

        Returns:
            [type]: [description]
        """
        # unit_conversion_factor = 1

        data_dict = self.collect_data()
        results_dict, formatted_results = \
            self.get_nested_lmdi(
                level_of_aggregation=self.level_of_aggregation,
                breakout=breakout, calculate_lmdi=calculate_lmdi,
                raw_data=data_dict, lmdi_type='LMDI-I')

        return results_dict
class EmissionsDataExploration:
    """Class to visualize changes over time in Emissions and 
    Emissions factors using EIA data
    """
    def __init__(self):
        self.eia = GetEIAData('emissions')

    def eia_data(self, id_, label):
        """Make EIA API call

        Args:
            id_ (str): EIA API endpoint
            label (str): Label to use as column name
                         in resulting df

        Returns:
            data (DataFrame): data resulting from API call
        """
        data = self.eia.eia_api(id_=id_, id_type='series', new_name=label)
        return data

    def all_fuels_data(self):
        """Collect EIA CO2 Emissions data from
        all fuels data for each Sector

        Returns:
            all_data (dict): All CO2 emissions data
                             Dictionary with {sector}_co2 as keys and
                             dataframe as value

        """
        commercial_co2 = 'EMISS.CO2-TOTV-CC-TO-US.A'
        electric_power_co2 = 'EMISS.CO2-TOTV-EC-TO-US.A'
        industrial_co2 = 'EMISS.CO2-TOTV-IC-TO-US.A'
        residential_co2 = 'EMISS.CO2-TOTV-RC-TO-US.A'
        transportation_co2 = 'EMISS.CO2-TOTV-TC-TO-US.A'
        sectors = {
            'commercial_co2': commercial_co2,
            'electric_power_co2': electric_power_co2,
            'industrial_co2': industrial_co2,
            'residential_co2': residential_co2,
            'transportation_co2': transportation_co2
        }

        all_data = {
            s: self.eia_data(id_=sectors[s], label='CO2 Emissions')
            for s in sectors
        }
        return all_data

    def all_fuels_all_sector_data(self):
        """Collect EIA CO2 Emissions data from all fuels and all sectors

        Returns:
            all_sector (DataFrame): CO2 Emissions data for all 
                                    fuels and all sectors in the US
        """
        all_fuels_all_sector = 'EMISS.CO2-TOTV-TT-TO-US.A'
        all_sector = self.eia_data(id_=all_fuels_all_sector,
                                   label='CO2 Emissions')
        return all_sector

    @staticmethod
    def lineplot(datasets, y_label):
        """Plot 'CO2 Emissions from All Fuels by Sector' data

        Args:
            datasets (dict): [description]
            y_label (str): Label to use for y-axis of resulting
                           plot
        """

        plt.style.use('seaborn-darkgrid')
        palette = plt.get_cmap('Set2')

        for i, label in enumerate(datasets.keys()):
            df = datasets[label]

            plt.plot(df.index,
                     df,
                     marker='',
                     color=palette(i),
                     linewidth=1,
                     alpha=0.9,
                     label=label)

        title = 'CO2 Emissions from All Fuels by Sector'
        plt.title(title, fontsize=12, fontweight=0)
        plt.xlabel('Year')
        plt.ylabel(y_label)
        plt.legend(loc=2, ncol=2)
        plt.show()

    def get_emissions_plots(self):
        """Collect CO2 Emisisons data and plot it
        """
        sectors = self.all_fuels_data()
        # total = self.all_fuels_all_sector_data()
        # sectors['total'] = total
        self.lineplot(sectors, y_label='CO2 Emissions (Million Metric Tons)')

    def get_emissions_factors_plots(self):
        """Collect CO2 Emissions and Energy data by sector, 
        calculate Emissions factors (CO2/Energy) and plot the results
        """
        emissions = self.all_fuels_data()
        energy = self.economy_wide()
        sectors = [
            'commercial', 'industrial', 'residential', 'transportation',
            'electric_power'
        ]
        emissions_factors = dict()
        for s in sectors:
            em = emissions[f'{s}_co2']
            en = energy[f'{s}_energy']
            em, en = df_utils().ensure_same_indices(em, en)
            factor = em.divide(en.values, axis=1)
            factor = factor.rename(
                columns={
                    'CO2 Emissions': 'Million Metric Tons per Trillion Btu'
                })
            emissions_factors[s] = factor
        self.lineplot(emissions_factors,
                      y_label='Million Metric Tons CO2 per Trillion Btu')

    def economy_wide(self):
        """Collect Energy Consumption data for each sector 
        from the EIA API

        Returns:
            all_data (dict): Dictionary with sectors as keys and 
                             df as values
        """
        commercial_energy = 'TOTAL.TECCBUS.A'
        electric_power_energy = 'TOTAL.TXEIBUS.A'
        industrial_energy = 'TOTAL.TEICBUS.A'
        residential_energy = 'TOTAL.TERCBUS.A'
        transportation_energy = 'TOTAL.TEACBUS.A'
        sectors = {
            'commercial_energy': commercial_energy,
            'electric_power_energy': electric_power_energy,
            'industrial_energy': industrial_energy,
            'residential_energy': residential_energy,
            'transportation_energy': transportation_energy
        }

        all_data = {
            s: self.eia_data(id_=sectors[s], label='Energy')
            for s in sectors
        }
        return all_data
                                                    'Miscellaneous': {'energy': {'total_energy': 'AEO.2020.REF2020.CNSM_NA_IDAL_BMF_NA_NA_NA_TRLBTU.A', 
                                                                                 'purchased_electricity': 'AEO.2020.REF2020.CNSM_NA_IDAL_BMF_ELC_NA_NA_TRLBTU.A'}, # Energy data from "Balance of Manufacturing"
                                                                      'activity': {'value_of_shipments': 'AEO.2020.REF2020.ECI_VOS_MANF_MISC_NA_NA_NA_BLNY09DLR.A'}}},
                             'Nonmanufacturing': {'Agriculture/Forestry/Fishing/Hunting': {'energy': {'total_energy': 'AEO.2020.REF2020.CNSM_NA_IDAL_AGG_NA_NA_NA_TRLBTU.A',
                                                                                                      'purchased_electricity': 'AEO.2020.REF2020.CNSM_NA_IDAL_AGG_PRC_NA_NA_TRLBTU.A'}, 
                                                                                           'activity': {'value_of_shipments': 'AEO.2020.REF2020.ECI_VOS_NMFG_AFF_NA_NA_NA_BLNY09DLR.A'}}, # here elec is purchased electricity, Note: try to find total elec
                                                  'Mining': {{'energy': {'total_energy': 'AEO.2020.REF2020.CNSM_NA_IDAL_MING_NA_NA_NA_TRLBTU.A', 
                                                                         'purchased_electricity': {'excluding_oil_shale': 'AEO.2020.REF2020.CNSM_NA_IDAL_MING_PEO_NA_NA_TRLBTU.A', 
                                                                                                   'including_oil_shale': 'AEO.2020.REF2020.CNSM_NA_IDAL_MING_PES_NA_NA_TRLBTU.A'}}, 
                                                              'activity': {'value_of_shipments': 'AEO.2020.REF2020.ECI_VOS_NMFG_MING_NA_NA_NA_BLNY09DLR.A'}}},
                                                  'Construction': {'energy': {'total_energy': 'AEO.2020.REF2020.CNSM_NA_IDAL_CNS_NA_NA_NA_TRLBTU.A',
                                                                              'purchased_electricity': 'AEO.2020.REF2020.CNSM_NA_IDAL_CNS_PRC_NA_NA_TRLBTU.A'}, 
                                                                   'activity': {'value_of_shipments': 'AEO.2020.REF2020.ECI_VOS_NMFG_CNS_NA_NA_NA_BLNY09DLR.A'}}}}

        industrial_eia = GetEIAData('industrial')
        energy_use_industrial_electricity_us = industrial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_IDAL_NA_ELC_NA_NA_QBTU.A', id_type='series')
        energy_use_industrial_total_us = industrial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_IDAL_NA_TOT_NA_NA_QBTU.A', id_type='series')
        energy_use_industrial_delivered_energy_us = industrial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_IDAL_NA_DELE_NA_NA_QBTU.A', id_type='series')

        industrial_value_of_shipments_total = 

        activity_data = 
        energy_data = 
        

        pass

    def transportation_projections(self):
        """activity: 
                - Passenger-miles [P-M] (Passenger)
                - Ton-miles [T-M] (Freight)
class TransportationIndicators(CalculateLMDI):
    """Class to calculate Energy Intensity indicators for the U.S. Transportation Sector
    """
    def __init__(self,
                 directory,
                 output_directory,
                 level_of_aggregation,
                 lmdi_model='multiplicative',
                 tedb_date='04302020',
                 base_year=1985,
                 end_year=2018):
        self.transit_eia = GetEIAData('transportation')
        self.mer_table25_dec_2019 = self.transit_eia.eia_api(
            id_='711272'
        )  # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711272'
        self.mer_table_43_nov2019 = self.transit_eia.eia_api(
            id_='711272'
        )  # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711272'
        self.aer_2010_table_65 = self.transit_eia.eia_api(
            id_='711272'
        )  # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711272'
        self.tedb_date = tedb_date
        self.energy_types = ['deliv']
        self.sub_categories_list = {
            'All_Passenger': {
                'Highway': {
                    'Passenger Cars and Trucks': {
                        'Passenger Car – SWB Vehicles': {
                            'Passenger Car': None,
                            'SWB Vehicles': None
                        },
                        'Light Trucks – LWB Vehicles': {
                            'Light Trucks': None,
                            'LWB Vehicles': None
                        },
                        'Motorcycles': None
                    },
                    'Buses': {
                        'Urban Bus': None,
                        'Intercity Bus': None,
                        'School Bus': None
                    },
                    'Paratransit': None
                },
                'Rail': {
                    'Urban Rail': {
                        'Commuter Rail': None,
                        'Heavy Rail': None,
                        'Light Rail': None
                    },
                    'Intercity Rail': None
                },
                'Air': {
                    'Commercial Carriers': None,
                    'General Aviation': None
                }
            },
            'All_Freight': {
                'Highway': {
                    'Single-Unit Truck': None,
                    'Combination Truck': None
                },
                'Rail': None,
                'Air': None,
                # 'Waterborne': None,
                'Pipeline': {
                    'Oil Pipeline': None,
                    'Natural Gas Pipeline': None
                }
            }
        }
        super().__init__(sector='transportation', level_of_aggregation=level_of_aggregation, lmdi_models=lmdi_model, categories_dict=self.sub_categories_list, \
                         energy_types=self.energy_types, directory=directory, output_directory=output_directory, base_year=base_year)

        # self.transportation_data = {'Passenger Car – SWB Vehicles': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': '4_01', 'header_starts': 8, 'column_name': 'Fuel use'}, # Table4_01_{date}
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'TEDB', 'table_number': 'A_18'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': 'TEDB', 'table_number': '4_01', 'header_starts': 8, 'column_name': None},
        #                                                     'passenger_miles':
        #                                                         {'unit': 'miles', 'source': 'TEDB', 'table_number': 'A_18'}},
        #                             'Light Trucks – LWB Vehicles': {'total_fuel':
        #                                                                     {'unit': 'gallons', 'source': 'TEDB', 'table_number': '4_02', 'header_starts': 7},
        #                                                                 'total_energy':
        #                                                                     {'unit': 'tbtu', 'source': 'TEDB', 'table_number': 'A_05'},
        #                                                                 'vehicle_miles':
        #                                                                     {'unit': 'miles', 'source': 'TEDB', 'table_number': '4_02'},
        #                                                                 'passenger_miles':
        #                                                                     {'unit': 'miles', 'source': 'TEDB', 'table_number': 'A_19'}},
        #                             'Motorcycles': {'total_fuel':
        #                                                     {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_02'},
        #                                                 'total_energy':
        #                                                     {'unit': 'tbtu', 'source': None, 'table_number': None, 'Assumptions': 'Assume all motorcycle fuel is gasoline'},
        #                                                 'vehicle_miles':
        #                                                     {'unit': 'miles', 'source': 'BTS', 'table_number': '1-35'},  #  with some interpolation prior to 1990'
        #                                                 'passenger_miles':
        #                                                     {'unit': 'miles', 'source': None, 'table_number': None, 'Assumptions': vehicle_miles * 1.1}},
        #                             'Urban Bus': {'total_fuel':
        #                                                 {'unit': 'gallons', 'source': 'APTA Public Transportation Fact Book'},
        #                                         'total_energy':
        #                                             {'unit': '', 'source': None, 'table_number': None, 'Assumption': 'Apply conversion factors (Btu/gallon)'},
        #                                         'passenger_miles':
        #                                             {'unit': 'miles', 'source': 'APTA'}},
        #                             'Intercity Bus': {'total_fuel':
        #                                                 {'unit': 'gallons', 'source': 'Earlier data from TEDB-19 later from ABA'},
        #                                                 'total_energy':
        #                                                 {'unit': 'tbtu', 'source': None, 'Assumptions': 'All fuel assumed to be diesel'},
        #                                                 'passenger_miles':
        #                                                 {'unit': 'miles', 'source': 'Multiple'}},
        #                             'School Bus': {'total_fuel':
        #                                                 {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_04'},
        #                                             'total_energy':
        #                                                 {'unit': 'tbtu', 'source': 'TEDB', 'table_number': 'A_04', 'Assumptions': 'Fuel assumed to be 90% diesel, 10% gasoline'},
        #                                             'passenger_miles':
        #                                                 {'unit': 'miles', 'source': 'Multiple'}},
        #                             'Commuter Rail': {'total_fuel':
        #                                                 {'unit': 'kwh_gallons', 'source': 'APTA Public Transportation Fact Book'},
        #                                                 'total_energy':
        #                                                 {'unit': 'tbtu', 'source': 'TEDB', 'Assumptions': 'Conversion to TBtu with electricity and diesel energy conversion factors (electricity conversion at 10,339 Btu/kWh from TEDB'},
        #                                                 'passenger_miles':
        #                                                 {'unit': 'miles', 'source': 'APTA', 'table_number': ' Table 3 of Appendix A'}},
        #                             'Transit Rail (Heavy and Light Rail)': {'total_fuel':
        #                                                                         {'unit': 'kwh_gallons', 'source': '(APTA, Fact Book)' , 'table_number': 'Tables 38 and 39 in Appendix A'},
        #                                                                     'total_energy':
        #                                                                         {'unit': 'tbtu', 'source': None, 'table_number': None, 'Assumptions': 'Conversion to TBtu as for commuter rail'},
        #                                                                     'passenger_miles':
        #                                                                         {'unit': 'miles', 'source': 'APTA', 'table_number': 'source as avober for fuel use. Passenger-miles in Table 3 of Appendix'}},
        #                             'Intercity Rail': {'total_fuel':
        #                                                     {'unit': 'kwh_gallons', 'source': '1994-2016" TEDB-37 Table A.16; prior data extrapolated from TEDB-30, Table 9.10'},
        #                                                 'total_energy':
        #                                                     {'unit': 'tbtu', 'source': 'Conversion to TBtu as for commuter rail'},
        #                                                 'passenger_miles':
        #                                                     {'unit': 'miles', 'source': 'APTA source as avober for fuel use. Passenger-miles in Table 3 of Appendix'}},
        #                             'Commercial Carriers': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_09'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'passenger_miles':
        #                                                         {'unit': 'miles', 'source': '1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use'}},
        #                             'General Aviation': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_10'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'passenger_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'}},
        #                             'Single-Unit Truck': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_09'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'},
        #                                                     'ton_miles': {'unit': None, 'source': None}},
        #                             'Combination Truck': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_10'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'}},
        #                             'Rail': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_10'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'}},
        #                             'Air Carriers': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_10'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'}},
        #                             'Waterborne': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_10'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'}},
        #                             'Natural Gas Pipelines': {'total_fuel':
        #                                                         {'unit': 'gallons', 'source': 'TEDB', 'table_number': 'A_10'},
        #                                                     'total_energy':
        #                                                         {'unit': 'tbtu', 'source': 'Conversion to Btu with factors for aviation fuel and jet fuel (120,2 and  135.0 kBtu/gallon, respectively.)'},
        #                                                     'vehicle_miles':
        #                                                         {'unit': 'miles', 'source': ' 1970-2001: Eno Transportation Foundation, Transportation in America 2001, 19th Edition, p.45 Passenger-miles after 2001 extrapolated by total energy use.'}},}

    # def import_tedb_data(self, table_number):
    #     file_url = f'https://tedb.ornl.gov/wp-content/uploads/2020/04/Table{table_number}_{self.tedb_date}.xlsx'
    #     xls = pd.read_excel(file_url)  # , sheetname=None, header=11
    #     return xls

    # def get_data_from_nested_dict(self, nested_dictionary, subcategory_data_sources):
    #     for key, value in nested_dictionary.items():
    #         if type(value) is dict:
    #             get_data_from_nested_dict(value)
    #         elif value is None:
    #             data_sources = self.transportation_data[key]
    #             subcategory_data_sources[key] = data_sources
    #             return key, data_sources

    # def load_data(self):
    #     energy_mode_data = dict()
    #     fuel_mode_data = dict()
    #     vehcile_miles_mode_data = dict()

    #     for mode_name, mode_dict in self.transportation_data.items():  # could be more efficient with pandas?
    #         for variable_name, variable_dict in mode_dict.items():
    #             if variable_name == 'total_fuel':
    #                 pass
    #             elif variable_name == 'total_energy':
    #                 pass
    #             elif variable_name == 'vehicle_miles':
    #                 pass
    #             if variable_dict['source'] == 'TEDB':
    #                 mode_source_df = import_tedb_data(variable_dict['table_number'])

    #     get_data_from_nested_dict(self.categories_dict, subcategory_data_sources)

    #     pass

    # def fuel_heat_content(self, parameter_list):
    #         """Assumed Btu content of the various types of petroleum products. This dataframe is not time variant (no need to update it with subsquent indicator updates)
    #         Parameters
    #         ----------

    #         Returns
    #         -------

    #         """

    #         pass

    # def fuel_consump(self, parameter_list):
    #     """Time series of fuel consumption for the major transportation subsectors. Data are generally in
    #     millions gallons or barrels of petroleum.
    #        Parameters
    #        ----------

    #        Returns
    #        -------

    #     """

    #     # swb_vehciles_all_fuel = [0] # 2007-2017 FHA Highway Statistics Table VM-1
    #     # motorcycles_all_fuel_1949_1969 = [0] # Based upon data published in Table 4_11 of Bureau of Transportation Statistics (BTS), fuel consumption is based assumption of 50 miles per gallon
    #     # motorcycles_all_fuel_1970_2017 = import_tedb_data(table_number='A_02')  # Alternative: 2017 data from Highway Statistics, Table VM-1.
    #     # light_trucks_all_fuel =
    #     # lwb_vehicles_all_fuel =

    #     # bus_urban_diesel =
    #     # bus_urban_cng =
    #     # bus_urban_gasoline =
    #     # bus_urban_lng =
    #     # bus_urban_bio_diesel =
    #     # bus_urban_other =
    #     # bus_urban_lpg =
    #     # paratransit =
    #     # bus_school =
    #     # bus_school_million_bbl =
    #     # bus_intercity = [0] # Not used
    #     # waterborne =
    #     # air =
    #     # rail_intercity_diesel_million_gallons =
    #     # rail_intercity_diesel_electricity_gwhrs =
    #     # rail_intercity_total_energy_tbtu =
    #     # rail_intercity_total_energy_tbtu_old =
    #     # rail_intercity_total_energy_tbtu_adjusted =

    #     # rail_commuter_diesel =
    #     # rail_commuter_electricity_gwhrs =
    #     # rail_heavy_electricity_gwhrs =
    #     # rail_light_electricity_gwhrs =
    #     # class_I_freight_distillate_fuel_oil =

    #     # pipeline_natural_gas_million_cu_ft =
    #     # pipeline_natutral_gas_electricity_million_kwh =

    #     pass

    # def adjust_truck_freight(self, parameter_list):
    #     """purpose
    #        Parameters
    #        ----------

    #        Returns
    #        -------
    #     DOES THIS WORK ? dataframes
    #     """
    #     gross_output = bls_data[] # Note:  Gross output in million 2005 dollars from BLS database for their employment projections input-output model,
    #                 # PNNL spreadsheet: BLS_output_data.xlsx in folder BLS_Industry_Data)
    #     vehicle_miles_fhwa_tvm1 =  [0]
    #     old_methodology_2007_extrapolated = gross_output.iloc[2007] / gross_output.iloc[2006] * vehicle_miles_fhwa_tvm1.iloc[2006, :]
    #     old_series_scaled_to_new = vehicle_miles_fhwa_tvm1 * vehicle_miles_fhwa_tvm1.iloc[2007, :] / old_methodology_2007_extrapolated

    #     # **come back**
    #     pass

    # def passenger_based_energy_use(self):
    #     """Calculate the fuel consumption in Btu for passenger transportation
    #     """
    #     all_passenger_categories = self.categories_dict['All_Passenger']
    #     for passenger_category in all_passenger_categories.keys():
    #         for transportation_mode in passenger_category.keys():
    #             if transportation_mode == 'Passenger Car – SWB Vehicles':
    #                 # Passenger Car and SWB Vehicles have separate data sources, later aggregated?

    #             elif transportation_mode == 'Light Trucks – LWB Vehicles':
    #                 # Light Trucks and LWB Vehicles have separate data sources, later aggregated?
    #             else:
    #     urban_rail_categories = list(all_passenger_categories['Rail']['Urban Rail'].values()])
    #     passenger_based_energy_use_df['Urban Rail (Hvy, Lt, Commuter)'] = passenger_based_energy_use_df[urban_rail_categories].sum(1)
    #     pass

    # def passenger_based_activity_data(self):
    #      # Passenger cars and light trucks
    #     fha_table_vm201a = pd.read_excel('https://www.fhwa.dot.gov/ohim/summary95/vm201a.xlw', sheetname='UnknownSheet4', header=11) # Passenger car and light truck VMT 1981-95
    #     fha_table_vm1 = pd.read_excel('https://www.fhwa.dot.gov/policyinformation/statistics/2018/xls/vm1.xlsx', header=4)
    #     fha_table_vm1_1996  = pd.read_excel('https://www.fhwa.dot.gov/ohim/1996/vm1.xlw')
    #     fha_table_vm1_1997 = pd.read_excel('https://www.fhwa.dot.gov/ohim/hs97/xls/vm1.xls', sheetname='1997 VM1', header=6)
    #     fha_table_vm1_1998 = pd.read_excel('https://www.fhwa.dot.gov/policyinformation/statistics/1998/xls/vm1.xls', sheetname='Pub 98 VM1', header=6)
    #     fha_table_vm1_1999 = pd.read_excel('https://www.fhwa.dot.gov/ohim/hs99/excel/vm1.xls', sheetname='1999 VM1', header=3)
    #     fha_table_vm1_2000 = pd.read_excel('https://www.fhwa.dot.gov/ohim/hs00/xls/vm1.xls', sheetname='Sheet1', header=4)
    #     fha_table_vm1_2001 = pd.read_excel('https://www.fhwa.dot.gov/ohim/hs01/xls/vm1.xls', sheetname='Sheet1', header=4)
    #     vmt2002_2006_passenger_car_light_truck = pd.read_excel('https://www.bts.gov/sites/bts.dot.gov/files/table_01_35_013020.xlsx', header=1) # Note, this link has changed since usage in the spreadsheets
    #     vmt2007_2008_passenger_car = import_tedb_data(table_number='4_01')
    #     vmt2007_2008_light_truck = import_tedb_data(table_number='4_02')

    #     load_factors_1966_2011 =

    #     # Short Wheelbase and Long Wheelbase Vehicles
    #     2007-2017 FHA VM1
    #     fha_table_vm1_2014 = pd.read_excel('https://www.fhwa.dot.gov/policyinformation/statistics/2014/xls/vm1.xlsx', sheetname='final VM-1' , header=4)

    #     # Motorcycles
    #     1970-2010 = vmt2002_2006_passenger_car_light_truck
    #     fha_tables

    #     # Bus / Transit
    #     # 1970-76: Oak Ridge National Laboratory. 1993. Transportation Energy Data Book, Edition 13. ORNL-6743. Oak Ridge, Tennessee, Table 3.30, p. 3-46.
    #     apta_table3 = pd.read_excel('https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx', sheetname='3', header=2) # 1997-2017

    #     # # Bus / Intercity
    #     # see revised_intercity_bus_estimates

    #     # # Bus / School
    #     # see revised_intercity_bus_estimates

    #     # Paratransit
    #     paratransit_activity_1984_2017 = apta_table3

    #     # Commercial Air Carrier
    #     commercial_air_carrier_activity_1970_1974 = [0] # TEDB 13 Table 6.2 page 6-7
    #     commercial_air_carrier_activity_1975_1984 = [0] # TEDB 19 Table 12.1 page 12-2 (is the 2 a typo?)
    #     commercial_air_carrier_activity_1985_1999 = [0] # TEDB 21 Table 12.1 page 12-2 (is the 2 a typo?)
    #     commercial_air_carrier_activity_2000_2018 = import_tedb_data(table_number='10_02')
    #     domestic_passenger_miles_2011 = [0] # from Table 2.12 in 2013 TEDB

    #     # Urban Rail (Commuter)
    #     urban_rail_commuter_activity_1970_1976 = [0] # Transportation Energy Data Book, Edition 13. ORNL-6743. Oak Ridge, Tennessee, Table 6.13, p. 6-31.
    #     urban_rail_commuter_activity_1977_2017 = apta_table3
    #     # Urban Rail (Light, Heavy)
    #     urban_rail_light_heavy_1970_1977 = import_tedb_data(table_number='10_10')
    #     urban_rail_light_heavy_1977_2017 = apta_table3

    #     # Intercity Rail (Amtrak) Note: Amtrak data is compiled by fiscal year rather than calendar year
    #     intercity_rail_1970 = None  # Amtrak not established until May 1971. Data for 1970 assumes same passenger activity as 1971, primarily included
    #                                 # to fill out all transportation-related time series back to 1970
    #     intercity_rail_1971_2016 = [0]
    #     intercity_rail_2017 =  [0] # 'Bureau of Transportation Statistics, National Transportation Statistics, Table 1-40: U.S. Passenger-Miles

    #     # General Aviation
    #     # !!!!
    #     return passenger_based_activity_input_data

    # def passenger_based_activity(self):
    #     """ Time series for the activity measures for passenger transportation

    #     # Highway
    #     self.intercity_buses = 'Detailed  data_Intercity buses' # Column E

    #     1970-76: Oak Ridge National Laboratory. 1993. Transportation Energy Data Book, Edition 13. ORNL-6743. Oak Ridge, Tennessee, Table 3.30, p. 3-46.
    #        1977-2017 American Public Transportation Association. 2019 Public Transportation Fact Book. Appendix A, Table 3, Pt. A
    #        Note:  Transit bus does not include trolley bus because APTA did not not report electricity consumption for trolley buses separately for all years.
    #        https://www.apta.com/research-technical-resources/transit-statistics/public-transportation-fact-book/

    #         Note: Series not continuous for transit bus between 2006 and 2007; estimation procedures changed for bus systems outside urban areas
    #         Note: Series not continuous between 1983 and 1984.

    #      Note: Transit Bus == Urban Bus
    #     This method is horribly structured.
    #     """

    #     all_passenger_categories = self.categories_dict['All_Passenger']
    #     for passenger_category in all_passenger_categories.keys():
    #         for transportation_mode in all_passenger_categories[passenger_category].keys():
    #             if transportation_mode == 'Passenger Car – SWB Vehicles':
    #                 # Passenger Car and SWB Vehicles have separate data sources, later aggregated?
    #             elif transportation_mode == 'Light Trucks – LWB Vehicles':
    #                 # Light Trucks and LWB Vehicles have separate data sources, later aggregated?
    #             else:
    #     urban_rail_categories = list(all_passenger_categories['Rail']['Urban Rail'].values()])
    #     passenger_based_energy_use_df['Urban Rail (Hvy, Lt, Commuter)'] = passenger_based_energy_use_df[urban_rail_categories].sum(1)

    #     pass

    # def freight_based_energy_use(self):
    #     """Calculate the fuel consumption in Btu for freight transportation

    #     Need FuelConsump, Fuel Heat Content
    #     """
    #     all_freight_categories = self.categories_dict['All_Freight']
    #     for freight_category in all_freight_categories.keys():
    #         for freight_mode in freight_category.keys():

    #     pass

    # def freight_based_activity(self):
    #     """Time series for the activity measures for passenger transportation
    #     """
    #     all_freight_categories = self.categories_dict['All_Freight']
    #     for freight_category in all_freight_categories.keys():
    #         for freight_mode in freight_category.keys():

    #             if freight_category == 'Waterborne':
    #                 domestic_vessel = [0]
    #                 international_vessel_in_us_waters = [0]
    #                 total_commerce_us_waters = domestic_vessel + international_vessel_in_us_waters

    #             elif freight_category == 'Highway':
    #                 highway_published = [0]

    #                 if freight_mode == 'Combination Truck':
    #                     freight_based_energy_use_df['Old Series from 2001 Eno, Trans. In America'] = [0]

    #                     # 1950-1989:
    #                     freight_based_energy_use_df['Combination Truck, adjusted extrapolated'] = [0] # 1990 value for this column divided by 1990 value for 'Old Series from 2001 Eno, Trans. In America' * contemporary year from old series
    #                     # 1990-2003
    #                     freight_based_energy_use_df['Combination Truck, adjusted extrapolated'] = [0]
    #                     # 2004-2017
    #                     vehicle_miles_combination_trucks_adjusted = [0] # from adjust truck freight column K

    #                     freight_based_energy_use_df['Combination Truck, adjusted extrapolated'] = [0] # contemporary value of vehicle_miles_combination_trucks_adjusted divided by 2003 value of vehicle_miles_combination_trucks_adjusted times  2003 value of this

    #                 elif freight_mode == 'Single-Unit Truck':
    #                     # 1970-2006
    #                     freight_based_energy_use_df['Single-Unit Truck (million vehicle-miles), adjusted'] = [0] # Adjust_truck_Freight Column J
    #                     # 2007-2017
    #                     freight_based_energy_use_df['Single-Unit Truck (million vehicle-miles), adjusted'] = highway_published['Single-Unit Truck (million vehicle-miles)']

    #             if freight_mode == 'Natural Gas Pipeline':
    #                 natrual_gas_delivered_to_end_users = self.table65_AER2010 # Column AH, million cu. ft.
    #                 natural_gas_delivered_lease_plant_pipeline_fuel = self.MER_Table43_Nov2019 # Column M - column D - column I
    #                 natural_gas_delivered_lease_plant_pipeline_fuel.at[0] = 0.000022395
    #                 natural_gas_consumption_million_tons = natrual_gas_delivered_to_end_users * natural_gas_delivered_lease_plant_pipeline_fuel[0]
    #                 avg_length_natural_gas_shipment_miles = 620
    #                 freight_based_energy_use_df[freight_mode] = natural_gas_consumption_million_tons * 620

    #     pass

    # def water_freight_regression(self, ):
    #     """purpose
    #        Parameters
    #        ----------

    #        Returns
    #        -------

    #     """
    #     intensity =
    #     X = math.log(intensity)
    #     Y = years
    #     reg = linear_model.LinearRegression()
    #     reg.fit(X, Y)
    #     coefficients = reg.coef_
    #     predicted_value = reg.predict(X_test)  # Predicted value of the intensity based on actual degree days

    # def detailed_data_school_buses(self, parameter_list):
    #     """purpose
    #        Parameters
    #        ----------

    #        Returns
    #        -------

    #     """

    #     pass

    # def detailed_data_intercity_buses(self, parameter_list):
    #     """purpose
    #        Parameters
    #        ----------

    #        Returns
    #        -------

    #     """
    #     passenger_miles = [0]
    #     revised_passenger_miles = [0]
    #     number_of_buses = [0]
    #     number_of_buses_old = [0] # Not used
    #     vehicle_miles_commercial = [0] # Not used
    #     vehicle_miles_intercity = [0]
    #     implied_load_factor = [0]
    #     energy_use_tedb_19_32 = [0] # Not used
    #     implied_mpg = [0] # Not used
    #     blended_mpg_miles_per_gallon = [0] #
    #     revised_energy_use = [0]

    #     number_of_motorcoaches = [0]
    #     number_of_motorcoaches['Ratio'] = number_of_motorcoaches['US'] / number_of_motorcoaches['Total N.A.']
    #     pass

    # def mpg_check(self, parameter_list):
    #     """purpose
    #        Parameters
    #        ----------

    #        Returns
    #        -------

    #     """
    #     pass

    def energy_consumption(self):
        """Gather Energy Data to use in LMDI Calculation TBtu
        """
        pass

    def activity(self):
        """Gather 
        """
        pass

    def collect_data(self):
        """Method to collect freight and passenger energy and activity data. 
        This method should be adjusted to call dataframe building methods rather than reading csvs, when those are ready
        
        Gather Energy Data to use in LMDI Calculation TBtu and Activity Data to use in LMDI Calculation passenger-miles [P-M], ton-miles [T-M]
        Returns:
            [type]: [description]
        """
        # passenger_based_energy_use = self.energy_consumption('All_Passenger')
        # passenger_based_activity = self.activity('All_Passenger')
        # freight_based_energy_use = self.energy_consumption('All_Freight')
        # freight_based_activity = self.activity('All_Freight')

        passenger_based_energy_use = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/passenger_based_energy_use.csv'
        ).set_index('Year')
        passenger_based_activity = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/passenger_based_activity.csv'
        ).set_index('Year')
        freight_based_energy_use = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/freight_based_energy_use.csv'
        ).set_index('Year')
        freight_based_activity = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/freight_based_activity.csv'
        ).set_index('Year')

        data_dict = {
            'All_Passenger': {
                'energy': {
                    'deliv': passenger_based_energy_use
                },
                'activity': passenger_based_activity
            },
            'All_Freight': {
                'energy': {
                    'deliv': freight_based_energy_use
                },
                'activity': freight_based_activity
            }
        }

        print(freight_based_energy_use)

        return data_dict

    def main(self, breakout, save_breakout, calculate_lmdi):  # base_year=None,
        """potentially refactor later
    

        Args:
            _base_year ([type], optional): [description]. Defaults to None.
        """
        # if not base_year:
        #     _base_year = self.base_year
        # else:
        #     _base_year = _base_year
        data_dict = self.collect_data()

        if self.level_of_aggregation == 'all_transportation':
            freight_activity, freight_energy = self.get_nested_lmdi(
                level_of_aggregation='All_Freight',
                breakout=breakout,
                save_breakout=save_breakout,
                calculate_lmdi=False,
                raw_data=data_dict)
            passenger_activity, passenger_energy = self.get_nested_lmdi(
                level_of_aggregation='All_Passenger',
                breakout=breakout,
                save_breakout=save_breakout,
                calculate_lmdi=False,
                raw_data=data_dict)
            all_transportation_activity = freight_activity[['All_Freight']].merge(passenger_activity[['All_Passenger']], \
                                                                        left_index=True, right_index=True, how='outer')
            all_transportation_energy = freight_energy[['All_Freight']].merge(passenger_energy[['All_Passenger']], \
                                                                        left_index=True, right_index=True, how='outer')

            results = self.call_lmdi(unit_conversion_factor=1,
                                     lmdi_models=self.lmdi_models)

        elif self.level_of_aggregation == 'personal_vehicles_aggregate':
            # THIS CASE NEEDS A DIFFERENT FORMAT (NOT SAME NESTED DICTIONARY STRUCTURE), need to come back
            categories = ['Passenger Car', 'Light Truck', 'Motorcycles']
            results = None
        else:
            results_dict, results = self.get_nested_lmdi(
                level_of_aggregation=self.level_of_aggregation,
                breakout=breakout,
                save_breakout=save_breakout,
                calculate_lmdi=calculate_lmdi,
                raw_data=data_dict)

        results.to_csv(f"{self.output_directory}/transportation_results2.csv")
        print('RESULTS:\n', results)
        return results

    def compare_aggregates(self, parameter_list):
        """purpose
           Parameters
           ----------
           
           Returns
           -------
           
        """
        total_fuel_tbtu_published_mer = self.mer_table_25_dec_2019[
            'Total Energy Consumed by the Transportation Sector']  # j
        sum_of_modes = self.total_transportation[
            'Energy_Consumption_Total']  # F
        difference = sum_of_modes - total_fuel_tbtu_published_mer
        pct_difference = difference / total_fuel_tbtu_published_mer
        return pct_difference
Exemplo n.º 11
0
    def industrial_projections(self):
        """Gather Industrial projections data
        activity: 
                - Value added --> Gross Domestic Product (Total Industrial only)
                - Gross Output
                - Value Added
            energy: Energy Consumption Trillion Btu
        """        

        # Industrial : Value of Shipments : Agriculture, Mining, and Construction, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.ECI_NA_IDAL_NMFG_VOS_NA_USA_BLNY09DLR.A'
        # Industrial : Value of Shipments : Manufacturing, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.ECI_NA_IDAL_MANF_VOS_NA_USA_BLNY09DLR.A'
        # Industrial : Value of Shipments : Total, AEO2019, AEO2020 --> 'AEO.2020.AEO2019REF.ECI_NA_IDAL_NA_VOS_NA_USA_BLNY09DLR.A'
        industrial_eia = GetEIAData('industrial')

        data_dict = {'Manufacturing': {'Food, Beverages, & Tobacco': {'Food Products': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_FDP_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Food Products'), 
                                                                                                               'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_FDP_PRC_NA_NA_TRLBTU.A', id_type='series', new_name='Food Products')}, 
                                                                                                    'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_IDAL_FDP_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Food Products')}},
                                                                                #   'Beverages and Tobacco Products': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                                                #                                      'activity': {'value_of_shipments': 'AEO.2020.REF2020.ECI_VOS_MANF_BVTP_NA_NA_NA_BLNY09DLR.A'}}
                                                                                  }, 
                                                    # 'Textile Mills and Products': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #                                 'activity': {'shipments': 'AEO.2020.REF2020.ECI_VOS_MANF_TMP_NA_NA_NA_BLNY09DLR.A'}}, 
                                                    'Wood Products': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_WDP_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Wood Products'), 
                                                                                 'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_WDP_ELC_NA_NA_TRLBTU.A', id_type='series', new_name='Wood Products')}, 
                                                                      'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_SHP_IDAL_WDP_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Wood Products')}},  
                                                    'Paper': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_PPM_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Paper'), 
                                                                         'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_PPM_PRC_NA_NA_TRLBTU.A', id_type='series', new_name='Paper')}, 
                                                              'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_IDAL_PPM_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Paper')}} ,
                                                    # 'Printing': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #              'activity': {'value_of_shipments': 'AEO.2020.REF2020.ECI_VOS_MANF_PRN_NA_NA_NA_BLNY09DLR.A'}}, 
                                                    # 'Petroleum & Coal Products': {'energy': {'total_energy': industrial_eia.eia_api(id_='', id_type='series'), 
                                                    #                                          'purchased_electricity': industrial_eia.eia_api(id_='', id_type='series')}, 
                                                    #                               'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_PCL_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, 
                                                    'Chemicals': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_BCH_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Chemicals'), 
                                                                             'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_BCH_HAP_PRC_NA_TRLBTU.A', id_type='series', new_name='Chemicals')}, 
                                                                  'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_CHE_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Chemicals')}},
                                                    'Plastics & Rubber Products': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_PLI_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Plastics & Rubber Products'), 
                                                                                              'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_PLI_ELC_NA_NA_TRLBTU.A', id_type='series', new_name='Plastics & Rubber Products')}, 
                                                                                   'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_PRP_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Plastics & Rubber Products')}},
                                                    # 'Nonmetallic Mineral Products': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                                                    #  'activity': {'shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_SCG_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, , 
                                                    # 'Primary Metals': {'energy': {'total_energy': {'iron_and_steel': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_ISM_TOT_NA_NA_TRLBTU.A', id_type='series', new_name='Primary Metals'), 
                                                    #                                                'aluminum': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_AAP_TOT_NA_NA_TRLBTU.A', id_type='series', new_name='Primary Metals')}, 
                                                    #                               'purchased_electricity': {'iron_and_steel': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_ISM_PRC_NA_NA_TRLBTU.A', id_type='series', new_name='Primary Metals'), 
                                                    #                                                         'aluminum': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_AAP_PRC_NA_NA_TRLBTU.A', id_type='series', new_name='Primary Metals')}}, 
                                                    #                    'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_PMM_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Primary Metals')}},
                                                    # 'Fabricated Metal Products': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #                               'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_IDAL_FABM_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, , 
                                                    # 'Machinery': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #               'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_IDAL_MCHI_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, , 
                                                    # 'Computer & Electronic Products': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #                                    'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_CMPEL_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, 
                                                    # 'Electrical Equipment': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #                          'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_IDAL_EEI_NA_NA_NA_BLNY09DLR.A', id_type='series')}}},
                                                    # 'Transportation Equipment': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                    #                              'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_IDAL_TEQ_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, 
                                                    # 'Furniture & Related Products': {'energy': {'total_energy': , 'purchased_electricity': }, 
                                                                                    #  'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_FRP_NA_NA_NA_BLNY09DLR.A', id_type='series')}}, 
                                                    'Miscellaneous': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_BMF_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Miscellaneous'), 
                                                                                 'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_BMF_ELC_NA_NA_TRLBTU.A', id_type='series', new_name='Miscellaneous')}, # Energy data from "Balance of Manufacturing"
                                                                      'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_MANF_MISC_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Miscellaneous')}}},
                     'Nonmanufacturing': {'Agriculture/Forestry/Fishing/Hunting': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_AGG_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Agriculture/Forestry/Fishing/Hunting'),
                                                                                                'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_AGG_PRC_NA_NA_TRLBTU.A', id_type='series', new_name='Agriculture/Forestry/Fishing/Hunting')}, 
                                                                                    'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_NMFG_AFF_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Agriculture/Forestry/Fishing/Hunting')}}, # here elec is purchased electricity, Note: try to find total elec
                                            'Mining': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_MING_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Mining'), 
                                                                    'purchased_electricity': {'excluding_oil_shale': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_MING_PEO_NA_NA_TRLBTU.A', id_type='series', new_name='Mining'), 
                                                                                            'including_oil_shale': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_MING_PES_NA_NA_TRLBTU.A', id_type='series', new_name='Mining')}}, 
                                                        'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_NMFG_MING_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Mining')}},
                                            'Construction': {'energy': {'total_energy': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_CNS_NA_NA_NA_TRLBTU.A', id_type='series', new_name='Construction'),
                                                                        'purchased_electricity': industrial_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_IDAL_CNS_PRC_NA_NA_TRLBTU.A', id_type='series', new_name='Construction')}, 
                                                            'activity': {'value_of_shipments': industrial_eia.eia_api(id_='AEO.2020.REF2020.ECI_VOS_NMFG_CNS_NA_NA_NA_BLNY09DLR.A', id_type='series', new_name='Construction')}}}}



        energy_use_industrial_electricity_us = industrial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_IDAL_NA_ELC_NA_NA_QBTU.A', id_type='series', new_name='Industry')
        energy_use_industrial_total_us = industrial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_IDAL_NA_TOT_NA_NA_QBTU.A', id_type='series', new_name='Industry')
        energy_use_industrial_delivered_energy_us = industrial_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_IDAL_NA_DELE_NA_NA_QBTU.A', id_type='series', new_name='Industry')
        
        return data_dict
Exemplo n.º 12
0
    def electricity_projections():
        """Gather Commercial projections data
        activity: Million kWh
        energy: Energy Consumption Trillion Btu 
        """        
        electricity_eia = GetEIAData('electricity')

        data_dict = {'Elec Power Sector': 
                        {'Electricity Only':
                            {'Fossil Fuels': 
                                {'Coal':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_ENU_ELEP_NA_STC_NA_NA_QBTU.A', id_type='series', new_name='Coal')}, 
                                            'activity': electricity_eia.eia_api(id_='AEO.2020.AEO2019REF.GEN_NA_ELEP_POW_CL_NA_USA_BLNKWH.A', id_type='series', new_name='Coal')}, 
                                'Petroleum':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_ENU_ELEP_NA_LFL_NA_NA_QBTU.A', id_type='series', new_name='Petroleum')}, 
                                                'activity': electricity_eia.eia_api(id_='AEO.2020.AEO2019REF.GEN_NA_ELEP_POW_PET_NA_USA_BLNKWH.A', id_type='series', new_name='Petroleum')}, 
                                'Natural Gas':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_ENU_ELEP_NA_NG_NA_NA_QBTU.A', id_type='series', new_name='Natural Gas')}, 
                                                    'activity': electricity_eia.eia_api(id_='AEO.2020.AEO2019REF.GEN_NA_ELEP_POW_NG_NA_USA_BLNKWH.A', id_type='series', new_name='Natural Gas')}},
                            'Nuclear':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_ENU_ELEP_NA_NUC_NA_NA_QBTU.A', id_type='series', new_name='Nuclear')}, 
                                            'activity': electricity_eia.eia_api(id_='AEO.2020.AEO2019REF.GEN_NA_ELEP_POW_NUP_NA_USA_BLNKWH.A', id_type='series', new_name='Nuclear')}, 
                            # 'Hydro Electric':  {'energy': '', 
                            #                     'activity': electricity_eia.eia_api(id_='AEO.2020.REF2020.GEN_NA_ELEP_NA_HYD_CNV_NA_BLNKWH.A', id_type='series')}, 
                            'Renewable': 
                                {'Wood':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_ELEP_NA_WBM_NA_NA_QBTU.A', id_type='series', new_name='Wood')}, 
                                            'activity': electricity_eia.eia_api(id_='AEO.2020.REF2020.GEN_NA_ELEP_NA_WBM_NA_NA_BLNKWH.A', id_type='series', new_name='Wood')}, # This is wood and other biomass
                                'Waste':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_ENU_ELEP_NA_NBMSW_NA_NA_QBTU.A', id_type='series', new_name='Waste'), 
                                            'activity': electricity_eia.eia_api(id_='AEO.2020.REF2020.GEN_NA_ELEP_NA_BGM_NA_NA_BLNKWH.A', id_type='series', new_name='Waste')}}, # This is Biogenic Municipal Waste
                                # 'Solar':  {'Solar Photovoltaic': {'energy': electricity_eia.eia_api(id_='', id_type='series'), 
                                #                                     'activity': electricity_eia.eia_api(id_='AEO.2020.REF2020.GEN_NA_ELEP_NA_SLR_PHTVL_NA_BLNKWH.A', id_type='series')}, 
                                #             'Solar Thermal': {'energy': electricity_eia.eia_api(id_='', id_type='series'), 
                                #                                 'activity': electricity_eia.eia_api(id_='AEO.2020.REF2020.GEN_NA_ELEP_NA_SLR_THERM_NA_BLNKWH.A', id_type='series')}}, 
                                'Wind':  {'energy': {'primary': electricity_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_ELEP_NA_OFW_NA_NA_QBTU.A', id_type='series', new_name='Wind')}, 
                                            'activity': electricity_eia.eia_api(id_='AEO.2020.REF2020.GEN_NA_ELEP_NA_WND_NA_NA_BLNKWH.A', id_type='series', new_name='Wind')}}}}}
                                                    
        
        return data_dict 
Exemplo n.º 13
0
    def transportation_projections(self):
        """Gather Transportation projections data
        activity: 
            - Passenger-miles [P-M] (Passenger)
            - Ton-miles [T-M] (Freight)
        energy: Energy Consumption Trillion Btu
        """        

        # Commercial Carriers? --> domestic air carriers: AEO.2020.AEO2019REF.CNSM_NA_TRN_AIR_DAC_NA_NA_TRLBTU.A
        #                          international air carriers: AEO.2020.AEO2019REF.CNSM_NA_TRN_AIR_IAC_NA_NA_TRLBTU.A

        # Transportation Energy Use : Highway : Commercial Light Trucks, Reference, AEO2020: AEO.2020.REF2020.CNSM_NA_TRN_HWY_CML_NA_NA_TRLBTU.A
        # Transportation Energy Use : Highway : Freight Trucks : Large, Reference, AEO2020: AEO.2020.REF2020.CNSM_NA_TRN_HWY_FGHT_LGT26KLBS_NA_TRLBTU.A
        # Transportation Energy Use : Highway : Freight Trucks : Light Medium, Reference, AEO2020: AEO.2020.REF2020.CNSM_NA_TRN_HWY_FGHT_LITEMED_NA_TRLBTU.A
        # Transportation Energy Use : Highway : Freight Trucks : Medium, Reference, AEO2020: AEO.2020.REF2020.CNSM_NA_TRN_HWY_FGHT_MD10T26KLB_NA_TRLBTU.A
        # Transportation Energy Use : Highway : Freight Trucks, Reference, AEO2020: AEO.2020.REF2020.CNSM_NA_TRN_HWY_FGHT_NA_NA_TRLBTU.A

        # Transportation Energy Use : Non-Highway : Rail : Freight, Reference, AEO2020: AEO.2020.REF2020.CNSM_NA_TRN_RAIL_FGT_NA_NA_TRLBTU.A
        transportation_eia = GetEIAData('transportation')

        transportation_categories =  {'All_Passenger':
                                    {'Highway':  
                                        {'Passenger Cars and Trucks': 
                                            {'Light Trucks – LWB Vehicles': 
                                                {'Light Trucks': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_HWY_LDV_LTRT_NA_TRLBTU.A', id_type='series', new_name='Light Trucks')}, 
                                                                  'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020.KEI_TRV_TRN_NA_CML_NA_NA_BLNVEHMLS.A', id_type='series', new_name='Light Trucks')},
                                                'Light-Duty Vehicles': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_HWY_LDV_LTRT_NA_TRLBTU.A', id_type='series', new_name='Light-Duty Vehicles')}, 
                                                                        'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020.KEI_TRV_TRN_NA_LDV_NA_NA_BLNVEHMLS.A', id_type='series', new_name='Light-Duty Vehicles')}}}, 
                                        'Buses': {'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020._TRV_TRN_NA_BST_NA_NA_BPM.A', id_type='series', new_name='Buses'),
                                                 'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_HWY_BUS_NA_NA_TRLBTU.A', id_type='series', new_name='Buses')}}}, 
                                    'Rail': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_RAIL_PSG_PSG_NA_TRLBTU.A', id_type='series', new_name='Rail')}, 
                                             'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020._TRV_TRN_NA_RLP_NA_NA_BPM.A', id_type='series', new_name='Rail')},

                                    'Air': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_AIR_IAC_NA_NA_TRLBTU.A', id_type='series', new_name='Air')}, 
                                             'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020.KEI_TRV_TRN_NA_AIR_NA_NA_BLNSEATMLS.A', id_type='series', new_name='Air')}}, 
                                'All_Freight': 
                                    {'Highway': 
                                        {'Freight-Trucks': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_FGHT_USE_NA_NA_QBTU.A', id_type='series', new_name='Freight-Trucks')},
                                                            'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020.KEI_TRV_TRN_NA_FGHT_NA_NA_BLNVEHMLS.A', id_type='series', new_name='Freight-Trucks')}}, 
                                    'Rail': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_NA_TRN_RAIL_FGT_NA_NA_TRLBTU.A', id_type='series', new_name='Rail')}, 
                                             'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020.KEI_TRV_TRN_NA_RAIL_NA_NA_BLNTNMLS.A', id_type='series', new_name='Rail')}, 
                                    'Air': {'energy': {'primary': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_AIR_FTC_NA_NA_TRLBTU.A', id_type='series', new_name='Air')}, 
                                            'activity': transportation_eia.eia_api(id_='AEO.2020.REF2020.CNSM_NA_TRN_AIR_FTC_NA_NA_TRLBTU.A', id_type='series', new_name='Air')}}}

        energy_use_transportation_electricity_us = transportation_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_TRN_NA_ELC_NA_NA_QBTU.A', id_type='series', new_name='Transportation')
        energy_use_transportation_total_us = transportation_eia.eia_api(id_='YOUR_API_KEY_HERE&series_id=AEO.2020.AEO2019REF.CNSM_ENU_TRN_NA_TOT_NA_NA_QBTU.A', id_type='series', new_name='Transportation')
        energy_use_transportation_delivered_energy_us = transportation_eia.eia_api(id_='AEO.2020.AEO2019REF.CNSM_ENU_TRN_NA_DELE_NA_NA_QBTU.A', id_type='series', new_name='Transportation')

        data_dict = transportation_categories
        return data_dict
Exemplo n.º 14
0
class IndustrialIndicators(CalculateLMDI):
    """Some of the specific steps to download and process the census data on construction energy costs are
        explained in the following paragraphs. The top-level census bureau website for the Economic Census is:
        https://www.census.gov/programs-surveys/economic-census.html. Scroll down the page until the
        words “2017 Data Tables” are found. After clicking on that link, the user will end up at
        https://www.census.gov/programs-surveys/economic-census/news-updates/updates/2017-datatables.html. The “2017 Data Table pages” now include direct links into data.census.gov and large ftp
        downloads. After clicking on pages, the webpage https://www.census.gov/programssurveys/economic-census/data/tables.html comes up. Scroll down this page until the entry
        “Construction (NAICS Sector 23)” is found. After selecting this entry, the user is then automatically
        transferred to: https://www.census.gov/data/tables/2017/econ/economic-census/naics-sector23.html. 
    """    

    def __init__(self, directory, output_directory, level_of_aggregation=None, lmdi_model='multiplicative', base_year=1985, end_year=2018):
        self.sub_categories_list = {'Manufacturing': {'Food, Beverages, & Tobacco': None, 'Textile Mills and Products': None, 
                                               'Apparel & Leather': None, 'Wood Products': None, 'Paper': None,
                                               'Printing & Allied Support': None, 'Petroleum & Coal Products': None, 'Chemicals': None,
                                               'Plastics & Rubber Products': None, 'Nonmetallic Mineral Products': None, 'Primary Metals': None,
                                               'Fabricated Metal Products': None, 'Machinery': None, 'Computer & Electronic Products': None,
                                               'Electical Equip. & Appliances': None, 'Transportation Equipment': None,
                                               'Furniture & Related Products': None, 'Miscellaneous': None},
                                    'Nonmanufacturing': {'Agriculture, Forestry & Fishing': None,
                                                         'Mining': {'Petroleum and Natural Gas': None, 
                                                                    'Other Mining': None, 
                                                                    'Petroleum drilling and Mining Services': None},
                                                         'Construction': None}}

        self.ind_eia = GetEIAData('industry')
        self.conversion_factors = self.ind_eia.conversion_factors()
        self.MER_Nov19_Table24 = self.ind_eia.eia_api(id_='711252') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.AER10_Table21d = self.ind_eia.eia_api(id_='711252') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.AER11_Table21d_MER0816 = self.ind_eia.eia_api(id_='711252') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.mer_dataT0204 = self.ind_eia.eia_api(id_='711252') # 'http://api.eia.gov/category/?api_key=YOUR_API_KEY_HERE&category_id=711252'
        self.BEA_Output_data = [0] # Chain-type Quantity Indexes for Value Added by Industry from Bureau of Economic Analysis
        self.energy_types = ['elec', 'fuels', 'deliv', 'source', 'source_adj']

        super().__init__(sector='industry', level_of_aggregation=level_of_aggregation, lmdi_models=lmdi_model, categories_dict=self.sub_categories_list, \
                    energy_types=self.energy_types, directory=directory, output_directory=output_directory, base_year=base_year)

    def reconcile_physical_units(self, ):
        """Convert physical units to Btu. (Prior to 2005, the data on energy consumption fuels to produce electricity were supplied in physical units (e.g. mcf of natural gas, tons of coal, etc))
        Data Source: EIA's Annual Energy Review (AER)"""
        pass

    def manufacturing(self):
        # categories = self.sub_categories_list['Manufacturing']
        # manufacturing_data = Manufacturing().manufacturing()
        # print('manufacturing_data: \n', manufacturing_data)
        manufacturing_data = None
        return manufacturing_data
    
    def non_manufacturing(self):
        """Primary Data Sources: Economic Census (previously the Census of Manufactures, Census of Agriculture, and Census of Mining)
                                Prior to 1985, primary data source is the National Energy Accounts (NEA)
        http://www.nass.usda.gov/Statistics_by_Subject/index.php
        """    
        # categories = self.sub_categories_list['Nonmanufacturing']
        non_manufacturing_data = NonManufacturing().nonmanufacturing_data()
        print('non_manufacturing_data: \n', non_manufacturing_data)

        return non_manufacturing_data
        
    def collect_data(self):
        man = self.manufacturing()
        non_man = self.non_manufacturing()
        data_dict = {'Manufacturing': man, 'Nonmanufacturing': non_man}
        return data_dict

    def total_industrial_util_adj_lmdi(self):
        util_adj_categories = ['Fuels', 'Delivered Electricity', 'Source Electricity', 'Total Source']  # This case is quite different from the others
        return util_adj_categories

    def main(self, breakout, save_breakout, calculate_lmdi):
        unit_conversion_factor = 1

        data_dict = self.collect_data()
        results_dict, formatted_results = self.get_nested_lmdi(level_of_aggregation=self.level_of_aggregation, breakout=breakout, save_breakout=save_breakout, calculate_lmdi=calculate_lmdi, raw_data=data_dict, account_for_weather=False)
        return formatted_results
class TransportationIndicators(CalculateLMDI):
    """
    Class to calculate Energy Intensity indicators
    for the U.S. Transportation Sector
    """
    def __init__(self,
                 directory,
                 output_directory,
                 level_of_aggregation,
                 lmdi_model='multiplicative',
                 tedb_date='04302020',
                 base_year=1985,
                 end_year=2018):
        self.transit_eia = GetEIAData('transportation')
        self.mer_table25_dec_2019 = \
            self.transit_eia.eia_api(id_='711272', id_type='category')
        self.mer_table_43_nov2019 = \
            self.transit_eia.eia_api(id_='711272', id_type='category')
        self.aer_2010_table_65 = \
            self.transit_eia.eia_api(id_='711272', id_type='category')
        self.tedb_date = tedb_date
        self.energy_types = ['deliv']
        self.sub_categories_list = \
            {'All_Transportation':
                {'All_Passenger':
                    {'Highway':
                        {'Passenger Cars and Trucks':
                            {'Passenger Car – SWB Vehicles':
                                {'Passenger Car': None,
                                 'SWB Vehicles': None},
                             'Light Trucks – LWB Vehicles':
                                {'Light Trucks': None,
                                 'LWB Vehicles': None},
                             'Motorcycles': None},
                         'Buses':
                            {'Urban Bus': None,
                             'Intercity Bus': None,
                             'School Bus': None},
                         'Paratransit':
                            None},
                     'Rail':
                        {'Urban Rail':
                            {'Commuter Rail': None,
                             'Heavy Rail': None,
                             'Light Rail': None},
                         'Intercity Rail': None},
                     'Air':
                        {'Commercial Carriers': None,
                         'General Aviation': None}},
                 'All_Freight':
                    {'Highway':
                        {'Single-Unit Truck': None,
                         'Combination Truck': None},
                     'Rail': None,
                     'Air': None,
                     'Waterborne': None,
                     'Pipeline':
                        {'Oil Pipeline': None,
                         'Natural Gas Pipeline': None}}}}

        super().__init__(sector='transportation',
                         level_of_aggregation=level_of_aggregation,
                         lmdi_models=lmdi_model,
                         categories_dict=self.sub_categories_list,
                         energy_types=self.energy_types,
                         directory=directory,
                         output_directory=output_directory,
                         base_year=base_year,
                         end_year=end_year,
                         unit_conversion_factor=1000000)

    def import_tedb_data(self,
                         table_number,
                         skip_footer=None,
                         skiprows=None,
                         sheet_name=None,
                         usecols=None,
                         index_col=None):

        try:

            file_url = f'https://tedb.ornl.gov/wp-content/uploads/2020/04/Table{table_number}_{self.tedb_date}.xlsx'
            xls = pd.read_excel(file_url,
                                skipfooter=skip_footer,
                                skiprows=skiprows,
                                sheet_name=sheet_name,
                                usecols=usecols,
                                index_col=index_col)
            return xls
        except urllib.error.HTTPError as e:
            print('error with table', table_number, e)
            raise e

    # def adjust_truck_freight(self, parameter_list):
    #     """purpose
    #        Parameters
    #        ----------

    #        Returns
    #        -------
    #     DOES THIS WORK ? dataframes
    #     """
    #     gross_output = pd.read_excel('./EnergyIntensityIndicators/Industry/Data/BLS_BEA_Data.xlsx', sheet_name='BLS_Data_011920', index_col=0)
    #     gross_output = gross_output.transpose()  # Note:  Gross output in million 2005 dollars from BLS database for their employment projections input-output model,
    #                                             # PNNL spreadsheet: BLS_output_data.xlsx in folder BLS_Industry_Data)
    #     vehicle_miles_fhwa_tvm1 = pd.read_excel('https://www.fhwa.dot.gov/policyinformation/statistics/2018/xls/vm1.xlsx', header=4, index_col=0)
    #     old_methodology_2007_extrapolated = gross_output.iloc[2007] / gross_output.iloc[2006] * vehicle_miles_fhwa_tvm1.iloc[2006, :]
    #     old_series_scaled_to_new = vehicle_miles_fhwa_tvm1 * vehicle_miles_fhwa_tvm1.iloc[2007, :] / old_methodology_2007_extrapolated
    #     return old_series_scaled_to_new

    def passenger_based_activity(self):
        """
        Time series for the activity measures for passenger transportation
           1970-76: Oak Ridge National Laboratory. 1993. Transportation Energy Data Book, Edition 13. ORNL-6743. Oak Ridge, Tennessee, Table 3.30, p. 3-46.
           1977-2017 American Public Transportation Association. 2019 Public Transportation Fact Book. Appendix A, Table 3, Pt. A
           Note:  Transit bus does not include trolley bus because APTA did not not report electricity consumption for trolley buses separately for all years. 
           https://www.apta.com/research-technical-resources/transit-statistics/public-transportation-fact-book/

            Note: Series not continuous for transit bus between 2006 and 2007; estimation procedures changed for bus systems outside urban areas
            Note: Series not continuous between 1983 and 1984.
        """

        # Historical data from PNNL
        passenger_based_activity = \
            pd.read_csv(
                './EnergyIntensityIndicators/Transportation/passenger_based_activity.csv'
                ).set_index('Year').rename(
                    columns={'Motor-cycles': 'Motorcycles',
                             'Light Truck': 'Light Trucks',
                             'Transit Bus': 'Urban Bus',
                             'Para-Transit': 'Paratransit',
                             'All Carriers (pass miles), millions': 'Commercial Carriers'}
                     )
        #  # Passenger cars and light trucks
        # fha_table_vm1 = pd.read_excel(
        #     'https://www.fhwa.dot.gov/policyinformation/statistics/2018/xls/vm1.xlsx',
        #     header=4, index_col=0
        #     )
        # # Bus / Transit
        # apta_table3 = pd.read_excel(
        #     'https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx',
        #     sheet_name='3', skiprows=7, skipfooter=42, index_col=0
        #     ) # 1997-2017 apta_table3

        # # Bus / Intercity: see revised_intercity_bus_estimates

        # # Bus / School: see revised_intercity_bus_estimates

        # # Paratransit
        # paratransit_activity_1984_2017 = pd.read_excel(
        #     'https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx',
        #     sheet_name='3', skiprows=7, skipfooter=42, usecols='A,G', index_col=0
        #     ) # 1997-2017 apta_table3

        # # Commercial Air Carrier
        # commercial_air_carrier = pd.read_excel(
        #     'https://tedb.ornl.gov/wp-content/uploads/2021/02/Table10_02_01312021.xlsx',
        #     skiprows=9, skip_footer=42, index_col=0, use_cols='B:D'
        #     )

        # # Urban Rail (Commuter)
        # urban_rail_commuter = pd.read_excel(
        #     'https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx',
        #     sheet_name='3', skiprows=7, skipfooter=42, index_col=0,
        #     use_cols='A,L') # 1997-2017 apta_table3

        # # Urban Rail (Light, Heavy)
        # urban_rail_light_heavy = pd.read_excel(
        #     'https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx',
        #     sheet_name='3', skiprows=7, skipfooter=42, usecols='A,O,P', index_col=0
        #     ) # 1997-2017 apta_table3

        # # Intercity Rail (Amtrak) Note: Amtrak data is compiled by fiscal year rather than calendar year
        # intercity_rail_2017 =  pd.read_excel(
        #     'https://www.bts.gov/sites/bts.dot.gov/files/table_01_40_091820.xlsx',
        #     skiprows=1, skipfooter=25, index_col=0
        #     )
        # intercity_rail_2017 = intercity_rail_2017.transpose()

        # intercity_rail_2017 = intercity_rail_2017[['Intercity/Amtraki']] # not sure how the i superscript shows up
        #  'Bureau of Transportation Statistics, National Transportation Statistics, Table 1-40: U.S. Passenger-Miles

        return passenger_based_activity

    def passenger_based_energy_use(self):
        """Calculate the fuel consumption in Btu for passenger transportation
        """
        passenger_based_energy_use = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/passenger_based_energy_use.csv'
        ).set_index('Year').rename(
            columns={
                'Light Truck': 'Light Trucks',
                'Para-transit': 'Paratransit',
                'Intercity Rail (Amtrak)': 'Intercity Rail'
            })

        passenger_based_energy_use['Paratransit'] = \
            passenger_based_energy_use['Paratransit'].fillna(0.000000001)

        return passenger_based_energy_use

    def fuel_heat_content(self, gross=True):
        """Assumed Btu content of the various types of petroleum products. 
        This dataframe is not time variant (no need to update it with subsquent indicator updates)

        Parameters
        ----------
        gross : bool
            if True use gross fuel heat content, if False use net
        """

        fuel_heat_content = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/Data/fuel_heat_content.csv'
        )

        if gross:
            fuel_heat_content_df = fuel_heat_content[[
                'Fuel', 'Gross Content Fmt'
            ]]

        else:
            fuel_heat_content_df = fuel_heat_content[['Fuel', 'Net Content']]

        return fuel_heat_content_df

    # def fuel_consump(self, parameter_list):
    #     """
    #     Time series of fuel consumption for the major transportation
    #     subsectors. Data are generally in
    #     millions gallons or barrels of petroleum.

    #     Parameters
    #     ----------

    #     Returns
    #     -------

    #     """
    #     fha_table_vm1 = pd.read_excel(
    #         'https://www.fhwa.dot.gov/policyinformation/statistics/2018/xls/vm1.xlsx',
    #         header=4, index_col=0
    #         )  # 2007-2017 FHA Highway Statistics Table VM-1

    #     apta_table59 = pd.read_excel(
    #         'https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx',
    #         sheet_name='59', skiprows=2, skipfooter=24, index_col=0
    #         ) # 1997-2017 apta_table3
    #     apta_table60 = pd.read_excel(
    #         'https://www.apta.com/wp-content/uploads/2020-APTA-Fact-Book-Appendix-A.xlsx',
    #         sheet_name='60', skiprows=2, skipfooter=24, index_col=0
    #         ) # 1997-2017 apta_table3

    #     # swb_vehciles_all_fuel = fha_table_vm1
    #     # motorcycles_all_fuel_1970_2017 = self.import_tedb_data(table_number='A_02')  # Alternative: 2017 data from Highway Statistics, Table VM-1.
    #     # lwb_vehicles_all_fuel = fha_table_vm1 # 2007-2017 FHA Highway Statistics Table VM-1

    #     # bus_urban_diesel = apta_table59 #[] #Table 59 in Appendix A, Bus Fuel Consumption (downloaded Excel file)
    #     # from: https://www.apta.com/research-technical-resources/transit-statistics/public-transportation-fact-book/

# 	# 					#Excel file:  2019-APTA-Fact-Book-Appendix-A.xlsx

#     # bus_urban_cng = apta_table59 #[] #same as bus_urban_diesel
#     # bus_urban_lng = apta_table59 #[] #same as bus_urban_diesel
#     # bus_urban_other = apta_table59 #[] #same as bus_urban_diesel
#     # bus_urban_lpg = apta_table59 #[] #same as bus_urban_diesel
#     # paratransit_diesel = apta_table60 #[]						# http://www.apta.com/resources/statistics/Pages/transitstats.aspx
#     # #                     https://www.apta.com/research-technical-resources/transit-statistics/public-transportation-fact-book/
#     # Table 60 in Appendix A, Demand Response Fuel Consumption

#     # general_aviation = self.import_tedb_data(table_number='A_08')
#     # commercial_air_carrier = self.import_tedb_data(table_number='A_09')

#     # rail_commuter = self.import_tedb_data(table_number='A_13')
#     # rail_urban = self.import_tedb_data(table_number='A_15')
#     # class_I_freight_distillate_fuel_oil = self.import_tedb_data(table_number='A_13')

#     # pipeline_natural_gas_million_cu_ft = self.import_tedb_data(table_number='A_12')

#     fuel_consump_df = []

#     return fuel_consump_df

    def freight_based_energy_use(self, freight_based_activity):
        """Calculate the fuel consumption in Btu for freight transportation

        Need FuelConsump, Fuel Heat Content
        """
        # Historical data from PNNL
        freight_based_energy_use = pd.read_csv(
            './EnergyIntensityIndicators/Transportation/' +
            'freight_based_energy_use.csv').set_index('Year')

        # This was used by PNNL to negate oil pipeline data (no reliable data source)
        freight_based_energy_use['Oil Pipeline'] = \
            freight_based_activity['Oil Pipeline'].multiply(0.000001)

        # natural_gas_delivered_to_end_users = \
        #     self.aer_2010_table_65 # Column AH, million cu. ft.
        # natural_gas_delivered_lease_plant_pipeline_fuel = \
        #     self.mer_table_43_nov2019 # Column M - column D - column I
        # natural_gas_delivered_lease_plant_pipeline_fuel.at[0] = 0.000022395
        # natural_gas_consumption_million_tons = \
        #     natural_gas_delivered_to_end_users.multiply(
        #         natural_gas_delivered_lease_plant_pipeline_fuel, axis=1)

        # avg_length_natural_gas_shipment_miles = 620

        # freight_based_energy_use['Natural Gas Pipeline'] = \
        #     natural_gas_consumption_million_tons.multiply(
        #         avg_length_natural_gas_shipment_miles
        #         )

        return freight_based_energy_use

    def freight_based_activity(self):
        """Time series for the activity measures for passenger transportation
        """
        # Historical data, from PNNL
        freight_based_activity = \
            pd.read_csv('./EnergyIntensityIndicators/Transportation/' +
                        'freight_based_activity.csv').set_index('Year')
        freight_based_activity['Single-Unit Truck'] = \
            freight_based_activity['Single-Unit Truck'].multiply(3)  # Assumes 3-ton avg. load
        freight_based_activity['Oil Pipeline'] = \
            freight_based_activity['Oil Pipeline'].multiply(0.000001)
        # USDOT, Bureau of Transportation Statistics
        # https://www.bts.gov/content/energy-intensity-class-i-railroad-freight-service	Table 4-25
        # class_1_rail = pd.read_excel('https://www.bts.gov/sites/bts.dot.gov/files/table_04_25_112219.xlsx',
        #                              skiprows=1, skipfooter=9, index_col=0)
        # class_1_rail = class_1_rail.transpose()
        # class_1_rail = class_1_rail[['Revenue freight ton-miles (millions)']]
        # air_carrier = \
        #     pd.read_excel(
        #         'https://tedb.ornl.gov/wp-content/uploads/2021/02/Table10_02_01312021.xlsx',
        #          skiprows=9, skip_footer=42, index_col=1, use_cols='B,H')
        # waterborne_vessles = \
        #     pd.read_excel(
        #         'https://tedb.ornl.gov/wp-content/uploads/2021/02/Table10_05_01312021.xlsx',
        #          skiprows=9, skip_footer=42, index_col=1, use_cols='B,D')

        # gas_pipeline = self.mer_table_43_nov2019

        return freight_based_activity

    # def water_freight_regression(self, intensity, actual_dd):
    #     """[summary]

    #     Args:
    #         intensity ([type]): [description]
    #         actual_dd ([type]): [description]

    #     Returns:
    #         predicted_value ([type]): [description]
    #     """
    #     X = np.log(intensity['intensity'])
    #     Y = intensity['Year']
    #     reg = linear_model.LinearRegression()
    #     reg.fit(X, Y)
    #     coefficients = reg.coef_
    #     predicted_value = reg.predict(actual_dd)  # Predicted value of the intensity based on actual degree days
    #     return predicted_value

    # def detailed_data_school_buses(self, parameter_list):
    #     """
    #     Adjusted miles - use number of buses times
    #     interpolated values for annual miles per bus.
    #     For years ending 0 and 5, use published data.
    #     Thus, adjusted values match in years ending 0 and 5 with Column 4,
    #     and for 1994. After 1994, values taken directly from
    #     School Bus Fleet Magazine estimates, adjusted for missing values

    #     Args:
    #         parameter_list ([type]): [description]

    #     Returns:
    #         revised_pass_miles (pd.DataFrame): [description]
    #     """
    #     avg_load_factor = 23
    #     adjusted_vehicle_miles = pd.read_csv(
    #         './EnergyIntensityIndicators/Transportation/Data/adjusted_data_school_bus.csv'
    #         )
    #     revised_pass_miles = adjusted_vehicle_miles.multiply(avg_load_factor * 0.001)
    #     return revised_pass_miles

    def collect_data(self):
        """Method to collect freight and passenger energy and activity data.
        This method should be adjusted to call dataframe building methods
        rather than reading csvs, when those are ready

        Gather Energy Data to use in LMDI Calculation TBtu and Activity Data
        to use in LMDI Calculation passenger-miles [P-M], ton-miles [T-M]

        Returns
        -------

        data_dict : dict

        """

        passenger_based_energy_use = self.passenger_based_energy_use()
        passenger_based_activity = self.passenger_based_activity()
        freight_based_activity = self.freight_based_activity()
        freight_based_energy_use = \
            self.freight_based_energy_use(freight_based_activity)

        data_dict = {
            'All_Passenger': {
                'Highway': {
                    'Passenger Cars and Trucks': {
                        'Passenger Car – SWB Vehicles': {
                            'Passenger Car': {
                                'energy': {
                                    'deliv':
                                    passenger_based_energy_use[[
                                        'Passenger Car'
                                    ]]
                                },
                                'activity':
                                passenger_based_activity[['Passenger Car']]
                            },
                            'SWB Vehicles': {
                                'energy': {
                                    'deliv':
                                    passenger_based_energy_use[[
                                        'SWB Vehicles'
                                    ]]
                                },
                                'activity':
                                passenger_based_activity[['SWB Vehicles']]
                            }
                        },
                        'Light Trucks – LWB Vehicles': {
                            'Light Trucks': {
                                'energy': {
                                    'deliv':
                                    passenger_based_energy_use[[
                                        'Light Trucks'
                                    ]]
                                },
                                'activity':
                                passenger_based_activity[['Light Trucks']]
                            },
                            'LWB Vehicles': {
                                'energy': {
                                    'deliv':
                                    passenger_based_energy_use[[
                                        'LWB Vehicles'
                                    ]]
                                },
                                'activity':
                                passenger_based_activity[['LWB Vehicles']]
                            }
                        },
                        'Motorcycles': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['Motorcycles']]
                            },
                            'activity':
                            passenger_based_activity[['Motorcycles']]
                        }
                    },
                    'Buses': {
                        'Urban Bus': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['Urban Bus']]
                            },
                            'activity': passenger_based_activity[['Urban Bus']]
                        },
                        'Intercity Bus': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['Intercity Bus']]
                            },
                            'activity':
                            passenger_based_activity[['Intercity Bus']]
                        },
                        'School Bus': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['School Bus']]
                            },
                            'activity':
                            passenger_based_activity[['School Bus']]
                        }
                    },
                    'Paratransit': {
                        'energy': {
                            'deliv':
                            passenger_based_energy_use[['Paratransit']]
                        },
                        'activity': passenger_based_activity[['Paratransit']]
                    }
                },
                'Rail': {
                    'Urban Rail': {
                        'Commuter Rail': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['Commuter Rail']]
                            },
                            'activity':
                            passenger_based_activity[['Commuter Rail']]
                        },
                        'Heavy Rail': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['Heavy Rail']]
                            },
                            'activity':
                            passenger_based_activity[['Heavy Rail']]
                        },
                        'Light Rail': {
                            'energy': {
                                'deliv':
                                passenger_based_energy_use[['Light Rail']]
                            },
                            'activity':
                            passenger_based_activity[['Light Rail']]
                        }
                    },
                    'Intercity Rail': {
                        'energy': {
                            'deliv':
                            passenger_based_energy_use[['Intercity Rail']]
                        },
                        'activity':
                        passenger_based_activity[['Intercity Rail']]
                    }
                },
                'Air': {
                    'Commercial Carriers': {
                        'energy': {
                            'deliv': passenger_based_energy_use[['Carrier']]
                        },
                        'activity':
                        passenger_based_activity[['Commercial Carriers']]
                    },
                    'General Aviation': {
                        'energy': {
                            'deliv':
                            passenger_based_energy_use[['General Aviation']]
                        },
                        'activity':
                        passenger_based_activity[['General Aviation']]
                    }
                }
            },
            'All_Freight': {
                'Highway': {
                    'Single-Unit Truck': {
                        'energy': {
                            'deliv':
                            freight_based_energy_use[['Single-Unit Truck']]
                        },
                        'activity':
                        freight_based_activity[['Single-Unit Truck']]
                    },
                    'Combination Truck': {
                        'energy': {
                            'deliv':
                            freight_based_energy_use[['Combination Truck']]
                        },
                        'activity':
                        freight_based_activity[['Combination Truck']]
                    }
                },
                'Rail': {
                    'energy': {
                        'deliv': freight_based_energy_use[['Rail']]
                    },
                    'activity': freight_based_activity[['Rail']]
                },
                'Air': {
                    'energy': {
                        'deliv': freight_based_energy_use[['Air']]
                    },
                    'activity': freight_based_activity[['Air']]
                },
                'Waterborne': {
                    'energy': {
                        'deliv': freight_based_energy_use[['Waterborne']]
                    },
                    'activity': freight_based_activity[['Waterborne']]
                },
                'Pipeline': {
                    'Oil Pipeline': {
                        'energy': {
                            'deliv': freight_based_energy_use[['Oil Pipeline']]
                        },
                        'activity': freight_based_activity[['Oil Pipeline']]
                    },
                    'Natural Gas Pipeline': {
                        'energy': {
                            'deliv':
                            freight_based_energy_use[['Natural Gas Pipeline']]
                        },
                        'activity':
                        freight_based_activity[['Natural Gas Pipeline']]
                    }
                }
            }
        }

        data_dict = {'All_Transportation': data_dict}

        return data_dict

    def main(self, breakout, calculate_lmdi):  # base_year=None,
        """Decompose Energy use for the Transportation sector
        """

        data_dict = self.collect_data()

        if self.level_of_aggregation == 'personal_vehicles_aggregate':
            categories = {
                'Passenger Car': None,
                'Light Truck': None,
                'Motorcycles': None
            }
            results = None
        else:
            results_dict, results = self.get_nested_lmdi(
                level_of_aggregation=self.level_of_aggregation,
                breakout=breakout,
                calculate_lmdi=calculate_lmdi,
                raw_data=data_dict,
                lmdi_type='LMDI-I')

        return results_dict